
                                                                                                                                    

Numerical representation and identification of graphs a) 
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A method to represent each linear graph by a single number, the determinant of its modified 
incidence matrix, is introduced. The isomorphism of graphs can be determined by comparing the 
determinants of their incidence matrices. Although it is not proved that different graphs can 
always be distinguished by the determinants of their modified incidence matrices, the proposed 
method provides a good practical algorithm for the identification of graphs. Applications of the 
single-number representation of graphs are discussed. 

PACS numbers: 02.1O.Ws, 02.70. + d 

I. INTRODUCTION 

Graph theory has many applications in theoretical 
physics. Notable examples in statistical mechanics are the 
Mayer's cluster expansions for the virial series of a gas, I and 
the series expansions of thermodynamic functions for spins 
on a lattice? 

In developing these perturbation expansions by graphic 
methods it is frequently necessary to consider the problem of 
identifying a graph with its isomorph in a graph list. Exam
ples are the following. 

A. Generation and listing of graphs of certain types 

The first stage in graphic methods of series expansions 
is to obtain the list of all graphs of the type wanted. We can 
generate graphs of a given type by various methods. As sev
eral isomorphs (for graph terminology see Ref. 2) of a given 
graph may be generated, it is necessary to eliminate dupli
cates in the graph list. Therefore, before a new graph is added 
to the list we must be certain that the new graph is not iso
morphic with any of the graphs already in the list. 

B. Calculation of the weak embeddings 

The weak embeddings (gj;gj) are defined as the numbers 
of subgraphs of gj which are isomorphic with gj. The matrix 
(gj;gj), called T-matrix by Rushbrooke,3 plays a central role 
in the finite cluster method of series expansions originally 
suggested by Domb.4 Another important application of the 
matrix (gj;gj) is the transformation of the set ofhigh-tem
perature lattice constantsPnx into the set oflow-temperature 
lattice constants P nx .5 In the calculation of weak embeddings 
we find all subgraphs of gj and determine which of the sub
graphs are isomorphic with gj. 

C. Calculation of the coincidence partitions 

The coincidence partitions ((gn;g", II are the numbers of 
ways of obtaining gm by bringing some vertices of gn into 
coincidence. The concept of coincidable embeddings was re
cently introduced by the authors. 6 The matrix ((gn;gm)) 
transforms the set of coincidable occur.rence factors C into 
the set of high-temperature lattice constants Pnx' It is i~und 

'IWork supported by the National Science Council of the Republic of 
Chma. 

that P nx can be obtained more easily, in some cases, through 
such a transformation. In the calculation of((gn;gm)) we find 
all reduced graphs of gn (simple graphs obtained by bringing 
some vertices of gn into coincidence), and identify each re
duced graph with its isomorph in a list of graphs gm' 

D. Calculation of the strong embeddings 

In the calculation of the strong embeddings [gj;gj J we 
find the section graphs of gj and determine how many of the 
section graphs are isomorphic with gj. 

For graphs with small numbers of points (or vertices)p 
and lines (or edges) I, their isomorphism can be determined 
by visual inspection. The manual method of identification 
becomes laborious and fallible for even moderately complex 
graphs. Figure l(a) shows a pair ofisomorphs withp = 7 and 
1= 11; Fig. lib) shows a triple of isomorphs withp = 8 and 
1= 14. These isomorphs appear quite different and even 
seem to have different symmetries. It is not obvious how to 
identify their isomorphism by the manual method. It is very 
useful to devise a method to represent graphs numerically, 
especially when there are a large number of graphs in the list, 
and to determine the isomorphism and other properties of 
graphs by using a digital computer. 

The most natural way to represent a graph of p vertices 
is by the use of a p Xp matrix, called the incidence matrix (or 
adjacency matrix, see p. 14 of Ref. 2). Whether two graphs 
are isomorphic or not is determined by whether their inci
dence matrices can be transformed into one another by rela
beling of the vertices. For a graph of p vertices there are p! 
possible labelings. To compare this graph with a list of M 

FIG. 1. ta) A pair ofisomorpbs of7 points and 11 lines, and (b) a triple of 
isomorphs of 8 points and 14 lines. These isomorphs appear quite 
differently. 
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graphs the maximum number of comparisons is Mp!. 
Nagle7 has suggested a useful procedure for identifying 

graphs. Among the p! matrices there exists a particular one 
(or several ones if the symmetry number of the graph is great
er than one), called the canonical matrix, which has the larg
est pZ -tuple. If one first permutes the vertices to find the 
canonical matrix and then compares it with the list of M 
canonical matrices, the maximum number of comparisons is 
reduced to M + pI. A somewhat similar method of defining a 
canonical matrix, according to the basic key of a graph is 
used by Rogiers et al.8 to label shadow graphs. In these ma
trix representations of graphs each comparison involves ma
trices of p2 elements. 

If we can represent each graph in the list by a single 
number, instead of ap Xp matrix, the memory space for stor
ing graphs, and the computing time for identifying graphs 
will be greatly reduced. 

In Sec. II we illustrate (but do not prove) that with prop
er modification of the diagonal elements of the incidence 
matrices the determinants of the incidence matrices can be 
used to identify graphs. The method to represent each graph 
by a single number is given in Sec. III. Some applications of 
the single-number representation method are presented in 
Sec. IV. Discussions are given in Sec. V. In this article only 
simple graphs are considered. Extension of the single-num
ber representation method to multigraphs (or nonsimple 
graphs) is straightforward. 

II. DETERMINANTS OF THE MODIFIED INCIDENCE 
MATRICES 

The incidence matrix A of a linear graph has elements 

aij = 1 if vertices i andj of the graphs are connected, 

aij = ° otherwise. (1) 

As the determinant of a matrix is the unique characteristic 
number of the matrix which is invariant under transforma
tion, it is necessary that two isomorphic graphs have the 
same determinant. Offhand, we may expect to represent a 
graph by the determinant of its incidence matrix. Unfortu
nately, most simple graphs have detA = 0, because all diag
onal elements and many off-diagonal elements of the matri
ces are zero. 

The simplest modification of the incidence matrix is to 
add a variable x to all the diagonal elements. The modified 
incidence matrix AI has 

aIJ' = aij + x8u, (2) 

where 8ij is the Kronecker delta. We define functions ofx for 
graphsg as 

D,(g;x) = detA ,. (3) 

The variable x or g may be omitted for convenience. D I are 
polynomials of degree p in. x for graphs with p vertices. 

For graphs with p<A different graphs have different D, 
functions. For p > 5, however, different graphs may have the 
same D\ function. It is impossible to identify graphs conclu
sivelyby D ,. ThefunctionD\( - x) is nothing but thecharac
teristic polynomial of the incidence matrix A. The knowl
edge of the function D\(x) is equivalent to the knowledge of 
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·0 x 
FIG. 2. Smallest pair of graphs having the same D,(x). 

the eigenvalues of the incidence matrix. Different graphs 
whose incidence matrices have the same eigenvalues, i.e., the 
same D,(x), are known as isospectral graphs, because these 
graphs have the same spectral moments. 9. 10 

Figure 2 shows the smallest pairs of graphs which have 
the same D\(x) function. Their D\(x) functions are 

D\(g2a;X) = D\(gZb;X) = x 5 
- 4x3. (4) 

The smallest pair of connected isospectral graphs \0 is shown 
in Fig. 3. For these graphs 

D I(g3a;X) = D\(g3b;X) 

= x6 
- 7X4 + 4x3 + txz - 4x - 1. (5) 

In order to distinguish isospectral graphs we further 
modify the matrix and define the modified incidence matrix 
Az by 

alJI = aij + (x + m,y)8ij' (6) 

where m i is the vertex multiplicity (or degree) of the ith ver
tex of the graph, i.e., the number oflines connected to the ith 
vertex. Functions of x and yare defined as 

(7) 

It is clear that Dz are more informative than D\. Graphs 
shown in Figs. 2 and 3, which have the same D\(x) can be 
distinguished by Dz(x,y). For example, 

Dz(gza ;x,y) = xIx + 2y)Z(xz + 4xy + 4yZ - 4), 

and (8) 

DZ(glb;X,y) = (x + y)3(X2 + 5xy + 4y2 - 4). 

We have surveyed more than 20000 graphs including 
all graphs (connected or disconnected) with p.;;; 8, and all con
nected graphs with I.;;; 11. We find that except for two pairs of 
graphs shown in Figs. 4 and 5, all the graphs we considered 
have different D2(x,y). 

For graphs shown in Figs. 4 and 5, we can further dis
tinguish them by their functions D 3(x,y,z) = det A3 , where 
the elements of A3 are 

alJ) = au + (x + miy + m;z)8ij' (9) 

We postulate that for any list of graphs there exists a number 
n such that all graphs in the list havedifferentDn (x I'X2, .. ·,xn ) 

functions, although some sets of graphs may have the same 
Dn _ \ (xl,XZ, ... ,xn _ \) functions. Here Dn is the determinant 

FIG. 3. Smallest pair of connected graphs having the same D,(x). 
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FIG. 4. Smallest pair of graphs (/ = 10) having the same P2(x,y). 

of the modified incidence matrix An having elements 

a~) = aij + (XI + m i x2 + m?x3 + ... + m7 -lxniDij. (10) 

III. SINGLE-NUMBER REPRESENTATION OF GRAPHS 

In actual practice we do not represent and identify 
graphs by their D n functions explicitly. The determination of 
the Dn functions is complicated. Moreover, we need many 
coefficients to describe a Dn function. The number of coeffi
cients required to describe the Dn function for a graph of p 
vertices is (p + n)!/(p!n!). Although some of the coefficients 
are equal to zero for all simple graphs, the number of nontri
vial coefficients in Dn increases rapidly withp and n. 

Instead of representing a graph by a functionD n explic
itly, we represent the graph by the value of D" evaluated at a 
point (X IO,X20,''''XnO )' We first choose the point 
(XIO,X20, ... ,xnO) arbitrarily, then evaluate the diagonal ele
ments of the modified incidence matrices at this point, and 
finally calculate the values Dn (g;x IQ'X20,.,,) (to be denoted as 
D"(g) for convenience) directly from the matrices by stan
dard methods such as Gauss elimination method or its var
iants. II We do not need to determine the functions Dn explic
itly. All D n (g) are evaluated at the same point (x iO,X20'" .,x nO)' 

If there are N significant decimal digits in the computed 
results Dn (g), it is certain that two graphs gl and g2 are not 
isomorphic when /Dn(gl) - Dn(gzi///Dn(gl) + Dn(g2i/ is 
greater than lO-N. On the other hand, if 
IDn(gd - Dn (g2)/1ID" (gd + Dn(gz)/ is less than lO-N, either 
(i)gJ andg2 are isomorphic, (ii)gJ andg2 are not isomorphic 
but they have the same D" function, or (iii) gland g2 have 
different Dn functions but the values Dn (gl) and Dn (g2) are 
degenerate "accidentally." By accidental degeneracy we 
mean that at the point (x IO,X20, ••• ) the difference between the 
functions D n (g d and D" (g2) are too small to be distinguished 
by the digital computer used. 

If we know by any means that accidental degeneracy 
does not occur, and all different graphs considered have dif
ferent Dn functions, we can use a single number 
Dn (g;x IO'X20,.,,) to represent and to identify each graph 
conclusively. 

The probabililty P that accidental degeneracy occurs 
increases when the number of graphs in the list increases, or 

FIG. 5. Second pair of graphs (/ = 11) having the same P2(x,y). The next pair 
has / = 12. 

when the precision of the computed results decreases. If we 
assume that D n (g) is a random variable with uniform distri
bution (the actual distribution of D n (g) is probably a normal 
distribution with mean = 0; the probability P, however, de
pends very weakly on the type of distribution] it is straight
forward to show that 

M-I 

P<Pu = 1 - IT (1 - 2n/lON
), (11) 

n=O 

where M is the number of graphs in the list and N is the 
number of significant digits in the calculation of D" (g). 

Table I shows the upper bound Pu for some values of N 
and M. We see from Table I that even for a list of as many as 
10 000 graphs the probability that accidental degeneracy oc
curs is about 1 % if the precision in the computed results is 10 
decimal digits. Such a precision can be achieved by most 
modern computers even without using the double precision 
mode. We note that when lON>Ml, Pu ::::M2/lON. 

To apply the present single-value representation meth
od to the generation and listing of graphs we must have a 
simple method to check whether different graphs considered 
have different Dn functions, and whether accidental degen
eracy does not occur at the chosen point (x IQ,X20,''''X"o)' For
tunately, a simple method of checking does exist. Without 
listing all the graphs explicitly, the numbers of graphs of 
certain types can be determined by Polya's theorem. 1,2 For 
example, the total number oflinear graphs amongp unla
beled points with llines, denoted by Tr(p,!), the number of 
connected graphs, denoted by y(p,l ), and the number of stars, 
u(p,l ), etc., can be determined by Polya's theorem. If the total 
number of graphs of a given type obtained by the single
number representation approach is the same as that predict
ed by Polya's theorem, we can be certain that all graphs of 
the type considered have different D" functions and acciden
tal degeneracy does not occur. 

IV. SOME APPLICATIONS 

We have applied the single-number representation of 
graphs to the following problems: 

TABLE I. Upper bounds of an approximate probability Pu see Eq. (II), that accidental degeneracy of P n (g) occurs. There are M graphs in the list and the 
precision of Dn (g) is N digits. 

N M-IOO 500 1000 5000 10000 50000 

6 0.985E-2 0.221 0.632 -I 
7 0.989E-3 0.246E-1 0.95IE-1 0.918 -I 
8 0.990E-4 0.249E-2 0.994E-2 0.221 0.632 -I 
9 0.990E-5 0.249E-3 0.998E-3 0.247E-1 0.952E-1 0.918 
10 0.990E-6 0.249E-4 0.999E-4 0.249E-2 0.995E-2 0.221 
II 0.990E-7 0.249E-5 0.999E-5 0.250E-3 0.999E-3 0.247E-1 
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A. Generation and listing of graphs (connected and 
disconnected) with p<8 

All p-point graphs can be generated by adding 0 to 
p - 1 lines from the pth vertex to fp - 1 )-point graphs. We 
input fp - I)-point graphs, one at a time, to the memory of 
the computer and generate severalp-point graphs from each 
input graph. Since graphs with different I or p are not iso
morphic, isomorphism needs to be checked only for graphs 
with the same values of I and p. We represent and identify 
graphs by D2(xo,Yo) at Xo = 1.234 567 and Yo = 0.111 111 1. 
When several graphs generated have the same p, /, and 
D 2(xO'yo), only the first one is listed, the others are eliminat
ed. When a graph is listed only its D2 value is stored in the 
memory; the incidence matrix of the graph is then trans
ferred from the memory to an output device. The total num
bers of different graphs we obtained are 1Tfp) = 2,4, 11,34, 
156, 1044, and 12 346, respectively for p = 2-8. These num
bers are the same as those predicted by Polya's theorem. The 
computing time used to obtain these graphs is about 1200 
seconds for a CDC Cyber 172 computer. 

B. Generation and listing of connected graphs 
with/<11 

All the p-point, I-line connected graphs can be obtained 
by adding n lines (0 < n <p) from the pth vertex to the fp - 1)
point, (1- n)-line graphs. The first time we used D 2(xO,Yo) to 
identify graphs. When we compared the numbers of graphs 
of various sizes with those predicted by Polya's theorem, we 
found that two graphs were absent in our graph list. 

Polya's theorem predicts that the number of connected 
graphs withp = 11 and I = 10 is r(ll,1O) = 235, but the 
number of graphs of this type we obtained is 234. We can 
expect that among the 235 graphs either two of them have 
the same D2 function, or their D2 functions are degenerate 
accidentally at (xo,yo). Similarly the number of connected 
graphs we obtained with p = 12 and I = 11 is 550, while the 
correct number is r(12,11) = 551. 

A CDC Cyber 172 computer was used in our calcula
tion. The precision of this computer is 14 decimal digits for 
the single-precision mode, and the computed results D n (g) 
are expected to have 12 significant decimal digits. For a list 
of M = 551 graphs the probability that accidental degener
acy occurs is less than 10- 6 (see Table I). We can be almost 
sure from this probability that accidental degeneracy does 
not occur. 

We then used D 3(xo,yo,zo) at xo = 1.234567, 
Yo = 0.111 III 1, and zo = 0.054 321 to identify graphs; and 
we obtained the correct number of graphs. With the com
plete list of graphs it is easy to locate the pairs of graphs 
which cannot be distinguished by D 2(xo,yo)' They are shown 
in Figs. 4 and 5. We calculated the D2 functions of these 
graphs explicitly. As expected, the graphs shown in Fig. 4 
have the same D2 function, and so do the graphs in Fig. 5. 
The numbers of I-line connected graphs for I equal 1 through 
11 are 1, 1,3,5,12,30,79,227,710,2322, and 8071, respec
tively. To obtain these graphs, when graphs are identified by 
D 3 , the computing time is about 1850 seconds. 
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C. Calculation of coincidence partitions «(gn;gm) 

In a previous paper we derived the high-temperature 
lattice constants for a generalized equivalent neighbor mod
e1.6 In this paper the matrix element ((gn;gm)) for stars with 
1<8 was derived by a manual method. We have recently cal
culated the low-temperature lattice constants for this mod
el. 12 The procedures for deriving the elements ((gll;gm)) have 
been computerized, and the matrix has been derived to the 
seventh order, i.e., for all connected graphs withp<7. There 
are two procedures in the calculation: to obtain all reduced 
graphs of g n' and to identify each reduced graph with its 
isomorph in the listgm • We identified graphs by 
D 2(xO = 1.234567, Yo = 0.111 111 1). The computing time 
for deriving the matrix to the seventh order is about 5200 
seconds for a CDC Cyber 172 computer. It would take more 
than 5000 hours to obtain these matrix elements manually. 

V. DISCUSSION 

We have introduced a method to represent ap-point 
graph g by a single number D II (g), instead of a p Xp incidence 
matrix A. For each graph D" (g) is the determinant of its 
modified incidence matrix An whose diagonal elements de
pend on the numbers of lines connected to the vertices. 

In previous matrix-representation methods each graph 
is represented by a matrix. A memory space of Mp2 words is 
required to store M graphs. In the present method each 
graph is represented by a single number. A memory space of 
M words is enough for the M graphs. The memory space is 
reduced p2-fold. Although it is possible to store several num
bers simultaneously in each word when very low precision is 
sufficient (such as the elements of the canonical matrices), 
the memory space required for storing a matrix is much larg
er than that for storing a number. Furthermore, the saving of 
memory space by storing several numbers in one word must 
be compensated for by an increase of computation time. 

For a graph of p vertices there are p! matrices corre
sponding to the p! different labelings of the vertices. One can 
permute the vertices to find the canonical matrix out of the pI 
matrices. Nagle7 has illustrated a method to write down the 
canonical matrix of a graph in an easier way than actually 
constructing all the permissible matrices. The vertices are 
first relabeled so that m t >m2>m3""">m p ' One then per
mutes only the vertices which have the same degree, and 
determines the canonical matrix. In the present method we 
simply modify the diagonal elements of the incidence ma
trix, and then evaluate the determinant Dn(g). The comput
ing time in the calculation of the determinant is proportional 
to p3 if the Gauss elimination method is used. 11 When p is 
small (say p<6) or when most ofthe vertices in a graph have 
different degrees, the computing time for finding the deter
minant may be longer than that for finding the canonical 
matrix. Otherwise the time required to evaluate D n is expect
ed to be shorter. 

As far as the graph identification is concerned, we com
pare a number to a list of M numbers, while in the previous 
methods one compares a matrix to a list of M matrices. The 
computing time is reduced considerably in the present 
method. 
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For moderately complex graphs, D2(xo,Yo) can be used 
to identify graphs. For more complex graphs, D3 or higher
order ones should be used. It is important to note that when 
we use either D2 or D3 to identify graphs, the difference in 
computing time is about 1 %. Even when we useD4 or D s, the 
increase of computing time is only a few percent. 

The values Xc, Yo, etc., may be chosen arbitrarily, but 
integers are not recommended. The probability that the val
ues of two different Dn functions are too close to be distin
guished by a computer is very small. Even so, when we apply 
the present method to the generation and listing of graphs we 
must check whether the total number of graphs we obtained 
is correct. Should the total number be incorrect, we have to 
try other values (xo,Yo,··), or try a higher-order Dn' 

We can also define different kinds of modified incidence 
matrices whose diagonal elements are more complicated 
functions of mj (instead of polynomials in m i ). However, 
when using more complicated functions it takes a longer 
time to evaluate the diagonal elements. 

In Sec. IV we have applied the present single-number 
representation method to the generation and listing of 
graphs, and to the calculation of graph embeddings. There 
are other applications. We can identify isospectral graphs by 
comparing their DI(xo) numerically. We can determine nu
merically whether a graph is connected or disconnected. 
Consider graphs g'1' g2' and g3 which have numbers ofver
tices Pi' P2' and P3' respectively. If PI = P2 + P3 and 
Dn (gd = Dn (gz)Dn (g3)' then gl is a disconnected graph com-

2731 J. Math. Phys., Vol. 22, No. 12, December 1981 

posed of g2 andg3, provided all graphs with the same number 
of vertices can be distinguished by D n • 

In conclusion, we have introduced a method to repre
sent each graph by a single number, instead of a canonical 
matrix. Both the memory space for storing graphs in a com
puter and the computing time for identifying graphs are 
greatly reduced, especially for complex graphs. Finally, we 
hope that someone will prove the postulate that for any list of 
graphs there exists an integer n such that all graphs in the list 
have different Dn functions. 
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We find all missing label operators and also a complete set of analytic nonorthonormal basis states 
for the group-subgroup Sp(6j:)SU(3)XU(I), both for the compact version ofSp(6) and for the 
noncompact Sp(6,R ) relevant to the symplectic nuclear collective model. 

PACS numbers: 02.20. + b, 21.60.Ev, 21.60.Fw 

1. INTRODUCTION 

The symplectic nuclear collective model I combines the 
features of the Bohr-Mottelson and of the Elliott models. 
The nuclear states are classified as bases of irreducible repre
sentations2 of the noncompact group Sp(6,R ), reduced ac
cording to its SU(3) X U( 1) subgroup. The subgroup does not 
provide enough labels to specify the states uniquely-the 
same SU(3)XU(I) representation may occur many times in 
one Sp( 6,R ) representation. The same is true for the compact 
group Sp(6) reduced according to its subgroup SU(3) X U( 1). 
Racah's counting of labels3 gives the number of missing la
bels as three in both cases. 

One method of resolving the multiplicity problem is the 
use of basis states which are common eigenstates of some 
complete set of commuting Hermitian operators.4 Besides 
the Casimir operators of group and subgroup, and appropri
ate internal subgroup labels, three additional labeling opera
tors must be found. These missing label operators should be 
subgroup scalars in the enveloping algebra of the group, i.e., 
polynomials in the group generators. In Sec. 2 we derive a 
generating function for SU(3)XU(I) scalars in the envelop
ing algebra of Sp(6). It provides an integrity basis-a small 
number of elementary subgroup scalars in terms of which all 
can be expressed as products. The generating function is the 
same for compact and noncompact Sp(6). 

Another approach to the labeling problem is to define a 
complete linearly independent set of analytic, but nonorth
onormal, basis states. In Sec. 3 we find generating functions 
for Sp(6) :)SU(3) X U(I) branching rules for the compact and 
the noncom pact cases. They provide basis states for all rel
evant representations ofSp(6) in terms of a small number of 
elementary multiplets. 

Section 4 contains some concluding remarks. 

2. MISSING LABEL OPERATORS 

The objective of this section is to enumerate all 
SU(3) X U(I) scalars which are polynomials in the Sp(6) gen
erators. Since they commute with the Casimir operators, and 
internal subgroup labels, they may serve as missing label 
operators. 

"'Work supported in part by the Natural Science and Engineering Research 
Council of Canada and by the Ministere de I'Education du Quebec. 

The generators ofSp(6), compact or noncompact, break 
up under SU(3)XU(I) into an octet U and a singlet D, both 
with U( 1) weight 0, and a sextet Vand an anti sextet W with 
U( 1) weights ± 1, respectively. The SU(3) generators are the 
components of the octet U; the singlet D is the U( 1) 
generator. 

Our strategy is to find two generating functions for 
SU(3) polynomial tensors, one in the components of U, the 
other in the components of Vand W, and then to combine 
them to obtain a generating function for SU(3) X U( 1) scalars 
which are polynomials in all the generators. For a discussion 
of the use of generating functions in connection with repre
sentations of Lie groups, see Refs. 5,6. 

The generating function for polynomial SU(3) tensors 
in the components of the octet U is known to be5 

GI(U,A,B) 

(1 - U 2 )(1 - U 3 )(1 - UAB)(1 - U 3A 3)(1 _ u 3B 3) 

(2.1) 

A term UUA aB bCuab in the expansion of(2.1) implies that 
there are Cuab tensors of type (a,b ) among the terms of degree 
u in U. These tensors all have U( 1) weight O. 

Similarly the generating functions for SU(3) polynomial 
tensors in Vand Ware 7 

G
2
(v,A,B) = [(1- VA 2)(1_ V2B2)(1- Vl)]-I (2.2) 

and 

G
3
(W,A,B) = [(1 - WB2)(1 - W 2A 2)(1 - W 3)]-I, (2.3) 

respectively. A tensor of degree v in V carries the U( 1) weight 
v; one of degree w in W has U( 1) weight - w. 

A U( 1) scalar must have Vand Woccurring to the same 
degree. To extract the U( 1) scalar part of the product of G2 

and G3 we therefore write 

G2( V,A I ,B I )G3( YV - I ,A 2,Bz) 

and retain only terms of degree 0 in V. Denote the result by 
H (Y,A I,B I ,Az,B2 ). Then Y carries as its exponent the com
mon degree in Vand W. The labels ofSU(3) representations 
arising from V are carried by A pBp those from Wby A 2,B2• 

The direct products of the tensors from V with those from W 
are conveniently taken with the help of the SU(3) Clebsch
Gordan generating function6 
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C(A I,BI,A2,B2,A,B) 

= [(1 -AIA)(I -BIB)(I-A~) 

X(I-B2B)(I-AIB2)(I-BIA2)]-1 (2.4) 

X 1(1 -AIA2B)-1 +BIB~ (I-BIB~ )-Il· 

Writing H (Y,A I,B 1,A2,B2)C (A It,B 1- I,A 2- t,B 2- I ,A,B ) 
and retaining only terms of degree 0 inA I,B 1,A2,B2 we obtain 
J (Y ,A,B) which enumeratesSU(3) tensors (labels carried by A 
and B) of equal degree (carried by Y) in Vand W. 

Finally, we write the product GI(U,A,B )J(Y,B -I,A -I) 
and extract the part of degree 0 in A and B. Multiplying by 
(1 - D ) - I to take account of the U( 1) generator we obtain the 
generating function 

K(U,Y,D) = [(1- Y)(I- y2) 

X (1 - y 3)(1 - U 2)(I - U 3 )(I - D) 

X(I - UY)(I - U 2 Y)2(I - Uy2)(1 - U 3Y)]-1 (2.5) 

X [(1 + 2U 2y2 + 2U 2y 3 + U 2y4 + 2U 3y 2 + 3U 2y3 

+ U 3y4 + 2U4y2 + 2U 4Y 3 

+ 3U4y4 + U 4y6 + U 5 ys + U 5 Y6) 

X(1 - U 2y2)-1 + (U 4y + U 4y2 + U 4y3 + U 4 y5 

+ U 5y2 + U 5y3 + U Sy4 + USys + U 6y2 + 3U6Y3 

+ 3U 6 y4 + 2U6yS + U 7y3 + 2U 7y4 + U 7y5 + U 8 y3 

+ 2U 8 y4 + 3U 8 yS + U lOy7)(I - U 4Y)-ll. 

for SU(3) X U(l) scalars in the Sp(6) enveloping algebra. 
The first six denominator factors in (2.5) correspond to 

the Casimir operators ofSp(6), SU(3), and U(I). Omitting 
these factors, we have a generating function for missing label 
operators. Since there are three missing labels, we expect six 
functionally independent label operators8

; this accords with 
the fact that, apart from the six Casimir operators, each term 
of (2.5) contains six denominator factors. 

The generating function (2.5) may be interpreted in 
terms of an integrity basis-a finite number, 31 in this case, 
of elementary labeling operators in terms of which all may be 
written as products. Some combinations of elementary oper
ators are incompatible-their products are redundant be
cause they can be expressed as linear combinations of other 
products. Equation (2.5) specifies the elementary labeling 
operators by giving their degrees in U, V, and W [Yin (2.5) 
could be replaced by VW]; from that information it iseasy to 
construct them. For example the operator designated by UY 
is 

(2.6) 

The coefficient in (2.6) is an SU(3) Wigner coefficient. The 
two operators corresponding to U 2 Yare 

(
20 02 122)(11 11 22) I Vi Uj Uk WI. I . ; k ; 

~m I m q m 
(2.7) 

and 

(2.8) 

2733 J. Math. Phys .• Vol. 22. No. 12. December 1981 

The triangular bracket symbols in (2.7) and (2.8) are SU(3) 
Clebsch-Gordan coefficients; the SU(3) Wigner coefficient 
in (2.8) describes the symmetric coupling of three octets to 
give a scalar. 

The phases of the generators Vand W may be chosen so 
that their commutation rules are the same for compact and 
noncompact Sp(6); then the components of W, when written 
in terms of the Hermitian conjugates of the components of V, 
have opposite signs in the two cases. Corresponding compact 
and noncom pact labeling operators may differ by a factor i in 
order that both be Hermitian. 

There remains the problem of choosing three missing 
label operators which mutually commute. We hope to return 
to this question soon. In the meantime, a single labeling op
erator, or if necessary, an irrational linear combination of 
operators from the integrity basis implied by (2.5) will prob
ably suffice to resolve any degeneracy of practical interest. 

Couture and Sharp9 have given a generating function 
[their Eq. (5.3)] for Sp(6) tensors contained in the Sp(6) envel
oping algebra. According to (3.7) each Sp(6) tensor whose 
representation labels are all even contains just one 
SU(3) X U(I) scalar. Hence the even-even-even part of(5.3) of 
Ref. 9 is a generating function for SU(3) X U( 1) scalars in the 
Sp(6) enveloping algebra. Our (2.5) is preferable since it gives 
the degrees of the scalars in U, V, W, and D separately. 

3. ANALYTIC Sp(6):::) SU(3) X U(1) BASIS STATES 

In this section we give generating functions for branch
ing rules for noncompact and compact Sp(6) reduced accord
ing to SU(3)XU(I). In each case the generating function is 
interpreted in terms of analytic Sp(6):>SU(3)XU(I) basis 
states. 

The basis states of the discrete series of irreducible re
presentations of noncom pact Sp(6,R ) required for the sym
plectic nuclear collective model are generated I by applying 
polynomials in the components of an SU(3) sextet Z of unit 
U(I) weight to the states of an SU(3) X U(I) irreducible repre
sentation (p,q;d). The components of the sextet Z are two
quantum creation operators: the U( I) weight z is the initial 
weight d plus one-half the number of quanta present. 

According to (2.2) the generating function for 
SU(3) X U( 1) representations generated by the sextet Z is 

G2(Z,A,B)=[(I-ZA2)(1-Z2B2)(I-Z3)]-I. (3.1) 

A and B in (3.1) carry the SU(3) representation labels and Z 
carries the U( 1) weight. Let us denote the six states of the 
sextet Z by 

a = 12,2), /3 = 12,1), r = 12,0), 

0= 12, - 1), € = 12, - 2), e = 10,0). 
(3.2) 

The notation is IL,M > where Land M label the states of the 
0(3) subgroup ofSU(3). The generating function (3.1) implies 
an integrity basis of three elements. The first is the basic 
sextet with highest component a: the second is an antisextet 
with highest component 

G = 2(v2)ar - (V3)/32 - 2ae. (3.3) 

The third is an SU(3) scalar 
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s = - 3(v3)a82 
- 3(v3).B 2E - (v2)T + 3(v2).By8 

+ 6(v2)aq - 6adt + 6/380 - 3yO + 20 3
• (3.4) 

The highest component of the SU(3) tensor (x,y) gener
ated by Z is given explicitly by 

12a,2b,a + 2b + 3c; 2a + 2b, 2a + 2b) = aaGbs c
, 

(3.5) 

where we have used the notation lx, y, z; L,M). The tensors 
defined by (3.5) can now be coupled to the basic SU(3) X U(l) 
mUltiplet (p,q;d j, which defines the Sp(6,R ) representation 
under consideration, with the help ofSU( 3) Clebsch-Gordan 
coefficients to give analytic Sp(6,R PSU(3)XU(1) basis 
states. Such states are suitable for the evaluation of Sp( 6,R ) 
generator matrix elements and Clebsch-Gordan coefficients 
in an SU(3)XU(I) basis. 

A generating function for Sp(6,R PSU(3)XU(1) 
branching rules is obtained by multiplying Gz(Z,A pB d, giv
en by (3.1), by [(I - PA 2 )(1 - QB2)(1 - ZD )]-1 and by the 
SU(3) Clebsch-Gordan generating function C (A I-I,B I-I, 

A2 -I ,B
2 

- I ,A,B) defined in (2.4), and retaining the part of 
degree 0 in A 1,A2,BI>B2· The result is 

...J 

FI(P,Q,D; A,B,Z) 

= [(l-ZA 2)(I-Z2B2)(1-PA)(1 - QB) 

X(I - ZQ2)(1 - ZZP2)(1 - ZD)(I - Z3)]-1 

X [(1 + QAZ + PABZ + PQBZ)(1 + PBZ 2)1 

(l-p 2B 2Z) 

+ (QABZ 2 + PQAZ 2 + Q2A 2Z2 + PQ 2A 2BZ4) 

X(1 + QAZ)/(l - Q2A 2Z2)]. (3.6) 

A term PPQ qD dA aB bZ'Cpqdab. in the expansion of(3.6) im
plies that the SU(3)XU(I) representation (a,b;z) appears 
CpqdabZ times in the Sp(6,R ) representation (p,q;d). The fact 
that there are nine denominator factors in each term of(3.6), 
three more than the number of group and subgroup Jabels, 
implies three missing labels, in agreement with Racah's 
counting. 3 

We now turn to the generating function for branching 
rules for compact Sp(6) reduced according to SU(3)XU(I). 
In principle the generating function could be computed ana
lytically starting with the Sp(6) character generator. 1O To 
avoid tedious algebra we use instead the method of elemen
tary multiplets . 

By examining the SU(3) X U( 1) content of a number of low-lying Sp(6) irreducible representations, II we may infer the 
integrity basis for the problem. It is a finite set ofSU(3)XU(1) multiplets contained in low Sp(6) representations, in terms of 
which all may be expressed as stretched products. Written as a generating function the result takes the form 

F2(K,L,M;A,B,Z) 

l 1 +KMAB L2 KL 3BZ- 1 

= + + ----~--~~------~ 
(l-K 2)(I-MA 2Z- I )(1-MB 1Z) (1-K2)(1-L2)(I-KLAZ) (I-Kl)(I-L2)(I-KLBZ-I) 

L 4A 2Z2 L 4B 2Z- 2 

+ + --------------~-----------(I - L 2A 2Z2)(1 - L 2)(1 - KLAZ) (1 _ L 2)(1 _ L 2B 2Z -2)(1 - KLBZ -I) 
LAB L-IAB 3Z- 2 

+ (I-LAB)(I-L 2A 1Z 2)(I-L 2) + (I_LAB)(I-L 2B 2Z- 2)(I-L 2) 
LMIA 3B 3 LMA JBZ-I 

+ 2 I 2 + ----------:-----------:-
(l-LAB)(l-MA Z- )(I-MB Z) (1_LAB)(I-L 2A 2Z 2)(1-MAZ- 1

) 

LMABJZ KLAZ 

+ (I-LAB)(I-L 1B 2Z- 1)(I-MB 2Z1 + (1_K 2 )(1-MA 1Z- I)(I-KLAZ) 

KLBZ- I L 1A 2Z 2 

+ (1-Kl)(I-MB1Z)(l-KLBZ-I) + (I_L2A2Z2)(I_MA2Z-I)(I-KLAZ) 

L 2B 2z -2 1 
+ (I - L 2B 2Z -2)(1 - MB2Z)(1 - KLBZ -I) 

[(1 - KAZ)(1 - KBZ -1)(1 - LBZ2)(1 - LAZ -2)(1 - MZ')(I - MZ -3)J-I. 
(3.7) 

The dummy variables K,L,M carry the Sp(6) representation labels as exponents, whileA,B,Z carry the SU(3) and U( 1) labels. 
For example the coefficient of KL in the expansion of (3. 7), namely ABZ 3 + A "-HZ + B 2Z + AZ + BZ - I + A 2Z - ! 

+ AB 2Z -I + ABZ -:1 tells us thatthe SU(3)XU(I) content of(llO) is (11,3) + (21,1) + (02,1) + (10,1) 
+(01,-1)+(20,-1)+(12,-1)+(11,-3). 

The validity of (3.7) was checked by converting it, by 
appropriate substitutions, into a generating function for 
Sp(6) weights. It was then compared with the generating 
function for weights obtained from the known 12 

Sp(6):J Sp(4) X SU(2) generating function. Since an analytic 
comparison of the two versions of the Sp(6) character 
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(weight) generator would be very laborious, we made the 
necessary substitutions by means of a computer program 
and compared the two generating functions at random val

ues of their arguments. . 
The generating function (3.7) implies a set of poly nom 1-

al bases for compact Sp(6) :JSU(3) X U( 1). First one evaluates 
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the highest states of the elementary multiplets as polynomi
als in the states of the fundamental irreducible representa
tions (100), (010), and (001). Compatible products of powers 
of these highest states correspond one-to-one to highest 
states of all SU(3) X U(l) multiplets contained in Sp(6) repre
sentations. Unwanted admixtures of states belonging to low
er Sp(6) representations than the degree of the polynomials 
would suggest may be eliminated by the techniques of Lohe 
and Hurst. 13 

4. CONCLUDING REMARKS 

The results of this paper suggest some areas for further 
work. 

An obvious problem, mentioned in Sec. 2, is that of 
finding three commuting functions of the six functionally 
independent missing label operators provided by the gener
ating function (2.5). We conjecture that a general solution of 
the problem might go somewhat along the following lines. 
Choose, on grounds of mathematical or empirical conve
nience, one missing label operator. Impose on an unknown 
function of the other five that it commute with the chosen 
one. That condition will determine four independent func
tions from which the next label operator must be chosen. At 
each stage of selection there are twice as many operators 
available as are stilI needed. Such a general procedure may 
be overly ambitious. For the moment we would be happy to 
have one set of three commuting label operators. 

The analytic basis states for noncom pact 
Sp(6,R PSU(3)XU(1) could be used to derive quite general 
generator matrix elements and Sp(6,R PSU(3)XU(1) re-
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duced Wigner coefficients. These would have application to 
the symplectic nuclear collective model. 
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The G2 character generator is given; with its help generating functions are derived for branching 
rules for G2 irreducible representations reduced according to its maximal semisimple subgroups. 

PACS numbers: 02.20.Hj 

I. INTRODUCTION 

The character generator of a simple group, apart from 
providing the characters, or weights, or all irreducible repre
sentations, turns out to be a convenient starting point for the 
calculation of other generating functions, for example, for 
branching rules to a semisimple or finite subgroup or for 
direct products of representations of the group. 

A few character generators, or the equivalent integrity 
bases, have been known for some time. 1.2 Recently R. P. 
Stanley3 has derived the SU(n) character generator; and R. 
C. King4 has given the character generator for Sp(2n). 

In Sec. II we derive the character generator for the ex
ceptional group G2, and with its help, in Secs. III and IV, we 
obtain generating functions for the branching rules of G2 to 
its maximal semisimple subgroups SU(2)xSU(2) and 0(3); 
the generating function for G2:JSU(3) branching rules ap
pears in Eq. (2.3). Section V contains some additional 
comments. 

II. THE G2 CHARACTER GENERATOR 

The G2 character generator is defined by its power se
ries expansion 

H(A,B;7],f) = LA aBb7]mfnCab,mn' (2.1) 
abmn 

where Cab,mn is the multiplicity of the weight (m,n) in the G2 
representation (ab ), 

To derive an explicit formula for H (A,B;7],f ) we "substi
tute" the SU(3) character generator into the generating func-

tion for G2 :JSU(3) branching rules, 

The SU(3) character generator is known to be l,2 

G (P,Q;7],f ) 
= [(1 - P7]f)(1 - P7]-lf )(1 - Q7]f -1)(1 - Q7]-lf -1)]-1 

X [(1 - Ps -2)-1 + (1 - Qf 2)-IQs 2]. (2.2) 

The component of weight carried as exponent by the dummy 
variable 7] in (2.2) is twice the component of isospin, while 
that carried by f is three times the hypercharge. The generat
ing function for G2 :JSU(3) branching rules is5

•
6 

F(A,B;P,Q) = [(l-AP)(I-AQ)(I-BP)(l-BQ)]-1 

X[(I-A)-I+(I-BPQ)-IBPQ]. (2.3) 

The coefficient of A aB bPPQ q in the expansion of (2.3) is the 
multiplicity of the SU(3) representation (p,q) in the G2 repre
sentation (a,b ), 

The G2 character generator is found by retaining the 
terms of zero degree in P and Q in the product 
F(A,B;P,Q)G (P -I,Q -1;7],S), The result of this operation is 

H (A,B;7],f) = Ht/A,B;7],s) + Ht/A,B;7] - I,S) 

where 

+ H 2(A,B;7],s) + H 2(A,B;7]-I,f) 

+H2(A,B;7],S -I) +H2(A,B;7]-I,t -I), (2.4) 

Ht/A,B;7],f) = [(1 - A7]f)(1 - A7]S -1)(1 - B7]s)(1 - B7]f -I) 
X (I - 7] - 2)( 1 - 7] - If 3)( 1 - 7] - If - 3)] - I 

X[(I-A )-IA + (1-B7]2)-I], 

H 2(A,B;7],f) = [(1 - A7]s)(1 - Af 2)(1 - B7]s)( 1 - Bs 2) 
X(I-7]--2)(1-7]S -3)(1 _7]-IS -3)]-1 

X [(1 - A )-IA + (1 - B7]S 3)-1], (2.6) 

The right-hand side of (2.4) reduces to the final form 

H(A,B;7],S) = [(I-As2)(I-As-2)(I-B7]S3)(I-B7]-ls-3)]-1 

X 1(1 +A )[(1 -A7]S)(I-A7]S -1)(1 -A7]- ls)(I-A7]- IS -1)]-1 

+B7]2[(I-A7]sHI-A7]S-I)(I-A7]- ls-I)(I-B7]2))-1 

+B7]-2[(I-A7]s)(I-A7]- ls)(I-A7]- ls-I)(I-B7]-2)]-1 

+ B7]S -3(1 + A )[( 1 - A7]s)(1 - Ar}S -1)(1 - A7]- ls)(1 - B7]S -3)]-1 

+ B7]- IS 3(1 + A )[(1 - A7]S -1)(1 - A7]- ls)(1 - A7]- IS -1)(1 - B7]- IS 3)]-1 

+B2r}3s -3[(I-A7]s)(I-A7]S-I)(I-Br}s-3)(I-B7]2)]-1 

"Work supported in part by the Natural Science and Engineering Research 
Council of Canada and by the Ministere de I'Education du Quebec. 
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+B21/-3S3[(I-A1/-IS)(I-A1/-IS-Ij(1-B1/-IS3)(1-B1/-2)]-1 

+(B21/s3+A2B(1 +1/s-I))[(I-A1/s-I)(I-A1/-IS-I)(1-B1/-IS3)(1-B1/2)]-1 

+ (B 21/-IS -3 + A 2B (1 + 1/-15 ))[(1 - A1/S)(1 - A1/-IS )(1 - B1/s -3)(1 - B7]-2)]-1 

+ (B 2 + A 2B )[(1 .:... A1/S )(1 - A7]-15 -1)(1 - B1/2)(1 - B7]-2))-1 

+ (B 2 + AB 2)[(1 - A7]S -1)(1 - A7]- IS)(1 - B7]S -3)(1 - B7]- IC))-1 

+ (B 37]2 + AB (7]2 + 7]5))[( 1 - A 7]5 - 1)( 1 - B1/S -3)(1 - B7]- IS 3)( 1 - B1/2JJ- I 

+ (B 37]-2 + AB (1/-2 + 1/- IS -1))[(1 - A7]- 15)(1 - B7]S -3)(1 - B7]- ls 3)(1 - B7]-2)]-1 

+ (B 3 7]S -3 + AB (1 + 1/2 + 7]S + 7]5 - I) + AB 27]S - 1)[(1 - A 1/5 )(1 - B7]S -3)(1 - B7]2)(1 - B7]-2)r 1 

+ (B 31/-IS 3 +AB(l + 1/-2 + 1/-15 -I + 1/-15 ) +AB 21/-IS ) 

X[(I-A1/-ls-I)(I-B1/-ls3)(I-B1/1)(I-B1/- 2n- 1 

+ B (1 + B )(B 2 + 2 + S 2 + S - 2 + 7]S + 7]S - I + 1/- IS + 1/- IS - I) 

X[(I-B7]S-3)(1-B7]-IS 3)(1-B7]2)(1-B7]-2n- 1 j. (2.7) 

The coefficient of A aB b1/mt" in the expansion of(2.7) is the multiplicity of the G2 (or SU(3)) weight (m,n) in the G2 representa
tion (a,b). 

III. Ga:>SU(2)X SU(2) BRANCHING RULES 

Stone7 has given an explicit formula for the 
StI(2) X SU(2) content of G2 representations. His formula in
volves plus and minus signs, with consequent cancellations. 
An advantage of our generating function formulation is that 
the terms are all positive and in that sense it is more economi
cal. Also it defines an integrity basis-a finite set of elemen
tary SU(2) X SU(2) multiplets contained in low-lying G2 re
presentations. All SU(2) X SU(2) multiplets in all G2 

representations can be expressed in terms of stretched pro
ducts of powers of the elementary ones; such products of 
powers of elementary multiplets define polynomial bases for 
G2 in an SU(2) X SU(2) basis. 

The G2 :::)SU(2)XSU(2) generating function could be 
determined analytically6 from the G2 character generator 
(2.7). It is the part J(A,B;S, T) of degree zero in 1/ ands of the 
productH(A,B;7],t) (1 -1/2

) (1 - 5 2)[(1 -S17) (1 - Tt)) -I. 
To avoid tedious algebra we constructed it heuristically by 
examining!! the SU(2) X SU(2) content of low G2 representa

tions. It was then converted back to a generating function for 
weights by substituting the SU(2) X SU(2) character func
tion. It was then compared with (2.7) for random values of 
the dummy variables A, B, 1/, t. Our result is 

J(A,B;S,T) 

= [(1 - AST)(1 - AT2)(1 - BS2)(1 _ B2)]-1 

X 1(1 +A 2ST + A 2BST + A 3BSZ)[{1 - A 2)(1 -A 3S2)]-1 

+ (BT2 + B 2ST) + ABST + ABT2)[(1 - A 2)(1 - BT2)]-1 

+ (BST 3 + B 3 S 2 T 6 )[( 1 _ BT2)( 1 _ BST 3)] - I ) . 
(3.1 ) 

The coefficient of A aB bssT' in the exansion of (3.1) is the 
multiplicity of the SU(2) X SU(2) representations (5,t ) in the 
G2 representation (a,h ). The labels (5,t ) are double the "angu
lar momentum" labels. 

The elementary multiplets implied by (3.1) are (10,11), 
(10,02), (20,00), (20,11), (30,20), (01,20), (01,02), (01,13),(02,00). 
(02, I3), (I 1,11), (11,02), (21,11), (31,20). Combinations which 
are incompatible because of syzygies are the product of any 
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two or the square of anyone of (20, 11), (21,11), (31,20), 
(02,13), (11,11), (11 ,02), and the products (20,00) (01,13), 
(30,20) (01,02), (30,20) (01,13), (30,20) (02,13), (30,20) (11,11), 
(30,20) (11,02), (01,02) (20,11), (01,02) (21,11), (01,02) (31,20), 
(01,13) (20,11), (01,13) (21,11), (01,13) (31,20), (01,13) (11,11), 
(01,13) (11,02). The notation is (ab,st). 

IV. G2 :>O(3) BRANCHING RULES 

Racah9 10ng ago pointed out the usefulness ofthe group 
G2 in classifying many-particle states in the 1= 3 shell of 
atoms or nuclei. Since there are seven one-particle states, we 
are led to consider the chain SU(7PO(3). Since 0(3) is not 
maximal in SU(7) but occurs in the chain SU(7PO(7) 
~G2 ~0(3), one is forced to consider the reduction of G2 

representations according to 0(3). Stone? has given an ex
plicit formula for G2 :>0(3) branching rules, but since it con
tains plus and minus signs, with cancellations, it is not imme
diately useful for defining an integrity basis, or G2 :::)0(3) 
polynomial bases.· 

The first step in obtaining a generating function for 
G2 :::)0(3) branching rules is the conversion of the G2 charac
ter generator into a generating function for 0(3) weights con
tained in G2 representations. The most convenient projec
tion consists of the replacements 17_Xl/2, t __ x 3/2 (other 
substitutions, e.g., 1/-+x512, t~x I 12, or 1/-+X2, t-+-x are also 
possible). We obtain the generatingfunctionH (A,B;Xl/2,X3/2) 
= H (A,B;x), where x carries as its exponent the 0(3) weight, 
or angular momentum projection. The second step consists 
of retaining only the part of (I - x)R(A,B;x) whose expan
sion contains nonpositive powers of x. This result, with X-I 

replaced by L, is the desired generating function. 
Because all representations of G2 are self-conjugate we 

haveR (A,B;x) = H (A,B;x- 1
). Also,from(2.7)weseethatall 

terms in H (A,B;x) contain the denominator factor 
(1 - Ax3

) (1 - Ax- 3) (1 - BxS
) (1 - Bx- 5

). The latter prop
erty is the motivation for our choice of projection, since we 
expect (I - AL 3) (1 - BL 5) to be a common denominator 
factor in the final result. 
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We can exploit the properties of H (A ,B;x) discussed 
above to simplify the procedure. The symmetry of H (A,BiX) 
under x-x - I implies that the function 
K(y)=(l - y2)H(A,Biy2)1 yisantisymmetricundery-y-'. 
Since (1 - AL J) (1 - BL 5) can appear as a denominator fac
tor in the final generating function, we must be able to ex
press K ( y) in the form 

K - p(y-I) 
(y)- (1-Ay-6)(1-By-lO) 

pry) 

where the expansion of P (y) contains only positive powers of 
y. The generating function we seek isjust the first term on the 
right-hand side of (4.1), multiplied by y, and with the substi
tution ofy-2_L. 

Equation (4.1) can be rewritten as 

p(y-I) = (1 - Ay-6)(1 - By-ID)K(y) + P(y)(l - Ay-6) 

X(I-By-IO)[(I-Ay6)(I-By lOlJ-1 

M(II,8,L) = «1_I\L3 )(I_BL5 )(1_116 ))-1 

xIAB2L6(I+A3)(I+AL)(I+B)(I+B5)(I+BL4)&L3+BL2 
+B2L+B3)«I_B2)(1_810)(I_A2L2)(I_B2L ))-1 

+1I4L6(I+A~)(1+1\5)(I+I\L)(I+I\L2)(I+A3L)(I+AB) 
x ( ( I-A 10)( I-A 2B 2) ( I-A 2L 2) ( I-A 2L 4) ) -1 

,A3Lb(1+A3)(1+A5)(1+AL2)(I+AB)(I+BL)(I+A3B+A4B 
+A 3L+ABL+A 2BL ) « I-A 10)( I-A 2B2)( I_B2L 2) (I-A 2L 4))-1 

+( I+B1.) (I+BL4)( (I+A 3) (I+B)( I+B5 ) ~B4L 6 +B3LT,B2L 
8 

+B619 )+A ( 1+1\3)( HB}( 1+85 ) (82L 6 +B L 7 +B5L 8 +8419 ) 
+A2(I+B)(1+B5)(83L6+82L7+86L8+B5L9)+1I5(811L4+810L5 
+ (B3+B4+B8+B9)L6+(B2+B3+B7+B8)L7+(B6+B7+811)L8 
+(85+B6+BIO)L9))«1_82)(1_BIO)(1_82L2)(I_B2L8))-1 

+I\BL7(1+1I 3)(1+AL)(1+AB)(1+8)(1+85 ) 
x«l_82)(l_810)(I_A282)(I_A2L2))-1 

+A 5L5 ( 1+1\3)( l+AL)( I+A8) (1+8) 
x«l_A4)(l_82)(1_1\282)(I_A2L2))-1 

+A4L~(I+A3)(I+A5)(I+AL)(I+A8)(I+A2+A3) 
x( (I_A4 )( I_AID) (I-A 282 )( 1-/\ 21,2))-1 

+B4L 5( l+A 3)( 1+/\8) (1+8) (I+B5 ) (l+BL) (B+A2+1\ 2B2) 
x«1_B2)(1_BIO)(1_A2B2)(1_B2L2))-1 

+,n5 ( 1+1\3)( 1+1\5)( 1+I\B) ( 1+B5 )( l+BL)( (B3+B5 ) 
+A(B+83+85)+A2(B+83+84)+1\3(B+82+84)+A4(l+B2+B4)+A5B2) 
x«1_A10)(1_BIO)(1_A2p2)(1_B2L2))-1 

+(l+BL)(L5(l+A3)(1+B3)(1+85)(82+83+84+B5+B9) 
+I\L5(I+A3)(I+B3)(1+B5)(8'+?84+285)+1\2L5(1+83)(1+85) 
x(8 3+84 +B5+86 +8 T )+A 51,5 ( 1+B3) (BI~ +B5+286 +8 10+811 +B1?) 
+1\ 5L

4 (p6 +B7 +BI0 +B15 )+A ~r.3( 1+B15 ) ) 
x( (l-B") (1_86 ) (1_8 10 ) (1_8::'1?))-1 

,i (1+A 17 )( 1+Ap.r7 )( l'A'OB2 )+( 1+A 5 )( (1+ABL7 )(A 7+A8)B 
+( 14AB!~) «1\ 3 ,A ~ ,A 7 )L' ( 1+.0, 2 +A ) ,1\4 +A5 ,A 7 )8L+( II 2+2A4 )B2L) 
+(1+ARr3)«A?+A4+A5+A6+A8)r.2+(I\+A2'2A3+2A4+2AS+?1\6)8L? 
L( A.A 2 .2A 3+1\5 )p.2L2)" L3 ( (A 3 1A 4 +A'; '2A6 ,A 9 )+(A+21\ 2+21\ 3 
121\ 4 +?I\ 5+?1\ 6+A 7 )8+(A'?J\? +2A 3+A 4 )B?)+L 4( (A 2. A 3+A 4 ,AS 
+Ah+1\7)+(A2+2A3+31\4'2AS+2A6+2A7)8+(l+I\+A2+2A3+A4)B2))1 
x( (1_A4)( I-A 10)( 1-82 )( 1_A282))-1 

FIG. 1. Generating function for G, ::JO(3) branching rules, 
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= (1 - Ay-6)(1 - By-IO)K (y) 

+ P(y)[ABy-16 + (A 2B _ B )y-IO 

+ (AB2 _ A )y-6 + (A 3B - AB )y-4 + .. -]. (4.2) 

In order to find P ( y - 1) we need only keep powers of y - ! on 
the right-hand side. Terms inP (y-I) of higher degree iny-I 
than those from the second term in (4.2) are immediately 
determined from the first term. Lower degree terms can be 
found by solving a set of coupled algebraic equations. 

The equations to be solved are 

s 
N n = Tn + I, fkNk - n - I , (4.3) 

k=O 

where N j = 0 for i < 0 and where 

7 

T(A,B;x- ' ) = T(A,B;x- 1
) + I Tkx- k (4.4) 

k _- 0 

+(1+A5)[(1+ABL7)«1\5+A9)8+(A4+A7+A8+1\11)B2+(A+A4+1\5+A8)B 3 

+(A3+A6+A7+AIO)84+(A4+A5+A7+A8aB5+(A+A4+1\7+AI0)B6 
+(A3+A4+A6+1\7)B7+(A+A4+A5+AB)B +(A3+A6+A7+AI0)B9 
+(1+A3+1\4+A7)810+(A?+A6)8l1)+L(1+8S)(1+ABL5)«A+1\3+?A5 
+A 6+A 7 +A 9)82+(I\+A 2+21\ 3+21\ 4+2A 5+2A 6 +A 7 ,A 8)B3+( A+A 2 +?A 3 
,2A4+3A5+A6+A7+A8)B4+(1+A+2A2+2A3+2A4+21\5+A6+A7)B5 

+( 1+A+21\ 2+21\3+ 3A 4 +A 5+A 6 +Aor )86 +(A+I\ 2+A 3+2A 4 )87 ) 
+L?( 1+8") (1+A81,3 ) (1\ 7B+( HA 2 +A 3+3A 

4 +A 5+ 2A6 +A 7 ,A B)B2 
+( A+2A 2 +?A 3+ 3A 4 +11A 5 + 3A 6 +2A7 +2A B +A 9 )B3+( 1+21\+21\ 2 + 3A 3+4A 4 

+31\5+2A6+2A7+1\8)B4+(1+21\+3A2+4A3+41\4+3A5+2A6+A7)B5 
.( 1+2A+3A 2+ 3A 3+4A 4, 3A 5 +2A 6 +A B )B6 +( 2A+21\ 2 +2A 3+1\11 +2A 5)E 7 ) 
+L3( 1+B5)(1\ 7 +(1\4+A B)8+~A 3+ 311 4 + 3A5+?1\ 6 +2A 7 +2A B )B? +( 2+21\+2A? 
,1\A3+41\ 4+31\5 +2A 6 + 3A 7 +A +A 9 )B3+( 1+21\+4A;> + 3A3+41\ 4+4A 5+ ~A 6 

+A 7 +1\ 8 +A 9)84 +( 1+ 31\+ 3A 2 +41\3+ 5A 
4 +3A 5+2A6 +1\ 7 +/\ 8 )B5 ,( H3A' 3A? 

e4A 3+4A 4 ellA 5 +2A 6 +A 7 )86 +(?+ 31\+3A 2+2,,3+A 4 )E7 )+L4 (1"B5 ) 
x( (A 5+1\6 +A 7 +A 8+A 9)B+( A+A 2 +A 3+2A 4+2A ""21\ 6 +A 7 +A 8+A9+A 104B2 
+( 1" 2A+ 3A 2+4A 3+4A ~ +4A5+ 3A 6 +2A 7 +A B )83+( 2+ oA+ 3A 2+4A 3+')A 
+ 3A 5+A 6 +2A 7 +A 8)84+( 1+ 31\+4A? +4/\ 3+5A 

4 +IIA 5+?A 6,-/\ 7 )85 

+( 2+ 31\+4A 2+4A )+I"A 4 +A 5 eA 6 )86+( 2+2A+2A 2+3A )+2A 
4 

)E7) 1 
x«1_AI0)(I_E?)(1_B10)(1_A282))-1 

,[ (l+A 3) ( l+ABL 7) ( (B6 +B15 )+A (B9 +B11+812+BI4 )+A 2 (B4 +B6 
+B7+B9)+1\3(B3eBl"))+L(1+B5)(1+I\BL5)«B7+89+Bll) 
IA(BB+B9+810+Bll+B12+B13)+A2(87+B8+89+B10+Bll+812) 
eA3(B8+89+BIO+Bll+812+B13)+A4(87+BB+B9+BlO+Bll+B12) 

+A5(86+87+B8+89+BI0+Bll)+A6(B4+B8+B12)) 
+ L? ( 1+B5) ( 1+1IB13 ) ( (2BB +B 10 +B 11 +BI2) +A (B 7 +2B8 +B9 +2BI0 
+2p.ll+812+813)+A2(288+2B9+BI0+2Bll+2E1?+813)+A3(B7+3B8 

+B9 +B10 + 3Bll eB12) +A 4 (iT +?B8 +89 +2B10 +2B11 +B 12 '-B13 ) 
+A5(B5+86+B7+2B8+2B9+BI0+811+B12)+A6(BS+B7+BB+B9+811)) 

+L3( 1+B5 ) ( (289+810 +Bll +812 +~~813 )+A( 2BB + 3B9 +810" 3Bll 
,2812+2B13)+A2(2B7+288+89+3BI0+2811+BI2'813)+1\3(86+287 
+88+3B9+2810+811+2B12)+A4(B5+B7+388+2B9+810+2811+2B12) 
+A5(B4+85+B6+87+288+89+2B10+B12+B13)+A6(286+B8+B9+BI0)) 
+L4(1+B5)«28B+89+281O+811+2812+B13)+A(87+388+289+3810 
+2Bl1'3B12+B13)+A2(87+288+2B9+2B10+2Bll+2B12+B13) 
+A3(B6+B7+2B8+2B9+2810+2811+B12+B13)+A4(2B6+2B7+288+289 

+2810 +?Bll )+A5(B4+B5+86+2B7 +BB +2B9+Bll )+A6 (B5+87 +B9 )) 1 
x«1_82)(1_86)(1_BI0)(1_A2B?))-11 
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is the part of (1 - x)H(A,B;x- l
) which has nonpositivepow

ers of x. The nonzeroh are 

12 = -AB(I -A 2), 13 = -A (I-B2), 
(4.5) 

The final result for the desired generating functions is 

M(A,B;L)=N(A,B;L)[(I-AL 3)(I-BL 5)]-I, (4.6) 

where 
_ 7 

N(A,B;x- l
) = T(A,B;x- l

) + 2: Nkx- k
• (4.7) 

k=O 

This procedure considerably reduces the difficulty of the 
derivation, since the number of denominator factors we seek 
is reduced from eight to six. A further simplification was 
achieved by the independent determination of M(A,B;O) by 
methods discussed in Sec. V. 

The resulting generating function for G2 :J0(3) branch
ing rules appears as Fig. 1. This formula simplifies for some 
special cases. By setting A = 0, one obtains the generating 
functions for G2 :J0(3) branching rules for (O,h) representa
tions ofG2 : 

M(O,B;L) = [(1 - B2)(1 - B 10)(1 - B2L 2)(1 - BL 5)]-I! (I + B)(1 + BL)(I + BL 4) 

x(B2L 8 +B3L 7 +B4L 6 +B 5L 5 + B6L 4 +B7L 3 +B8L 2 +B 9L)(1 _B2L 8)-1 

+ (1 + BL)[(1 + B 15)(1 + B 2L 5) + (B 2 + B 3)(1 + B 9 )(L 4 + BL 3 + B 2L 2 + B 3L )](1 - B (r I J. (4.8) 

WithB = 0, the G2 :J0(3) generating function gives the 0(3) 
content of (a,O) representations of G2, or (0,0,0) representa
tions of 0(7); the formula has been presented elsewhere (see 
formula (31) of Ref. 6, and footnote 14 therein). SettingL = ° 
in the G2 :J O( 3) generating function yields a generating func
tion for 0(3) scalars in G2 representations. Its "substitution" 
into (4.9) of Ref. 10 would yield a generating function for 
0(3) scalars (including missing label operators) in the envel
oping algebra of Gz. 

v. CONCLUDING REMARKS 

We mention here an alternative derivation. To obtain 
Gz :J0(3) branching rules we could make use of the interme
diate group SU(2)XSU(2) in the chain G2 :JSU(2)xSU(2) 
> 0(3). Here 0(3) is not a subgroup ofSU(2)X SU(2) but is 
subjoined to it. II To derive the SU(2) X SU(2) > 0(3) branch
ing rules, it is necessary to triple the scale of weights of the 
second (i.e., T) SU(2) group [T generating function given by 
Eq. (3.1) of Ref. II] and then to couple the two-SU(2) repre
sentations by means of the SU(2) Clebsch-Gordan generat
ing function. 1 The gererating function for 
SU(2)XSU(2) > 0(3) branching rules is then 

[(1 - S3T)(l _ TL 3/2)]-1[(1 - SL 1/2)-1 

+ (I - TL 1/2ST + ST2L 1/2)(1 - T2)-I]. (5.1) 

A complementary approach to the G2 :J0(3) labelling prob-
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I 
lem would be to specify four missing label operators, 0(3) 
scalars in the Gz enveloping algebra. With J. Bystricky and J. 
Patera we plan to publish shortly a paper on this problem. 

An obvious application of our Gz character generator, 
Eq. (2.7) would be to derive a generating function for direct 
products of G2 representations (the Clebsch-Gordan gener
ating function). 
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We consider the classification problem ofthe global symmetry groups of spin systems defined on 
abelian groups. Its implications on the generating functional, the transfer matrix, the 
Hamiltonian formalism, and factorization properties of spin systems are discussed. The duality 
properties of spin systems defined on semidirect products of abelian groups are revisited. In the 
first of this series of three papers we list the groups for systems defined on 2p (p prime), 22 ® 2 2, 
and 22 ® 22 ® 22 manifolds. They are direct or wreath products of M-metacyclic groups and 
symmetric groups. 

PACS numbers: 02.20.Km 

1. INTRODUCTION 

In the last few years there has been a flurry of work done 
in statistical mechanics on the phase structure of spin sys
tems defined on abelian manifolds. They are generalized Is
ing (22) models. This includes the 2 4 , 2 s, 2 6 , and 27 models, ' 
the n-component Potts and vector Potts models (defined on 
2" V and some models defined on 2m ® 2n manifolds.3 The 
interest in these models stems from their relevance to two
dimensional surface phenomena4 and, possibly, to the un
derstanding of confinement in particle physics.s 

In this series of three papers we address the question of 
the global symmetries of spin systems defined on abelian 
manifolds. The knowledge of the global symmetry is impor
tant not only in order to find various symmetry relations 
among the observables of the system but it also helps to un
derstand the nature of the phase transitions. All the systems 
mentioned before have built in a global invariance under the 
abelian group on which they have been defined. For exam
ple, a spin system defined on 27 has a 27 invariance, indepen
dent of which interaction we consider. For specific choices of 
the coupling constants, however, the symmetry is much 
larger. A known example is the case of the n-component 
Potts model which is defined on 2" but has Sn (the group of 
all permutations of n objects) as global symmetry.6 

We intend to study the problem in its full generality. We 
consider a spin system defined on an abelian group A (call it 
an A system) and look for all higher symmetries generated by 
special choices of the coupling constants. 

We first remind the reader of the classification of the 
abelian groups and their irreducible representations. Next 
we formulate the problem of the classification of global sym
metries and show several applications. 

A. Abelian groups 

The abelian group A is isomorphic to a direct product of 
cyclic groupS7: 

A =2 m\Ii®2 ... \,)®.··®2 ... <t,,® 
P, P, P, 

® 2 ... 11i ® 2 ... 1') ® ... ® 2 ... ~.I ® ... 
Pl pz Pl 

®2 (,,®2 (l(®'" ®2 1M, p;" p;" p;" (1.1) 

wherep"pz, ... ,Pn are prime numbers and my I are integers. In 
Eq. (1.1) 2" denotes a cyclic group of order n. The order of 

h 
. I I m{JI + ' .. + m U,) mOl + ... !- m(l,,! 

t e group A IS A = p, I I "'Pn" " . As an ex-
ample we give the two abelian groups of order 12; they are 
22 ®22 ®23 and 24 ®23 = 2'2' 

We label the group elements of the abelian group A us
ing its cyclic subgroups. The n elements of a cyclic group 2n 
can be labeled through an integer ala = 0,1 , ... ,n - 1) with 
the multiplication rule 

a"=a+a', ( 1.2) 

where the sum in Eg. (1.2) is done modulo n. The group 
elements of the direct product of two cyclic groups 2 n, ® 2 n, 

are labeled by the double (al,a l ) with the group multiplica
tion rule 

(a;',an = (a l ,a2 ) + (a; ,a~), 

a;' = a, + a; (mod nd, 

(1.3a) 

a 2 = a2 + a; (mod n2 ). (1.3b) 

We denote the double (a, ,a2) by a, where a can be seen 
as a two component "vector", and write 

an =a +a'. ( 1.4) 

This generalizes to any abelian group. Let us take, for exam
ple, the group 22 ® Z2 ® 2,. In this case 

(1.5) 

Note that the operations for the first two components are 
done modulo 2 and for the last modulo 3. 

The irreducible representations (which are one-dimen
sional and thus coincide with their characters) of an abelian 
group A are products of irreducible representations of its 
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cyclic components. The n irreducible representations of the 
cyclic group Zn (group elements labeled byaE Zn) are 

(
hi ) Xr(a) = exp -;; ra , (1.6) 

where r E Zn. The irreducible representations of the group 
Zn, ®Zn, are 

(1.7) 

where r ll a IE Zn,; r 2, a 2E Zn,. We denote the irreducible 
representation (r l ,r2) by r. This generalizes to any abelian 
group. Returning to our example of the Z2 ® Z2 ® Z3 group, 
its irreducible representations are labeled by 

r = (r l ,r2,r3 ) 

and we have 

X,(a) = (- l)r,a, +r,(t, exp( 2;i r3a3} 

(1.8) 

(1.9) 

From now one we will denote the irreducible representations 
of the abelian group A (group elements labeled by a) by X,(a) 
(r = 0 is the trivial representation). 

B. Global symmetries 

We are now in a position to define our problem. Consid
er a spin system defined on a lattice. In each lattice point P 
we define a variable a which is an element of the abelian 
group A. The Lagrangian density 

L=L(ap-ap') (1.10) 

describes the interaction between the lattice points P and P'. 
Notice thatL is defined onA, not onA ®A. In order to fix the 
ideas we assume that we have only interactions among near
est neighbors, although our considerations do not depend on 
this assumption. The action reads 

s= I L(ap-ap.), (1.11) 
P,P' = n·n 

where the sum is performed over the appropriate lattice 
points (n.n = nearest neighbors). 

The generating functional for the A system is 

(1.12) 

In Eq. (1.12) P = 1/ k T and Jr,p represent the external 
sources. Taking derivatives with respect to the sources one 
obtains various corrrelation functions in the standard way. 
Ifin Eq. (1.12) the sources are taken independent of the lat
tice point P: Jr.p = J, we obtain the partition function in the 
presence of IA I - 1 external fields. Taking the sources equal 
to zero in Eq. (1.12) one obtains the partition function of the 
system. 

We now specify the Lagrangian density L (a). Two para
metrizations are specially useful. One is the "character" 
parametrization 

L (a) = Ia,Xr(a); (l.13) 
rE A 

the other one is the "orbit" parametrization 

L (a) = L bpD(a - t3). (l.14) 
f3E A 
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In Eqs. (1.13) and (1.14) ap and btl are arbitrary coupling 
constants. Sometimes it is useful to use instead of the La
grangian density the function 

w(a) = exp[ - PL (a)] (1.15) 

and to parametrize w(a) in terms of the characters 

w(a) = I CrXr(a) (1.16) 
rEA 

or, similar to (1.14), 

w(a) = L dgD(a - t3). (1.17) 
(3EA 

The coefficients dg = e - f3b" are called Boltzmann factors. 
The generating functional (1.12) is thus a function not only of 
the sources J"p but also of the coupling constants. 

In order to illustrate the two parametrizations (1.13) 
and (1.14) of the Lagrangian we give here the vector Potts 
model2 in the character representation 

L (a) = 2 cos( 2; a) 

=XI(a)+X_I(a) (a E Zn) (1.18) 

and the n-component Potts model2 in the orbit 
parametrization 

L (a) = D(a) (a E Zn). (1.19) 

As in any physical problem one asks what are the sym
metry properties of our system. The global symmetry group 
G is defined through the equation 

L(g(ap)-g(ap,))=L(ap-ap'), gEG. (1.20) 

Hereg is a one-to-one transformation which takes the "vec
tor" a into another vector g(a). This can also be seen as a 
permutation of the IA I vectors a. 

It is obvious that the transformations which satisfy 
(1.20) leave the action (1.11) invariant. 

By construction, a system defined on an abelian group 
A has at least A itself as a global symmetry: the transforma
tions ("translations") by i, 

a' = a + t, tEA, (1.21) 

obviously leave the action invariant. How can we have a 
higher symmetry in our problem? If there are relations 
among the coupling constants (there are fewer independent 
coupling constants than the order IA I of the group). This can 
easily be seen in the "orbit" parametrization of L. Assume 
that G contains some permutation g which is not of the form 
(1.21). Then the global symmetry G induces by Eq. (1.20) a 
set of equalities L (a d = L (a2) = ... = L (a,). 
L (a s + I) = ... = L (aHr ), etc. Equivalently bu, = bu, 
= ... = bo, ,bu" , = ... = bu" r etc. The converse is not true: 

not every set of equalities between the coupling constants bg 
implies the existence ofa symmetry larger thanA. The equa
lities must be compatible with the group axioms of G (one 
can show that the existence of equalities for the constants bp 
implies similar equalities-not other functional relations
for the constants arlo 

As an example let us consider the implication of taking 
a "symmetric" Lagrangian (this choice is most often done in 
applications): 
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L (ap - ap') = L (ap' - ap);(ap = a _ "btl = b -p), 
(1.22) 

The action S is invariant under the transformations 

a' = ± a + t~ (1.23) 

which form a non abelian group with 21A I elements (with the 
exception of the Z2 ® ... ® Z2 case where a = - a). 

To sum up, we address the following general question: 
for a given A system, which are all the global symmetry 
groups that can be obtained through special choices of the 
coupling constants? This is a formidable problem. We have 
restricted ourselves to the simplest cases in which A is one of 
the groups Zp,Zp ®Zq" Zp'" Z2 ®Z2, and Z2 ®Z2 ®Z2 (p 
and q are prime numbers). For these special cases we are able 
to present a complete classification of the global symmetries. 
One gets non abelian groups with a very special structure: in 
most cases they are direct or wreath products of metacyclic 
and symmetric groups. Knowing this result one can choose a 
spin system with a given (non abelian) global symmetry. 

C. Physical applications 

The control of the global symmetry of a spin system 
allows for various applications. We list some of them. 

Kinematics. Let us take a symmetry G (this corre
sponds, for example, in the orbit parametrization of the La
grangian to having fewer independent coupling constants: 
bl = ba = ba = ... = ba ;b2 = ba = ba = '" = ba 
; ... ; b, ~ .. , ~ ... = b lA I ).' The gen~~~ting i~~ctional is ~ , , 
function of the sources and of the k-independent coupling 
constants: 

W= W(a l ,a2, ••• ,ak;J"p) 

= W(bjJ2 •••• .b,;J,'p). (1.24) 

The knowledge of the symmetry group gives in the usual way 
different symmetry relations of the function (1.24). 

Hamiltonian (matrix formulation) of the theory. In or
der to find the properties of the A system one computes the 
spectrum of the transfer matrix. Its degeneracy is given by 
the dimensions of the irreducible representations of G. This 
is a problem on its own since for all the G groups appearing 
on the classification lists one has to determine the irreducible 
representations. As we shall see in Sec. 3 in some cases the 
answer is already known. 

A place in which the importance of the global symme
tries appears in a very striking way is the Hamiltonian for
malism. H One considers a highly anisotropic 2-dimensional 
system corresponding to the continuous time-discrete space 
limit of the theory. In this limit the Hamiltonian is deter
mined by the orbit structure of the Lagrangian, which in 
turn is specified by the global symmetry. It turns out that the 
Hamiltonian obtained this way is a special case of a more 
general class of Hamiltonians describing quantum systems 
having the same global symmetries as A systems. 

This problem is presented in detail in Appendix A and 
several examples are given. 

Factorization. Sometimes, from the knowledge of G, 
one can simplify the calculations ofthe generating function
al. Let us consider two spin systems defined on two different 
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abelian groups A and A of the same order (for example, 
A = Z 16 and A = Z4 ® Z4)' We assume that the global sym
metry G is the same for the two systems. The two systems can 
tEen be mapped into each other. Consider the case in which 
A = A I ® A 2• For special choices of the coupling constants 
the partition function of the A system factorizes into the 
product of the partition functions of the A I and A2 systems. 
This property is easily seen in the A parametrization but 
would be very hard to observe in the A parametrization. 
Such a phenomenon is known to occur9 in the Z4 vector 
Potts model. In this case the factorization is seen immediate
ly in the Z2 ® Z2 parametrization. We discuss this problem in 
Appendix B. 

Phase transitions. Second order phase transitions are 
supposed to occur through the spontaneous breaking of the 
global symmetry. 10 The need for the knowledge of the possi
ble global symmetries and their subgroups looks obvious. A 
fascinating problem occured to us when looking at the struc
ture of the G groups which, as we mentioned before, is neat: 
Could one find a systematic connection between the critical 
exponents and the corresponding groups? 

Duality. For two-dimensional systems defined on a 
square lattice with only nearest-neighbor interactions, it has 
been shown II that the partition function of an A system de
fined by the function w(a) given by Eq. (1.16) is equal up to a 
known factor to that of a system defined by a new function 
w(a): 

w(a) = _1_ L w(r)x~(jI). (1.25) 
IA I YEA 

This is the Fourier transform of the original interaction. 
As will be seen through different examples, if the origi

nal system has a global symmetry G, the dual system has, in 
general, a global symmetry G differentfrom G (in general the 
two groups do not even have the same order). The interplay 
of the two symmetries in the physical properties of the sys
tem is (to our knowledge) not yet understood. 

A rather confusing situation exists in the literature 
about which spin systems in 2 dimensions admit a duality 
transformation and the current folklore is that the global 
symmetry has to be a semi direct product of abelian groups. 12 

This is by no means true. Any A system admits a duality 
transformation and the global symmetry is not of this form 
in general. We discuss this problem in Appendix C. 

D. Content of the papers 

We have agonized a lot in order to find the most suitable 
way to present our results. We had to face the situation that a 
lot of the mathematics involved is unknown to physicists. 
We have thus decided to introduce it little by little and flood 
the text with examples. At the same time we have sent to the 
appendices the physical applications; not that we do not con
sider them very relevant but because we wanted to keep these 
papers in the spirit of a classification theory. Readers not 
interested in the mathematics but just in the results can pick 
them up in the right places. 

This series of papers is organized as follows. We start 
with the present article. Here we confine ourselves mainly to 
the case when A is the cyclic group Zp (p is a prime number). 
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All the global symmetries in this case are given by the M; 
non abelian groups of order kp (k is a divisor of p - 1). These 
groups consist of affine transformations with multiplications 
and additions done modulo p. These transformations are re
lated to the automorphism group of Zp and since the subject 
is in general unknown to physicists, in Sec. 2 we discuss the 
automorphism groups of abelian groups. The content of this 
section will be used not only in this paper but also in the 
succeeding ones. 

In Sec. 3 we present in detail the global symmetries of 
spin systems defined on Zp groups. We give the relations 
among the coupling constants and the symmetry properties 
of the generating functional. 

In Sec. 4 we define the wreath product of finite groups. 
This type of product is again unknown to physicists but plays 
a crucial role in global symmetries. 

In Sec. 5 we consider the Z2 ® Z2 case (this is the Ash
kin-Teller problem 13) and its generalization, which is the 
Z2 ® Z2 ® Z2 problem. This case is not only interesting for 
possible applications but also because it shows a very special 
structure: all the relevant relations among the coupling con
stants are given by the automorphism group but the global 
symmetries are larger (they are written in terms of direct and 
wreath products). 

In Sec. 3 we present in detail the global symmetries of 
spin systems defined on Zp groups. We give the relations 
among the coupling constants and the symmetry properties 
of the generating functional. 

In Sec. 4 we define the wreath product of finite groups. 
This type of product is again unknown to physicists but plays 
a crucial role in global symmetries. 

In Sec. 5 we consider the Z2 ® Zz case (this is the Ash
kin-Teller problem 13) and its generalization, which is the 
Zz ® Z2 ® Z2 problem. This case is not only interesting for 
possible applications but also because it shows a very special 
structure: all the relevant relations among the coupling con
stants are given by the automorphism group but the global 
symmetries are larger (they are written in terms of direct and 
wreath products). 

The Hamiltonian formalism for an A system and its 
connection with the orbit structure determined by the global 
symmetry is presented in Appendix A. The factorization of 
an A system into two subsystems is considered in Appendix 
B. The problems of systems defined on nonabelian mani
folds is touched upon in Appendix C. It is shown that if the 
Lagrangian density is a class function defined on a group B 
which is the semidirect product of abelian groups the global 
symmetry is much larger than B. It can be found using the 
results known for A systems. Appendix D contains the group 
of automorphisms relevant to the Z2 ® Z2 ® Z2 problem. 

In paper II we consider the Zp ® Zq (p and q are prime 
numbers) and the Zp' systems. 

The first two papers do not contain proofs but just the 
proper definitions and results. The proofs are given in Paper 
III. Here we make use of chapters of group theory not yet 
used by physicists. We have tried to make the last paper self
contained although we expect only a few readers to go 
through it. A few results on the global symmetries of spin 
systems defined on non abelian manifolds are also presented 
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in this paper. Some of the results presented in these papers 
are known in mathematics. 14 This refers to the classification 
of Zp systems and to some properties of Zp ® Zp systems. 
The others, as far as we know, are new. 

2. THE AUTOMORPHISMS OP ABELIAN GROUPS. 
AFFINE GROUPS 

It will be seen in the next sections that the group of 
automorphisms 15 of an abelian group A is an essential tool in 
finding the global symmetries. 
Let a I' azE A. An automorphism U is an invertible transfor
mation obeying 

U(a l + a z) = U(a l ) + U(a z). (2.1) 

We wilI often call U a "rotation." 
Using the group law of A we can define the 

transformations 

a' = a + t, tEA. (2.2) 

We will often call the transformation (2.2)a "translation" by 
t In group theory (2.2) is known as the regular representa
tion of the abelian group A. 

Combining Eqs. (2.2) and (2.3) we define the "affine 
transformation" (U,t\ 

a' = (U,t)a = Uta) + t (2.3) 

We will denote the group of all automorphisms of A by 

HA and the group of all affined transformations by M ~A. The 
subgroups of M ~A obtained by taking affine transformations 
in which the rotations are various subgroups H of HA will be 
denoted by M If. 

M If is the semidirect product of A with H. It has, there
fore, the order IA IIH I and it is nonabelian if IH I > 1. 

In what follows we will be concerned with the case 
A = Zp' (p = prime, s = integer), A = Zp' ® ... ® Zp' and 
A = Zn (cases like A = Zp' ® Zp" r=/=s, are more 
complicated). 

A. The Zp 5 groups (p prime) 

Let aE Zp' be an integer modulo p'. An automorphism 
U of Z , is a multiplication of a by the integer u chosen such 

p 

that p does not divide u (this guarantees the existence of an 
inverse) and u <p' (because we work modulo p'): 

Uta) = ua. (2.4) 

There are pS - p' - I integers u. They form a group under 
multiplication modulo p'. For p =/=2 this group is cyclic: Hz 

p' 

= Z, ,I. For p = 2, s;;' 2 the situation is different: Hz 
p - p " 

= Zz®Zz' ,. 
The subgroups of HA are easy to obtain: every subgroup 

of a cyclic group Zn is a cyclic group Zm with m dividing n. 
For each m there is a unique subgroup. 

Thus (for p=/=2) the group of affine transformations has 
the order p2s ~ I (p - 1) and, to simplify the writing, we de
note it by M~: ~ p' '. Taking subgroups of the automorphism 
group and combining them with the translations, we get the 
groups M;, (k divides pS - pS ~ I). The affine transformations 
are thus 
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(2.5) 

Here t = O,l, ... ,ps - 1; m = O,l, ... ,k - I and v must be cho
sen such that k is the smallest positive integer for which vk 

= 1. In Eq. (2.5) we have written u ofEq. (2.4) through a 
generator v of the subgroup Zk' 

A mnemonic rule for the group multiplication law is to 
write (vrn,t) as a matrix: 

(2.6) 

the multiplication rule being 

(~rn ~)(v~n' tJ = (vrn ~ m' v
rn

t'l + t). (2.7) 

The groups M;. are special cases of metacyc1ic groups. 
For the latter all irreducible representations and even the 
Clebsch-Gordan coefficients are known analytically. In 

Let us give two examples. First take A = Z7' In this case 
Hz, = Z6 = Z2 ® Z3' The group of affine transformations is 
M ~ with the subgroups M ~ and M ~. It is important to know 
the values of v which enter in Eq. (2.5). For M ~, v = 3 or 
v = 5. For ML v = 2 or v = 4. For M~, v = 6. 

The second example isA = Z9.Hz, = Z6and we obtain 
the groups MZ, M~, and M~. For MZ, v = 2 or v = 5. For 
M~, v = 4 or v = 7. For M~, v = 8. 

Finally, note that there is no difficulty in getting a list of 
all M lj groups for A = Z2'" 

B. The Zp' ® '" ® Zp' (n times) groups 

The group elements can be viewed as n-dimensional 
vectors: 

a = (a l ,a2, ... ,a,,), a l ,a2, ••• ,a"E Zp' (2.8) 

(If s = I all the axioms of a vector space are satisfied!) 
The automorphisms are given by all n X n invertible ma

trices U with entries in Zp'; 

(

U II 

U(d)= ... 

un! 

(2.9) 

The multiplication rule is that of usual matrices, but all oper
ations are done modulo p'. The invertibility condition is 

detU #0, modulo p (not p'j. (2.10) 

We obtain groups of rather large order. For the case s = 1 
the order of Hzp®''''z,. is (p" _ 1) (p" _p) ... (p" _pn- I). 
This case is much studied in the context of discrete linear 
groups. 17 

As an example take A = Z2 ® Z2' The six automor
phisms are 

(~ ~),(~ ~),(~ ~).c ~),(~ ~),G ~). (2.11) 

We leave the reader to check that this group is isomorphic to 
S,. 
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C. The Zn (n integer) group 

We write the integer n as 

(2.12) 

where PW .. ,Pm are different prime numbers and sl,,,,,Sm are 
nonnegative integers. We have 

Z" = Zp'i ® Zp~ ® ... ® Zp;:;' (2.13) 

It is easy to see that the affine group factorizes: 
m II I 

liz /' 
Mz,,"= ® M /'. 

i= 1 Z,., 
(2.14) 

Take n = pq (p and q primes) as an example. In this case a 
has two components: a = (a pa 2) with alE: Zp and a 2E Zq. 
The affine transformations are [compare with Eq. (2.5)] 

a; = u,{,'a l + tl(mod p) a; = v~'a2 + t2(mod q). (2.15) 

THE GLOBAL SYMMETRIES OF Zp SYSTEMS (p PRIME) 

The case where the abelian manifold is Zp (p prime) is 
by far the simplest one. The Lagrangian density [see Eqs. 
(1.13) and (1.14)] reads 

L (a p - a p ') = P~l arexp[ 21Ti r(a p - a p ,)) 

r~O P 
p - I 

= I b(Jo(ap - a p ' - /3) (3.1) 
(3=0 

(ap,a p , (3 E Zp). 

We look for all possible global symmetry groups G. 

L (g(a p ) - g(a p ')) = L (a p - a p '), gEG. (3.2) 

At this point we can clarify why we have coined the name 
orbit to the parametrization b(3 in Eq. (3.1). The concept "or
bit" is crucial in our discussion. We thought it useful to in
troduce it here in order to familiarize the reader with it. 

Consider a function of two variables L (ap,a p ') and let 
gEG be a symmetry transformation of L: 

(3.3) 

Take a pair (a~,a~,) and consider the pairs (g(a~),g(a~,)) for 
all gEG. The resulting set of pairs is called an orbit of G in the 
set of all possible pairs. We label it by ()I' Repeat now the 
operation with another pair (a~,a~,) not contained in ()I' 
The result is an orbit ()2 disjoint from () /. Repeat the oper
ation again up to the exhaustion of all possible pairs. The 
global symmetry condition (3.3) means that L is constant on 
each orbit. 

We now return to our Zp invariant Lagrangian (3.1). If 
the global symmetry is not larger than the built-in Zp sym
metry (G = Zp) the orbits 0(3 are given by the sets of pairs 
(ap,ap') satisfying 

a p = ap' + e. (3.4) 

The value of L on 0(3 is b(3' If G is larger than Zp the orbits 
will be reunions of ()e' 

Let v be the generator of the subgroup Zk of the auto
morphism group ofZp [see Eq. (2.5) for s = 1). Assume vEG. 
Then, by Eqs. (3.2), (2.4), and (2.5) 

L (ua) = L (vma) = L (a). (3.5) 
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This implies. by Eq. (3.1). 

ar = aur = au'r = ... = auk 'r' (3.6a) 

bfJ = bufJ = bu'fJ = .,. = buk- 'fJ' (3.6b) 

together with identical relations for the Cr and d s coefficients 
from Eqs. (1.15) and (1.16). In other words. all the pairs 
(ap.ap') obeying 

a p = ap' + umP. m = O. I •...• k - I (3.7) 

belong to the same orbit. 
In this way we have shown that the affine 

transformations 

a' = uma + t. m E Zk' t E Zp (3.8) 

obtained by combining Zk "rotations" with Z "transla-
. P 

bons". are symmetries of the Lagrangian (3.1). If k =/=p - I 
they are the only symmetry transformations consistent with 
(3.6) and G is the M; group introduced in Sec. 2. 

If k = p - I. G contains the whole automorphism 
group of Zp. In this case Eq. (3.6) reads 

a 1 =a2 = .. ·=ap _ 1 ; b1 =b2 = .. ·=bp _ 1 

and the Lagrangian has the expression 

(3.9) 

L(ap -ap,)=aO-a l +pa 1!5(ap -ap,). (3.10) 

This function is obviously invariant under any permutation 
gofthep values ofa. Thus the maximal symmetry isS (the 
symmetric group of p objects). p 

We summarize the situation as follows. 
Theorem: Each possible global symmetry of a Z -sys

temisdeterminedbyasubgroupZk (kisadivisorofp ~ I)of 
the automorphism group Zp _ I' The relations among the 
coupling constants are given by Eq. (3.6). If k =/=p - 1 the 
maximal global symmetry is the nonabelian group M k of 
the affine transformations (3.8). This group is of order~k. If 
we take the whole automorphism group Zp _ I • the relations 
among the coupling constants particularize to (3.9) and the 
maximal global symmetry is Sp. 

The proof of this theorem goes back to Burnside's work 
done in 1901 (!) I R and will be given for completeness in paper 
III. 

We exemplify the theorem with the Z7 system consid
ered in Sec. 2. The automorphism group is Z6 = Z2 ® Z~. 

!here are three possible symmetry groups larger than Zp 
Itself (all the operations are done modulo 7): 

(a) M ~ with the group elements 

a' = ± a + t. a. t E Z7' 

This implies 

a I = a6 • a2 = as. a) = a4 • 

(b)M~ with 

(3.lla) 

(3.llb) 

a' = 2lna + t, 0 1 2 m= .•• (3.12a) 

a 1 = a2 = a4 • a) = as = a6 • (3.12b) 

(c) S7 for which the relations among the coupling 
constants. 

(3.13) 

are already generated by M ~ but they admit as symmetry 
transformations all perturbations of 7 objects. 
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Let us make some comments. The very simple structure 
described by the theorem does not generalize to other A sys
tems. The subgroups of the automorphism group of A will 
always playa crucial role in the classification problem. but 

(i) They do not always generate all possible symmetries 
of the Lagrangian. 

(ii) There are cases where the relations among the cou
pling constants are indeed generated by a subgroup of the 
automorphism group but the maximal symmetry group is 
larger than the corresponding affine group. 

(iii) A subgroup of the automorphism group may some
times generate the same relations as one of its own 
subgroups. 

We turn now to the duality transformation (1.25). We 
consider a Zp system with the global symmetry M k [the 
coupling constants verify Eq. (3.6)] and look for th~ global 
symmetry of the Fourier transformed system. 

We write the function w(a) in the character 
parametrization: 

p-l 

w(a) = L crXr(a). 
r= 0 

The M; symmetry implies 

dfJ = d ufJ = '" = dUk 'fJ' 

The Fourier transform of w(a) is 
p-l 

w(a) = L cr !5(a - r). 
r=O 

(3.14) 

(3.15a) 

(3.15b) 

(3.16) 

From Eq. (3.16) we see that the coupling constants in 
the character representation of w(a) are also the coupling 
constants in the orbit parametrization of w(a) (and vice 
versa). Thus Eq. (3.15) implies that the w system has also M k 

P 

as a global symmetry. 
In conclusion: for Zp systems the orginal system and its 

d~al have the same global symmetry. For other A systems 
thiS may not be the case. This stems from the fact that unlike 
(3.15) the relations among the Cr coefficients and those 
among the dfJ coefficients are in general different. 

We now consider the consequences of global symme
tries on the generating functional defined by Eq. (1.12). We 
have 

(3.17a) 

(3.17b) 

Consider the change of variables given by the affine 
transf~rmations a' = ua + t (u.t E Zp). Without any as
sumptIOn on Cs and dfJ we get 

W(Cs; Jp.r ) = W(cus ; Xur(t)Jp.ur )' 

W(dfJ; Jp.r ) = W(du 'fJ; Xur(t) Jp.ur ). 
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where 

u = 1,2, ... ,p - 1; t = 0,1,2, ... ,p - 1. (3.18c) 

This equation is the most general kinematical consequence 
of the fact that the Zp symmetry is built-in by writing the 
interaction as a function of a p - a P" A more general 
change of variables does not preserve this property. In Eq. 
(3.18), the Jp •r transform according to the only (p - 1 )-di
mensional representation of M ~ - 1.16 

If the global symmetry group is M; rather than Zp Eq. 
(3.18) holds, but there are fewer independent coupling con
stants according to Eq. (3.6). An important special case of 
Eq. (3.18) is then u = VrnE Zk' because the coupling con
stants remain unchanged: 

W(cs; Jp.r) = W(c,; Xvmr(t )Jp.vmr)' 

W(dj3; Jp.,) = W(dj3; Xv'"r(t )Jp.v'"r)· 

(3.19a) 

(3.19b) 

Equations (3.18) and (3.19) hold if instead of Cs anddj3 we use 
the coupling constants of the Lagrangian as respectively bj3' 

As an example we consider again the Z7 systems. We 
choose M ~ as a global symmetry and [see Eq. (3.1 Sb)], 
d l ,d2,d3 as independent couplings. From Eq. (3.18b) we get, 
with u = 2,3,4,S, 

W(d l ,d2 ,d); J p.r ) 

= W(d3,d l ,d2; e(4rri17Ir1JP.2r) 

= W(d2 ,d
3
,d l ; e(6rri17lrtJp .. lr) 

= W (d2,d~,d); e(8rril7)r'J PAr 

= W(d),d p d
2

; e(IOrril7)rtJ p.Sr ), 

and from Eq. (3.19b) with v = 6 and m = ° and 1, 

W(d l ,d2,d,; Jp.r) 

= W(d l ,dz,d3
; e(±2rri17I"Jp.±,). 

(3.20) 

(3.21) 

A pathological case occurs when the global symmetry is 
Sp [see Eqs. (3.9) and (3.10)]. In this case we have only one 
independent coupling constant and we get 

(3.22) 

w here the new sources J lJ,.r are determined by the equations 
p- I p-I 

L J~.rXr(a) = 2: JP.rXr(g(a)). (3.23) 
r-=- 0 ,. = 0 

Here g is any element of the symmetric group Sp. Equation 
(3.23) shows that the sources behave like a (p - I)-dimen
sional representation of the group Sp. 

4. WREATH PRODUCTS 

In physics we got used to the notation of direct product 
of groups. It is to our knowledge for the first time that an
other type of product, the wreath product,7.15.17 is proven a 
very useful device. We define it here and show some applica
tions in the next section. 

We consider two groups G and H of order 1 Gland IH 1 

and write the direct product of n copies of G and H: 

G®G® ···®G®H. (4.1) 

This is a group order 1 G nH I. One can, however, define 
another product of the same n copies ofG andH. This can be 
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done if G is a subgroup of Sm (the group of all permutations 
of m objects) and H is a subgroup of S n (same n as the number 
of copies). G is called a permutation group of degree m, His 
then a permutation group of degree n. G has an m-dimen
sional representation in which every gEG acts as a permuta
tion of the basis vectors e,l: 

gel' = eRtIL!' f.L = O,I, .. ,m - 1, g E G. (4.2) 

g(,u) shows how the indices are permuted. Similarly 

hiv=ih(vl' v=O,I, ... ,n-l, h E H. (4.3) 

Now we take n copies of G (n is the degree of H!) and one 
copy of H. We can define a new group by making H act on 
the elements of G ® G ® . ® G (n times). The new group is 
called the wreath product of G with H and is denoted by 
Gt H. 

It is convenient to define the group G t H through its 
action on its n·m dimensional representation. We denote the 
basis vectors of this representation by e/,-.v (,u = 1, ... m, 
v = 1, ... n)andanelementofGt H by (go,g)o' .. ,gn _I;h). We 
have by definition 

(4.4) 

If we look at the objects e,I•V as the elements of an m X n 
matrix, go acts on the first line, g I on the second, etc., h 
permutes the lines. G l H has the order 1 Gin IH I. 

The group multiplication law is easily deduced from 
Eq. (4.4): 

(go,gl, .. ·,gn.-I; h)(g~,g;, .. ·,g~_I; h')e,I•V 

= (go,gl,· .. ,gn - I; h )eg : j I').h '(v) 

(4.S) 

or 

(go,gl,. .. ,gn - I; h )(g~,g; , ... ,g;._ I; h ') 

= (gh'(O)g~,gh'(llg; , .. ·,gh'(n _I) ... g~ _ u; hh f). (4.6) 

From Eq. (4.6) one notices that G tHis the semidirect prod
uct of G ® ... ® G (the normal subgroup) with H. 

An important property of the wreath product is its 
associativity: 

(G\.H)'\. K = G I. (H\K) = Gt HI.. K. (4.7) 

It is important to note that the definition of the wreath 
product G I. H takes two permutation groups (GCSm , 

HCS,,) into another permutation group (G '\. HCSmn ). It is 
this point of view which is used in looking for global 
symmetries. 

We now consider as an example the Z2 \. Z2 group 
which is of order 8. In this case we have 

(4.8) 

A group element of Z2 I. Z2 can be labeled as (ao,a I; /3) and 
its action on e

,L
• V reads 

(4.9) 

The group multiplication rule is 

(ao,a l ; /3)(a~,a;; /3') = (aj3' +ab,aj3'+1 +a;; /3+/3
f

). 

(4.10) 
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It is trivial to check that Eq. (4.10) corresponds to the dihe
dral group D 4' 

5. THE Z2 @Z2 AND Z2 @Z2 @Z2 SYSTEMS 

We consider the generating functional (1.12) and the 
Lagrangian (1.10) to (1.11) in the case where the vectors ii, p, 
and f have n components taking values in Z2' The n = 2 case 
corresponds to the well-known Z2 ® Z2 Ashkin-Teller mod
el. 13 For n = 3 one gets the Z2 ® Z2 ® Z2 model which to our 
knowledge has not yet been studied. We will not consider 
here higher values of n. 

We now write the symmetry relations for the generating 
functional [the analog ofEqs. (3.18) in the Zp case]. We con
sider the change of variables given by an affine 
transformation 

(S.l) 

where U is an invertible n X n matrix with entries in Z, and 
iE Z2®Z2®Z2' We have -

W(c,; JP•p) = W(C U 7,; Xu Tp(i)Jp.ulp), (S.2a) 

W(d~; J P•p) = W(du-'~; XU7p(f)Jp.u'p). (S.2b) 

The same relations hold if instead of Cs and d~ one writes as 
and b~. In Eqs. (S.2) U T is the transpose of the matrix U. 
Keeping in mind that the automorphism group has 6 ele
ments in the Z2 ® Z2 case and 168 elements in the 
Z2 ® Z2 ® Z2 case (see Sec. 2), we get 24 respectively 1344 
symmetry relations. 

If we require the action to be invariant under an affine 
transformation (S.l) one obtains the following constraints on 
the coupling constants: 

(S.3) 

Notice that the relations among the coupling constants in 
the character and orbit parametrizations are in general dif
ferent [as opposed to the Zp case, see Eq. (3.6)]. 

Since the global symmetries are only affine transforma
tionsin theZ2 ®Z2 case but not for Z2 ®Z2 ®Z2' weconsid
er the two cases separately. 

A. The Z2 @Z2 problem 

As seen in Sec. 2 the automorphism group is S3 in this 
case. The six group elements given by Eq. (2.11) can be sepa
rated in three classes: 

1= (~ ~), (S.3a) 

U1 =(~ ~),U2 = G ~).U3 = (~ ~). (S.3b) 

U4 = (~ 1) 2 C 1 ,U 4 = 1 ~). (S.3c) 

The group elements in the class (S.3b) are of order two and 
those in the class (S.3c) are of order three. 

Using the notations introduced in Sec. 2, the group of 
all affine transformations is M ~~" z, . This group has 24 ele
ments and is isomorphic to S4' it has three subgroups 
M~~"z, [given by the three U; ofEq. (S.3b)) and one sub
grOl~p AI~:" z, (given by the two automorphisms of order 
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three). One notices that M~: ® z, is isomorphic to Z2 I. Z2' 
The relations among the coupling constants corresponding 
to these subgroups are derived using Eq. (S.3). We obtain 

(Ud a"o = ao.,' b,.o = bo" , (S.4a) 

(U2) aO,1 = a l •l , bl,o = b\,\, (S.4b) 

(U}) a"o = al,l' bO,1 = b\,\, 

for the Z2 1. Z2 subgroups and 

(S.4c) 

(U4 ) a"o = ao,' = a\,\, b"o = bo. l = b\,\ (S.S) 

for the M~; "z, group. We notice that Eq. (S.S) implies al
ready S4 as a global symmetry. 

One can check that there are no other symmetry rela
tions than those given by affine transformations. To sum up, 
the global symmetries of a Z~ ® Z2 system are 

(1) Z2 ® Z2 (arbitrary coupling constants), 

(2) Z2 I Z2 [Eqs. (S.4a)-(S.4c)), 

(3) S4 [Eqs. (S.S)). (S.6) 

It is interesting to notice an important difference be
tween the structure of the global symmetries of a Z2 ® Z2 
system and of a Zp system. Although the symmetries are 
given by subgroups of affine transformations the global sym
metry might be larger. This is the case for the M~:",z, sub-
group when the global symmetry is S4' . , 

The symmetry relations for the generating functional 
can be derived using Eqs. (S.2) and (S.3). In particular one 
recovers the known result'} that the partition function is 
invariant under a permutation of the three coupling con
stants. This is a consequence of the automorphism group 
being S3' 

Finally, from Eqs. (S.4) and (S.S) we conclude that if a 
system has one of the symmetries (S.6), its dual has the same 
symmetry. 

B. The Z2 @ Z2 @ Z2 case 

We first derive the relations among the coupling con
stants corresponding to the invariance under affine transfor
mations. The automorphism group Hz." z." z. consists (see 
Sec. 2) of all invertible 3 X 3 matrices with ~ntiies in Z2' One 
gets a group of order 168 with 21 elements of order 2, S6 of 
order 3, 42 of order 4, and 48 of order 7. Since these matrices 
are necessary in order to apply Eqs. (5.2), they are given in 
Appendix D. 

The symmetry relations for the coupling constants de
rived taking various subgroups of Hz. "z." z. are displayed 
in Table I. For each type of symmetry there'are several 
equivalent ones which correspond to different choices of the 
basis [similar to Eqs. (S.4a)-(S.4c) in the Z2 ® Z2 case). For 
example, there are 7 equivalent relations for the symmetry 
(d), 21 for the symmetry (e), etc. In order to obtain them all 
one has to do the following substitutions in Table I: 

o(l-+a Va ' (5.7) 

Here the transformations Vare C 1(/ = 0, 1...6) for the case 
when we have 7 equivalent relations, CiA m (m = 0, 1,2) 
when we have 21 relations, and CIE" (n = 0,1,2,3) in the 
case of 28 relations. The matrices A, E, and C are given in 
Appendix D. 
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There are many new features which we have learned in 
deriving the results shown in Table I. 

(I) Taking a subgroup of HZ~0Z~®Z, and deriving the 
relations among the coupling constants, one observes that 
the Lagrangian may be automatically invariant under a larg
er subgroup. If one asks, for example, a ZJ in variance one 
gets S3 CHz, .. z, ® z, invariance (see symmetry (f)]. 

(2) All possible symmetry relations among the coupling 
constants can be obtained considering affine transforma
tions but, with the exception of the (a), (b), and (f) cases, the 
global symmetries are actually larger. We have determined 
them using the methods presented in Paper III and give 
them here without proof. Consider, for example, the (c) case. 
Here the subgroup of affine transformations is of order 32 
but the global symmetry Z2 \ (Z2 ® Z2) is of order 64. One 
notices that the global symmetries have a very simple struc
ture. They are direct or wreath products of Z2 and S4' 

(3) One notices that for the (c) and (d) respectively (g) and 
(h) symmetries the relations among the couplings in the char
acter and orbit parametrizations are interchanged. That 
means [see Eqs. (1.25), (3.14), and (3.16)] that if a spin system 
has the global symmetry (c) its dual has the symmetry (d) 
(and vice versa). Similarly, ifthe system has the symmetry (g) 
its dual has the symmetry (h) (and vice versa). Notice that the 
order of the groups entering each couple is different: 32 and 
64 respectively 384 and 1152. An easy way to remember this 
phenomenon is to notice that if a system has the symmetry 
G,- H its dual has the symmetry H '- G. 

We now turn to the problem of the symmetry relations 
for the generating functional in the case in which the system 
has a global symmetry larger than a subgroup of affine trans
formations [this is similar to the Sp global symmetry for Zp 
systems when the symmetry relations are given by Eq. 
(3.22)]. As an example let us assume that the coupling con
stants satisfy the conditions for case (h). In this case, together 
with the changes of variables given by affine transformations 
[see Eqs. (5.2)] (there are 1344), one has to consider the 

T ABLE I. The global symmetries of Z, ® Z, ® Z, systems. 

Type of No. of in-
symmetry Relations among the coupling constants dependent 

parameters 

a 8 
b GIOO = 0011; aOI{) = a 10\ 6 

b lOo = bolO; bOO I = b r 1 I 

c alOO = a OlO = aWl = a OI 1 5 
b too = bolO; b('KlI = b 11 \; b lPI = btH , 

d awn = a011 ; GOll ) = a lO ,; aoO! = (JIW 5 

b lOo = bow = boo I = b[ r r 
e a 100 = a olO = a llli = a ol '; a UOI = aiiO 4 

bl()o = bolO = hom = bill; bOll = biOI 

alO{)=aOIO=a(t{jJ;aI1<l~a(1I1 =G W \ 4 
b lOo = bow = boo,; b'lo = bili 1 = biOI 

g Ql00=aOIO =a 101 =aOj\;allO=aool =a lll 3 

blOo = bOlO = bool = bOil = b UH = bill 

h a 100 = 0 010 = aool = a 110 = a 101 = Q(>l1 

b100 = bolO = boOl = bill; hi HI:::= bIOI == bOIl 
QIf}O=aOIO=aOOI =aIIO=alOl =aOIJ =a 111 2 

bIlK> = bo", = b"", = b"o = bIOi = b,,,, = b", 
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changes of variables given by those elements of the group 
S4 l Z2 of order 1152 which are not affine transformations. 
One generates in this way a larger group of order 8064 and 
one can write the corresponding symmetry relations (the fig
ure 8064 is derived observing that neither the affine transfor
mations nor S4 l. Z2 have elements of order 5 and that 
IS~I /5 = 8V5 = 8064 is the smallest number having both 
1152 and 1344 as divisors). We did not take the pain to study 
this group, neither did we look for the corresponding groups 
for other cases. 
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APPENDIX A: THE HAMILTONIAN FORMALISM FOR AN 
A SYSTEM 

In this appendix we give the Hamiltonian formalismS 
for an A system. We consider a 2-dimensional square lattice 
with the lattice points labeled by the double (s,Jl). Here 
s = 1 ,2, ... ,M labels thelines and Jl = 1 ,2, ... ,M the columns. 
The partition function for the system is 

W=t exp{ - }L~I [ScC(a,:,a;,+tl+SDD(a:,)]}, (AI) 

where 
M 

C(a: ,a~ -+ I ) = L L (a: - a: + d, 
s = 1 

M 

D(a:)= IL(a;,-a:+ I
), 

s=1 

In Eq. (A 1) we assume that the interactions along the 
columns and the lines have different strengths (sc #SD)' 

Subgroup of Global Order No. of iso-

HZ~~Z2®Zl symmetry of the morphic 
group groups 

1 Z,®Z,®Z, 8 
Z, Z, ®(Z, ( Z,) 16 21 

Z,®Z, Z,1. (Z, ®Z,I M 7 

Z,®Z, (Z2®Z,) l Z, 32 7 

Z,-Z, Z, IZ, I Z, 128 21 

S, Z,®S. 48 28 

S. Z, I S. 384 7 

S. S. I Z, 1152 7 

HZ1~ZJ~Z: S. 40320 
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The Lagrangian function corresponding to a certain 
global symmetry G is best written in the orbit 
parametrization 

(A3) 

Here 0i denote the various orbits corresponding to G (if G 
coincides with A each orbit has one element rJ). By conven
tion we take L (0) = (0) and assume 

bo, >be, I> '" >b(l, >0; (A4) 

this makes our system ferromagnetic. 
The transfer matrix T is defined in the usual way: 

( AI AMITI AI AM) all , ... ,a" all + 1 , ••• ,all + 1 

= (a" I T I a,<+ I ) 

=exp { -SC'~I L(a;, -a~+l) 

- SD S~l L (a~ - a~+ I)} 
and we have 

W=Tr(TM). 

(AS) 

(A6) 

We are interested in the limit Sc--+oo, Sn-D of the 
transfer matrix. In this limit due to our assumption (A4) the 
only non-negligible matrix elements of T are those corre
sponding to "no-flips" and those corresponding to the 
"flips" given by the orbit be . We can now define our limit in 
a precise way by requiring the parameter 

A = Snescbe. (A7) 

to remain fixed. We have 

(all I T I all + I ) ;::;:o(all - all + I) 

Sn {'£(A A ) ~L(AS AS+I) - - /LUa!' -a,,+1 X £.. a!, -a!, 
A s= I 

- (f(a:, - a~ + I )o(a! - a! + d .. ·o(a: - a:+ I) + 
J;:(AI Al If(A2 A2 ) J;:(AM M) + U all - all + I ai' - all + I '''U all - all + I 

+ ... 

+ fJ(a,~ - a~ + I )O(a! - a! + I )·l(a: - a: + d]}. (AS) 

In Eq. (AS) 

f(a) = I o(a - rJ). (A9) 
f).EO. 

We now write L (a) of Eq. (AS) in the character 
parametrization 

L (a) = I a, - I a,X,(a) 
,#0 ,#0 

(ii, = - a,) and get 

T= l-sD MIa, - &H, 
,,,",0 A 

(AlO) 

(All) 

where H is the Hamiltonian of the system. Before writing it 
down it is useful to introduce some notations. 

We define the matrices F6(s) and uris): 

<a~, ... ,a:IFt3(s) la~ + 1 , ... ,a:+ I) 
= o(a~ - a~ + I ) ••• O(a~ - a~ + I - rJ ) ... fJ(a: - a: + I ), 

(AI2) 
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<a~,. .. ,a:lu,(s) la~ + 1 , ... ,a:+ I) 
J;:(AI AI ) J;:(AM AM ) (AS) 

= 0 all - all + I "'U all - ai' + I :t, ai' . (AI3) 

In these notations the Hamiltonian reads 
M M 

H= -AI Ia,u,(s)u_,(s+I)- I I F[3,(s). (A14) 
s= 1 ro;l::O s= 1 f3IEB. 

It is crucial to observe that the "spin-flip" matrices F[3, (s) 
which appear in Eq. (A14) are those given by the orbit struc
ture of the Lagrangian which in turn is given by both the 
global symmetry and dynamics [see Eq. (A4)]. 

Hamiltonians of the type (AI4) might be self-dual in the 
sense that the spectrum verifies the conditionS 

E(A) =AE(l/A). (AIS) 

Leaving aside the very delicate problem of the boundary 
conditions, and repeating the same arguments as for Potts 
models, 1 one can show that the system is self-dual if 

I a,o(a - P) = I o(a -Pd. 
P¥O ~E~ 

We now consider two examples: 
(a) A Z3 system 

(AI6) 

We consider a spin system having only Z3 as a global 
symmetry given by the Lagrangian 

L(ap-ap.)=2cos( 2; €)-2COS 2; (€+ap-ap'), 

a p ,ap .EZ3 (A17) 

where € is a parameter (e < !). This interaction is not 
symmetric! 

L (ap - a p. )=I=L (ap. - a p). 

We have 

L (a) = blo(a - 1) + b2o(a - 2) 

with 

b 1 >b2>0. 

From (A17) we derive 
eI2".i/3)€ 

al = ---, a2 =iiT 
2 

and the Hamiltonian reads 
M 

(AIS) 

(A19) 

(A20) 

(A2I) 

H = - A I (eI21TiI3)€UI(S)UI+ (s + I) + e( - 21Tl13)€UI+ (s)ul(s + I)) 
s= 1 

M 

- I F2(S), (A22) 
s=1 

where 

o 

o 
0) (0 . 0 F2 = 0 

e - 271'i/3 I 
o 
o 
D (A23) 

The Hamiltonian (A22) is obviously not hermitian, but the 
system might still have interesting properties. 

(b) A Z 13 system with M ~3 global symmetry 
We consider the Lagrangian 

L (a) = 6 - 2(COS 21Ta + cos 6rra + cos Srra), aEZ 13' 

13 13 13 
(A24) 
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One has 

and 

with 

iii = ii.1 = ii4 = ii9 = iiI[) = a l2 = 1, 

ii2 = ii, = ii6 = ii-, = iix = iii I = ° (A25) 

L (a) = bi!, (o(a - 1) + o(a - 3) + o(a - 4) + o(a - 9) 

+ o(a - 10) + o(a - 12)) + bl!, (o(a - 2) 

+ o(a - 5) + a(a - 6) + o(a -- 7) + a(a - 8) 

+ o(a - 11)), (A26) 

bo, > btl, > 0. (A27) 

One can check that the relation (AI6) is satisfied and the 
Hamiltonian is self-dual. 

Other Hamiltonians with the Same Global Symmetry as 
A Systems 

Quantum systems described by Eq. (A14) are a special 
case of a more general class of systems: 

H= T+ V, (A28) 

where the kinetic energy T and the potential energy Vhave 
the form 

M 

T= I I A,a,(s)a _,Is + 1), 
." ~ 1 ;-=1:0 

M 

V = I I Bfjrg(s). 
,= , /3 ,",0 

(A29) 

(A30) 

HereA, and Bp are arbitrary coupling constants (notice that 
we have 2)A ) - 2 free parameters). The Hamiltonian (A28) 
has the abelian group A as global symmetry. Higher global 
symmetries are obtained if the parameters A, and Bp verify 
the same relations as the parameters a, and bg of the Lagran
gian (see, for example, Table I). 

Quantum systems described by (A28)-(A30) are of in
terest on their own and some of them could be completely 
integrable. It was already shown 19 that at the critical point, 
ZII systems with Sn global symmetry have an infinite set of 
conservation laws. In the Zo case the solution is known ana
lytically.20 As an example ~e consider a quantum system 
given by the Hamiltonian 

(A3l) 

where 

rl(s) = r 2-+ (s) (A32) 

and al(s), r2(s) are given by Eq. (A23). If we choose 

A2 = A T, Be = B r (A33) 

the Hamiltonian (A31) is Hermitian and has only Z, symme
try. This is a very interesting system which, to our knowl
edge, has not yet been studied. 

APPENDIX B: THE FACTORIZATION OF THE 
PARTITION FUNCTION 

Let us consider an A system where the A group is the 
direct product of two abelian groups A I and A 2 
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A =AI ®A 2 • (Bl) 

If the Lagrangian function has the special form 

L (a) = LJ!a,) + L 2(a 2) 

(aEA, aIEA" a 2EA 2), (B2) 

The partition function factorizes into the product of two par
tition functions, one with the LagrangianL,(a ,) and the oth
er with L 2(a 2 ). The global symmetry of theA system given by 
Eq. (B2) is 

(B3) 

where G I(G2) is the global symmetry of L,(L2). If A, = A2 
and L,(ad = L 2(a 2 ) the global symmetry is 

This observation looks trivial but is has important 
implications: 

(B4) 

(1) If L (a) has one of the symmetries (B3) or (B4) one 
knows that for special values of the coupling constants one 
has factorization. This does not occur only if the Lagrangian 
has the "diagonalized" form (B2) but can happen also if L (a) 
is obtained from (B2) through a change of basis given by an 
element of the automorphism group. 

(2) Consider an A system which cannot be written in the 
form (B 1) but we have lA ) = lA l (take, for example, A = Z9 
and A = Z, ®Z3)' If the global symmetry GoftheA system is 
of the type (B3) or (B4) one knows that for special choices of 
the coupling constants of the A system one has factorization. 
The corresponding coupling constants can be obtained map
ping the A system into the A system. 

As an example we consider the well-known case of the 
Z2 ® Z2 system9

•
1J (see also Sec. 5). 

We first notice that the following Z2 ® Z2 systems fac
torize into two independent Ising systems: 

(a) Z2 ® Z2 global symmetry 

a l .o ( - 1)'" + aO,1 ( - 1)"', 

al,O( - 1),,' + au ( - 1)'" f "', 

(b) Z2 \. Z2 global symmetry 

a 1.0 [( - 1),,' + (- 1),,'], (B6a) 

a 1.0 [( - 1)'" + (- 1)'" +''']. (B6b) 

Consider now a Z4 system with a Z2 \. Z2 global 
symmetry: 

(B7) 

This system can be mapped into a Z2 ® Z2 system with the 
same global symmetry [see Eqs. (S.4)]. The mapping is 

0---+(0,0), 1 __ (0,1), 2---+(1,1), 3--(1,0). (BS) 

If we take a2 = 0, (B7) is mapped into (B6a) and one has 
factorization. We have thus recovered the known fact that 
the vector Potts Z4 model factorizes. 

Our considerations can be extended in a trivial way to 
the case in which A in Eq. (B 1) is the direct product of more 
than two groups. 
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APPENDIX C: SOME COMMENTS ON SPIN SYSTEMS 
DEFINED ON NONABELIAN MANIFOLDS 

A spin system can be defined not only on abelian mani
folds but also on nonabelian groups. Consider a nonabelian 
group B with group elements g. The Lagrangian function is 

L (gp, gp,) = L (gp gpo I) gp, gp,ElJ. (Cl) 

This expression coincides with Eq. (1.10) in the abelian case. 
The analoges of Eqs. (1.13) and (1.14) are 

(C2) 
r.m,'" 

and 

L (g) = ]2bg,B(g,g'). (C3) 
g'EB 

In Eq. (C2) T~,n (g) are the matrix elements of the irreduci
ble representation A of B. The function B (g,g') in Eq. (C3) is 
equal to one if g coincides with g' and zero otherwise. 

The Lagrangian function (Cl) has obviously Bitselfas a 
global symmetry but (like in the abelian case) for special 
choices of the coupling constants a~,n or bg , the global sym
metry may be larger. 

A spin system defined on B can be rewritten as a spin 
system defined on an abelian groupA (lA I = IB I)ifforagiven 
global symmetry G of L ( g) there exists an A system with the 
same global symmetry G. This is possible if G contains A as a 
regular subgroup. 

As a trivial example consider a B system with the 
interaction 

L (g) = beD( g,e), (C4) 

where e is the unit element of B. This system has obviously 
SIB I as a global symmetry and is identical to the IB I-compo
nent Potts model given by Eq. (1.18), which is defined on 

ZIBI' 
Writing aB system as anA system is important because 

for A systems one has the duality transformation. 
Several authors l2 have considered spin systems having 

a manifold B which is a semidirect product of abelian 
groups: 

B = ((A 1,(xA2 )(x ... )(xA" (CS) 

and a Lagrangian which is a class function of B (this corre
sponds to taking a~.11 = Dm,,,aJ- in Eq. (C2). These authors 
have shown that one can rewrite theB system as anA system 
with 

A=A I ®A 2 ® .. ·®A" (C6) 

(The rewriting procedure has a simple group theoretical sig
nificance which will be discussed in detail in paper III). This 
observation led to the erroneous opinion that the only B sys
tems which admit a duality transformation are systems 
where the global symmetry is of the type (C5). 

By now we are in a position to settle this point. First of 
all as stated before [see example (C4)] the manifold B does 
not have to be of the form (CS) in order to write it as an A 
system. Secondly, the global symmetry G is at least as large 
as to contain B [Eq. (CS)] and A [Eq. (C6)] as subgroups. In 
fact we show in Paper III that Gisat least (B ® B )lC, where C 
is the center of B. 
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As an example consider the nonabelian group D4 of or
der 8. It is easy to show that if the Lagrangian is a class 
function on D 4' the D 4 system can be mapped in a 
Z2 ® Z2 ® Z2 system with the Lagrangian: 

L (a) = ao,o,o + al,o,o [( - I)U, + ( - w' + ( - 1)u, + u, 

+ ( - w' + u,] + ao,a, I ( - W' + al,l,o( - 1)a, + a, 

+al,I,I( _1)",+a,+u,. (C7) 

The global symmetry of this system is known (see Table I): it 
is Z2 1. (Z2 ® Z2)' which is a group os order 64 and which 
indeed contains Z2 ® Z2 ® Z2 and D 4-::-:::Z2 \. Z2 as subgroups. 

APPENDIX D: THE AUTOMORPHISM GROUP OF 
Z2®Z2®Z2 

The group Hz,,, z, .. z, of order 168 has a representation 
given by 3 X 3 matrices with entries in Z2 (see Sec. 3). Its 
group elements are given by 28 cycles of order 3, 21 cycles of 
order 4, and 8 cycles of order 7. We give here an element of 
each cycle. The matrices denoted by A, B, and C are used in 
Sec.S. 

Cycles of Order Three 

A = (~~)(~:)(~~)(~~~)(~~~)(~~) 
100 101 101 010 110 100 

(~~~)(~~)(~~~)(~~)(~~)(~~) 
101 110 001 001 OIl 101 

(~~~)(~~ ~)(~~~)(~~~)(~~~)(~~) 
101 010 100 III 001 010 

(~~~)(~~~)(:)(~~ ~)(~ ~~)(~~~) 
100 100 III 001 111 110 

( ~ ~~)(~~~)(~~)(~ ~~) 
010 100 101 100 

Cycles of Order Four 

B = (:)(~~)(~~)(~~~)(~~ ~)(~~~) 
111 111 010 III 110 110 

(~ ~)(~ ~ ~)(~ ~)(~ ~ ~)(~ ~)(~ ~ ~)(~ ~~) 
010 100 001 OIl 101 001 111 

(~~~)(~~~)·(~~)(~~)(~:)(~~)(~~~X~~~) 
101 001 100 010 OIl 110 010 100 

Cycles of Order Seven 

(
110)(101)(001)(110)(011) C = 101 001 101 101 001 
010 110 010 III III 

(
011)(111)(001) III 110 100 
101 OIl 110 
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We present the classification of the global symmetry groups of spin systems defined on 
Zp ® Zq ,Zp" and Zp ® Zp abelian groups (p and q are prime numbers). 

PACS numbers: 02.20.Km 

1. INTRODUCTION 

In the previous paperl (to be referred to as I) we have 
shown under which circumstances an abelian spin system 
has a global symmetry larger than the abelian group on 
which the system has been defined. We have given the classi
fication of the global symmetries of systems defined on Zp (p 

prime), Z2 ® Z2' and Z2 ® Z2 ® Z2' We have also discussed 
several physical consequences. 

We assume that by now the reader is familiar with the 
definition of a global symmetry G [Eq. I( 1.20)], with the sym
metry G of the dual system [Eq. I( 1.25)], with automor
phisms and affine groups (I, Sec. 2) and with wreath products 
(I, Sec. 4). We also hope that the detailed presentation of the 
Z2 ® Z2 ® Z2 case has made clear how to use G in order to 
find symmetry relations for the generating functional [see 
Eqs. I (5.2) and (5.3)]. 

In the present paper we give a complete classification of 
the global symmetries for spin systems defined on Zp ® Zq 
(Sec. 2), Zp' (Sec. 3), and Zp ® Zp (Sec. 4). Here p and q are 
prime numbers. The proofs will be given elsewhere. 2 The 
simple cases Z2 ® Z3' Z9' and Z3 ® Z3 are given as applica
tions in Tables I-IV. (The Z4 case is trivial and the Z2 ® Z2 
case was already considered in Ref. 1.) 

Before we start the presentation of our results we would 
like to introduce two definitions. The Lagrangian density 

L = L (/Xp - /Xp')' /Xp,/Xp,EA 

has the global symmetry G if 

L (g(/Xp) - g(/Xp,)) = L (/Xp - /Xp')' gEG. 

(1.1) 

(1.2) 

It can be shown that the transformation g can be written in 
the form 

(1.3) 

where tEA and goEGo. Go is the subgroup of G which leaves 
the origin /X = 0 unchanged (the little group o/the origin). 
The automorphisms U[see Eq. 1(2.1)] form a subgroup of Go. 
From Eq. (1.3) it is clear that Go determines uniquely G. We 
now show how Go determines L. 

We look at L as a function of a single variable, 

L = L (/X), /XEA. (1.4) 

Equation (1.2) implies 

L (go(/X)) = L (;X), goEGo' (1.5) 

A set of elements ;XI\), /X~I), ... ,/X~IIEA form an orbit Of o/Go on 
A if 

;X)IJ = gO(;X\I)), i = 2, ... ,s, goEG. (1.6) 

Obviously A is a reunion of disjunct orbits of Go. The La
grange density L has by Eq. (1.5) the same value on an orbit 
and thus L is completely specified by giving the orbits of Go 
on A. In the "orbit" parametrization of the Lagrangian [see 
Eq. 1(1.14)], 

L(;X) = Ibpo(;X-;3). (1.7) 
/3EA 

The coefficients bp are the same for all jj 's belonging to the 
same orbit of Go. 

We now proceed to present our classification. 

2. Zp ® Zq SYSTEMS (p AND q ARE PRIMES) 

An element of Zp ®Zq is a double (a l,a2) with 
a l = O,I, ... ,p - l;a2 = O,I, ... ,q - 1. The group law is addi
tion modulo p for the first component and addition modulo q 
for the second one: 

(a l ,a2) + (a; ,a;) = (a l + a; ,a2 + a;). (2.1) 

The group of automorphisms of Zp ® Zq (denoted by 
Hz ® z ) is the direct product of the group of automorphisms 
of Zp ~ith that of Zq (see I, Sec. 2). Thus an automorphism is 
a double (u p u2) with U I = 1, ... ,p - 1;u2 = 1, ... ,q - 1 and it 
has the following action on Zp ® Zq : 

(2.2) 

The group law in Hz ® Z is 
p q 

(u l'u2)(u; ,u2) = (u lui ,U2U2). (2.3) 

In Eqs. (2.2) and (2.3) the multiplications are modulo p for 
the first component and modulo q for the second one. 

The group Zp ® Zq is isomorphic to the group Zpq' i.e., 
to the additive group of integers modulo pq. The mapping 
between the two is 

(2.4) 

An automorphism of Zpq is a multiplication (modulo pq) by 
an integer u which is not divisible by either p or q. Thus there 
are (p - 1 )(q - 1) automorphisms. The mapping between 
HZp®zq and Hz" is 

HZp®zq 3 (u\>u 2 )-u 

= [:1 (mOdP)] q + [ ~2 (modq) ]P' (2.5) 

Equations (2.2) and (2.3) become 
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u(a1q + a2P) = u1a1q + uP2P (modpq) , (2.6) 

[
u1u; ] [Uzu; L 

uu' = -q- (modp) q + p (modq) r(modpq). 

(2.6') 

We now give a complete list of the possible global symme
tries of Zp ® Zp systems. The proof that there are no other 
possibilities will be given in Ref. 2. 

There are three classes of global symmetries. 
Class I: The orbits 0/ Go on Zp ® Zq are completely de

termined by a subgroup 0/ H zp " zq . 

In order to give an explicit result we have to specify the 
subgroups of Hz ,. z . First we note that Hz (Hz) is cyclic of 
order p - l(q -"I). If v(w) is a generator of'Hzl'tHz), then 
every automorphism of Zp ® Zq has the form 

u = (vi,w j
) (2.7) 

with i = l, ... ,p - I andj = 1, ... ,q - 1. Note that 

but 

uP - I = I(modp), wq - I = l(modq) (2.8) 

vi # I (modp), w j ¥ 1 (modq), kp - I,j <q - 1. 
(2.8') 

A subgroup of Hz .. z is characterized by three integers m, 
p , 

n, and s such that 

ms dividesp - 1, 

(2.9) 
ns divides q - 1. 

It consists of the following automorphisms: 
(VIIP 1)lms](is+rl,w11q --llImslljs+rl); 

i = I, ... ,m;j = I, ... ,n; r = I, ... ,s. (2.10) 

We denote this subgroup by H m.".,. The group obtained by 
combining the automorphisms from Hm ... ;s with Zp ® Zq 
translations will be denoted by M ;'qn;,. It is the semidirect 
product of Zp ® Zq with H m,n;s' Note that 

Mm ... ;) =Mm®Mn 
p,q p q (2,11) 

(the groups M;' and M ~ have been defined in Ref, 1), 
We now sum up our results on symmetries of Class 1: 

To every subgroup H m,n;s of H Zp" z, there corresponds a glo
bal symmetry of the Zp ® Zq system, The Lagrangian densi
ty is given by the orbits of Hm.n;s on Zp ® Zq, The orbits are 
determined using Eqs. (2.2) and (2.10). The corresponding 
maximal symmetry grouup is G = M ;,~n;' except for the fol
lowing cases: 
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(a) s = I,m = p - I;n # q - 1 when G = Sp ® M ~; 

(b) s = l;m#p - l;n = q - 1 when G = M;' ®Sq; 

(c) s = I,m = p - I,n = q - 1 when G = Sp ®Sq' 

Class 2: G is a wreath product, 
Let us write Zp ® Zq in the following form: 

(O,O),(O,I), .. ,,(O,q - 1), 

(I,O),(I,I), ... ,(I,q - 1), 
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(2.12) 

(P-I,O),(P-I,I), ... ,(p-I,q-I). 

The first row is the subgroup Zq and the first column the 
subgroup Zp, 

A general permutation from Spq acts on the elements of 
this tableau at random, preserving neither the row nor the 
column structure. 

Let us now consider permutations that map each col
umn of (2.12) into another column. In Sec, 4 of Paper I we 
learned that the set of all such permutations forms the group 
Sp -Sq. Similarly the set of all permutations that map each 
row of(2.12) into another row forms the groupSq -Sp. The 
permutations which have both properties form the group 
S p ® Sq. Therefore each symmetry group of Class 1 preserves 
both the row and the column structure of (2.12). 

We say that a symmetry group is of Class 2 if it is a 
subgroup of Sp -Sq or of Sq -Sp, but not a subgroup of 
Sp ® Sq. We proved the following result: The symmetry 
groupsofClass2areM~n-M~ andM; -M;'. Ifm = p - 1 
or (and) n = q - 1 the corresponding maximal symmetry 
group is obtained by replacing M;' with Sp or (and) M; with 
Sq. Note the form of the Lagrangian density: if 
G = M;i_M~, then 

(2,13) 

where L I (L 2) corresponds to a Zp (Zq ) system with global 
symmetry M ;'(M;). 

Class 3: G does not preserve the row or the column struc
ture 0/(2.12). 

A trivial consequence of a theorem by Schur (see Refs. 2 
and 3) is: The only symmetry group o/Class 3 is G = Spq and 

L (a l ,a2) = D(a l )D(a2), a)EZp,a2EZq' (2,14) 

As an example consider the case p = 2,q = 3, In Table I we 
give a list of all maximal symmetry groups and the corre
sponding Lagrangians. (The notations are those of Ref. 1.) 

We end this section with a comment concerning the 
connection between G and G. If G is of Class 1 or 3, then 
G = G. IfG = M~n_M;, then G = M~ -M;'. 

TABLE l. The global symmetries of Z2 ® Z, systems. 

Order of the Global 
symmetry group Relations among the coupling constants 

6 

12 a o.1 =aO,2,a,,1 =a1.2 

b"" = b",2,b1.1 = b1,2 

18 ao.1 = a I,] ,aO,2 = °1.2 

b"" = b", = b1,2 

24 

48 

72 

720 

Ql.0 = a',1 = a 1,2 

b"" = bl,i ,b",2 = bl,2 

aO•1 = aO,2'al.O = au = au 

b"" = b",2 = bl,1 = b1,2 

aO,\ =aO.2 =a"l =0',2 
b"" = b"",bl,() = bl,1 = bl.2 

a1,U = a O,! = a O.2 = a,.\ = a 1•2 

b
"
" = bo" = b"" = bl,1 = bu 
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3. Zp> SYSTEMS (p PRIME) 

An element of Zp' is an integer a = 0, I, ... p2 - 1. The 
group law is addition modulo p2. 

An automorphism of Zp' is a multiplication (modulo p2) 
by an integer u which is not divisible by p: 

uta) = ua, uEllzp"aEZp" (3.1) 

The group law in H Zp' is multiplication modulo p2. H Zp' is 
cyclic of order p( p - I). Let v be a generator of H Zp" i.e., 

uPip - I) = I (modp2), 

i = 1,2, ... ,p(p - I) - 1. (3.2) 

Vi =I I (modp2), 

DenotebyHk the subgroup oforderk [kdividesp(p - I)] of 
H Zp' and by M;, the group obtained by combining Hk with 
Zp' translations (M;, is a metacyclic group4). 

Similar to the Zpq case, we divide the global symmetries 
G of Zp' into three classes. The proof that there are no other 
possibilities will be given in Ref. 2. 
will be given in Ref. 2. 

Class 1: G = M;, and k divides p - 1. 
The generator of Hk will be a power ofv [see Eq. (3.2)]. 

The orbits of Hk on Zp' are determined using Eq. (3.1). M;' 
is a maximal symmetry group. 

Class 2: G is a wreath product. 
Let us write the group Zp' as a square tableau, similar to 

Eq. (2.12): 

0,p,2p, ... ,(p - 1)P, 

I,p + 1,2p + I, ... ,(p - 1)P + I, 

p - I,p + (p - 1),2p + (p - I), ... ,(p - 1)P + (p - I). (3.3) 

The first row is the subgroup Zp. Each row is a coset from 
Zp'/Zp (note that Zp'/Zp is isomorphic to Zp). 

Every symmetry group of Class 2 will permute the rows 
amongst themselves. The role of the rows and columns can
not be interchanged as in the Zpq case. This is a consequence 
of the fact that Zp' has only one subgroup. Thus every G of 
Class 2 will be a subgroup of S -S with the first S acting p p p 

on each row independently and the second Sp permuting the 
rows (see Sec. 4 of Paper I). 

We proved the following result: The symmetry groups 
of Class 2 are M'; - M;; whenever m = p - I or (and) 
n = p - I, the corresponding maximal symmetry group is 

TABLE II. The global symmetries of Z9 systems. 

Global 
symmetry 

Zq 
M~ 
Z,-Z, 
Z,-S, 
S,-Z, 
S,-S, 
S9 

Order of the 
group Relations among the coupling constants 

9 
18 b, = b.,b2 = b7,b3 = b6 ,b4 = b, 
81 b, = b4 = b7,b2 = b, = b. 

162 b, = b2 = b4 = b, = b7 = b. 
648 b3 = b6 ,b, = b4 = b7,b2 = b, = b. 

1296 b, = boob, = b2 = b. = b, = b7 = b. 
9! b, = b2 = b, = b. = b, = b6 = b7 = b. 
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obtained by replacing M'; with Sp or (and) M; with Sq. 
Note that for M: -M: the orbits are generated by the 

subgroup Hpm of H zp" Note also that the symmetry groups 
of Class 1 preserve the row structure ofEq. (3.3) too. 

Class 3: Gdoes not preserve the rowstructureofEq. (3.3). 
Similiarly to the Zpq case, the only symmetry group of 

Class 3 is G = Sp" 
As an example consider the case p = 3. In Table II we 

give a list of all maximal symmetry groups and the corre

sponding orbits of Go on Z9' 
If G is of Class I or 3, then G = G. If G = M'; - M;, 

then G=M;-M';. 

4. Zp ® Zp SYSTEMS 

We have seen that the integer numbers close under two 
operations modulo p: addition and multiplication. The set of 
integers 0, I, ... ,p - I endowed with these two operations 
forms a field. We denote it by GF( p). This notation comes 
from the fact that finite fields are usually called Galois 
fields. 5 The distinction in notation between Zp and GF( p) is 
not just academic. It will enable us to formulate the results 
more clearly. 

An element of Zp ® Zp is the double (a I,az) with 
a l,a2EGF( pl. Thus Zp ® Zp is a two-dimensional vector 
space over GF( p). Its automorphisms are the basis transfor
mations, i.e., the invertible matrices 

(4.1) 

The group formed by all matrices (4.1) is denoted GL(2,p) 
(general linear group). It has the order (pZ - 1)( p2 - p). The 
group obtained by combining the Zp ® Zp translations with 
GL(2, p) is denoted Aff(2, p) (group of affine transforma
tions). Its action on Zp ® Zp is given by 

(al,a2)-(ullal + UI P2 + t l ,u2la l + U2Za2 + t2)' (4.2) 

The affine geometry of Zp ® Zp is similar to that of an ordi
nary plane. A straight line passing through (a l,a2) and 
(a; ,a2) is the set of p points: 

{(a paz) + ala; - al,a; - az)la = O,I, ... ,p - I}. (4.3) 

There are p + I lines passing through every point Zp ® Zp. 
An affine transformation maps each line into another line. 

Let us call a straight line passing through the origin [the 
point (0,0)] a ray. Each ray is a Zp subgroup of Zp ® Zp. 
There are no other subgroups of Zp ® Zp. Notice that 
GL(2,p) is a very large group as compared to Hz,. or Hz,,· 
Therefore we naively expect the automorphisms to play an 
even more important role here than in Sees. 2 and 3. This is 
indeed the case. In Ref. 2 we prove (relying on Schur's meth
od and on a theorem from Ref. 6) thatfor every Zp ® Zp 
system the orbits of Go on Zp ® Zp are given by a subgroup of 
GL(2, p). The corresponding subgroup of Aff(2, p) is, howev
er, not always a maximal symmetry group. 

We can classify the automorphis"lS according to the 
number of rays left invariant (the number of eigenvectors in 
Zp ®Zp). An automorphism Ubelongs to one of the follow
ing types 
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(a) U is a multiple o/the unit matrix (p + 1 eigenvectors): 

U = (~ ~), vEGF(p),v#O. (4.4) 

There are p - 1 automorphisms of this type. They form a 
cyclic group. This group is the center ofGL(2, p), denoted C. 

(b) U is diagonalizable in GF( p) (2 eigenvectors). Then 
there is a basis such that 

U = (~ ~), v,wEGF(p), v#w#O. (4.5) 

There are 1I2( p - 2)( P - 1 )p( P + 1) automorphisms of this 
type. 

(c) U can be brought to Jordan/orm (one eigenvectors). 
Then there is a basis such that 

U = (~ ~), vEGF(p),v#O. (4.6) 

There are (p - If(p + 1) automorphisms of this type. 
(d) The eigenvalue equation 0/ U has no roots in G F( p) 

(no eigenvectors in Zp ® Zp). This is similar to the case of a 
real matrix having complex eigenvalues. There are 
1I2( p - 1 )2p2 automorphisms of this type. . 

An automorphism can be seen as a permutation of the 
p + 1 rays. All automorphisms of type (a) act as the unit 
permutation on the p + 1 rays. The. group .GL(2, p)IC acts 
faithfully on the rays. In analogy wIth ordmary geometry, 

TABLE III. The group GL(2,3). 

Type Length of cycle 

a 2 

b 2 

c 6 

d 8 
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Eigenvectors 
(as column!) 

All 

(~) and (~) 

(~) and C) 
(~) and C) 
(~) and G) 
(~) and G) 
C) and G) 

(~) 
(~) 
C) 
G) 

None 

the set of rays is called the projective space P (1, p) and 
GL(2, p)IC is called the projective group PGL(2,p).' The 
autormorphisms of type (b), (c), and (d) act as cyclic permuta
tions of the (p - 1 ),( p),( P + I) rays they do not fix. Any two 
cycles of the same type are related by a basis transformation. 

Let us write Zp ® Zp as a square tableau: 

(O,O),(I,O), ... ,(p - 1,0), 

(O,I),(I,I), ... ,(p - 1,1), 

(O,p - 1),(1, D - 1), ... ,(p - l,p - 1). (4.7) 

As opposed to Eqs. (2.12) and (3.3) the tableau (4.7) is not 
unique. We can choose any of the 1I2p( p + 1) pairs of rays 
as "system of coordinates." In analogy to Secs. 2 and 3, we 
divide the global symmetries of Zp ® Zp systems into three 
classes. The proof that our list is complete will be given in 
Ref. 2. 

Class 1: G acts as a permutation group 0/ both the rows 
and the columns %ne o/the tableaux (4.7). 

Let vEGF(p) be as in Eqs. (2.8) and (2.8'). Define the 
group H m,n;s (both ms and ns divides p - 1) as the group of 
diagonal matrices of the form 

ll/msliis + rl 

° 
(4.8) 

i = 1, ... ,m;j = l,oo.,n; r = 1, ... ,s. 

Matrices grouped in cycles 
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TABLE IV. The global symmetries of Z3 ® ZJ systems. 

Global 
symmetry 

Order of 
the group Relations among the coupling constants 

Z,®Z, 
M::; 
M~'~\ 

9 
18 

18 

36 

72 

81 

b ,.o == b,.o,bo., == bo.,.b,.1 "" b,., ,b,., = bz.1 

b,.o = bz.o,b
"

, == bu ,b1.2 "" bz., 
S,®S, 
S,~Z, 

Z,~Z, 

Z,~S, 

S,~Z\ 

S,~S, 

S~ 

b"o == b,.o,bo.! = bo."b ,., "" b1.2 = bz,! = b2,2 

b,.o = bz,o = bo.! "" bo."bl,1 = b1.2 = b" = bz., 

bO•1 = b,., = b'.1 ,bo., = b
"
, = b", 

162 

648 

1296 
9t 

bo.1 = bo., = bl,1 = b,., = b ,., = b,., 
b,.o = b'.G,bo, 1 = b,., "" b'.1 ,bo" = b1,2 = b", 
b,.o = b"o,bo., = bo" = b,., = b',l = b", = b", 

b,.o == b"o = bo,l "" bo" = b,., = bz., = b,., = b',l 

There are exactly 1!2p( p + 1) different copies of H m.n:s' one 
for each choice of the coordinate system (of course for a 
given basis in Zp ® Zp only one of them consists of diagonal 
matrices), 

Let us denote by M ';x");' the corresponding subgroups of 
Aft\2, p), We have the following result. 

For every symmetry of Class 1 the Lagrangian density 
is given by the orbits of one of the H m,n;., on 2p ® 2p. The 
corresponding maximal symmetry group is G = M ';x");s ex
cept for the case m = n = p - 1,s = 1 where G = Sp ®Sp 
and m#p - l,n =p - 1 when G =M';-Sp. 

Class 2: G acts as a permutation group of only the rows 
(or only the columns) of one of the tableux (4.7). The maximal 
symmetry groups of Class 2 are wreath products of a symme
try group of a Zp system (M'; or Sp) acting inside each row 
(column) of(4.7) independently with a symmetry group of 
another Zp system (M; or Sp) acting as a permutation group 
of the rows (columns). 

As opposed to symmetries of Class 1, there are only 
p + 1 isomorphic copies ofM';-M;, one for each ray. lfG 
permutes the rows, the orbits of Go on Zp ® Zp are deter
mined via Eg. (4.2) by the subgroup ofGL(2,p) containing 
H ",',n':s (s is the largest divisor of m and n and we have 
m's = m and n's = n) and the matrix 

0) 
1 . 

H "".n':s has to be chosen such that it maps the first row of(4. 7) 
into itself. All other p - 1 copies of Hm',n':s which also map 
the first row into itself will be obtained as products of the 
original H m',n':s with powers of 

0) 
1 . 

Class 3: G does not preserve the row or the column struc
ture of any of the tableaux (4.7), 

Let Hbe the subgroup ofGL(2,p) that determines the 
orbits of Go on Zp ® Zp. We can divide the symmetries of 
Class 3 into two subclasses: 

(a) H is transitive on P (1, p). The corresponding maximal 
symmetry group is G = Sp' . 

(b) H is not transitive on P (1, p). In this case there cannot 
be any automorphism of type c in H [if this were not true, 
then either H would be transitive on P (1, p) or G would be of 
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Class 2]. H can be classified according to the lengths of its 
orbits in P (1, p) (only the lengths of the orbits are important 
because we want to classify the symmetry groups up to basis 
transformations). None of these orbits is allowed to contain 
only one ray (if there is one orbit of length one, then G is of 
Class 2; if there is more than one orbit ofIength one, then Gis 
of Class 1). A list of aU subgroups of GL(2, P) is given in Ref. 
5 so our problems is in principle solved. The details are, 
however, too technical and the interested reader can get 
them from Ref. 2, 

If H is not transitive on P(l,p), the maximal symmetry 
group is the subgroup of AjJ(2, p) corresponding to H, with one 
exception. If H is the group generated by Hp _ I, P _ I; 1 [see 
Eq. (4.8)] and by the "flip matrix" 

(~ ~). 
then the maximal symmetry group is G = Sp - Z2 [one copy 
of Sp acts on the rows of(4. 7), the second one on the columns 
and the Z2 flips the rows into columns]. There are 
112p( p + 1) different copies of Sp - 2 2, one for each system 
of coordinates. 

As an example, consider the Z3 ® Z3 systems. This is 
not the most typical example because there are only 4 rays. It 
is, however, instructive to compare the Z3 ® Z3 and Z9 cases 
explicitly. GL(2,3) is of order 48 only, so we can give a com
plete list without the general results on the subgroups of 
GL(2, pI. In Table III we give a list of the automorphisms of 
23 ® Z3 grouped according to their type, to the rays left in
variant and to the cycles they form. In Table IV we give a list 
of the global symmetries. For symmetries which are related 
by a basis transformation we only give one representative. 

It is interesting to compare Table II (Z9) and Table IV 
(Z3 ® Z3)' There are several cases when the two systems can 
be mapped into each other. This is the case of the 
Z3- Z3,Z3-S3,S3- Z 3, andS3 -S3 symmetries. But this 
does not include the S3 ® S3 or S3 -Z2 symmetries when the 
Z3 ® Z3 system factorizes (see I, Appendix B). Thus, con
trary to our expectations there is no case when a Z9 system 
factorizes. Such a factorization property was suggested by 
the Z4 case. 

Comparing Table 1 (Z2 ® 2 3 ) and Table IV (Z3 ® Z3) one 
notices that the symmetry S3-2Z can occur on both 
manifolds. 
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Finally, let us explain the connection between G and G: 
the orbits of Go on Zp ® Zp are given by the subgroup of 
GL(2, p) consisting of the transposes of the matrices of the 
subgroup of GL(2, p) that gives the orbits of Go on Zp ® Zp. 

5. CONCLUSIONS 

After this mathematical "tour de force" one can ask 
"What's next?" For the time being we do not intend to go 
further with our classification theory before we understand 
its physical implications. In further publications we will 
show how the standard group techniques can be applied for 
low and high temperature expansions. The methods used in 
these papers can also be used for Lagrangian functions de-
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pending on more than two variables (this includes lattice 
gauge theories). This will be the subject of a separate paper. 

1M. Marcu, A. Regev, and V. Rittenberg, Preprint MPI-PAE/PTh 35/80, 
September 1980 (unpublished). 
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4A. Bovier, M. Liiling, and D. Wyler, Preprint BONN-HE-80-1O (1980) 
(unpublished). 

'L. E. Dickson, Linear Groups with an Exposition o/the Galois Field Theory 
(Dover, New York, 1958); B. Huppert, Endliche Gruppen (Springer, Berlin, 
1967). 

°H. Wielandt, "Permutation Groups through Invariant Functions and In
variant Relations" (Lectures delivered at the Ohio State University, 1969) 
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The reduction ofa connection formp from a fiberbundlePto a subbundle Qis examined in detail; 
defining generalized torsion forms, we show how the usual Maurer-Cartan structural equations 
have to be modified. Examples and applications to classical general relativity and gauge theories 
are outlined. r 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

Fiber bundle techniques play an important role in 
gauge theories of physical fields as they give a geometrical 
meaning to the quantities involved in the formalism; further
more, they provide an excellent framework for studying and 
solving problems of global and topological nature that surely 
would be much more difficult in other formalisms. 

Gauge theories usually consider a given principal bun
dle P = P(M,G) (Mbeing the base manifold often identified 
with the space-time V 4

, G the Lie structural group) and a 
connectionp which, in turn, is interpreted as a physical field. 
Various arguments, essentially related to the problem of 
constructing a Lagrangian density, suggest considering also 
a preferred subgroup H of G, which is the true, unbroken 
group of symmetry of the theories. Examples may be found 
in the formulation of general relativity given by Trautman 1 

and in the theory of McDowell and Mansouri. 2 as well as in 
the classical Maxwell and Yang-Mills gauge theories. 

Mathematically the choice of H leads to the reduction 
ofthe bundlePto a subbundle Q = Q (M,H). 3 thus giving rise 
to various problems, some of which are still open. 

In Sec. II a theorem generalizing the classical concept 
of torsion tensor field for an arbitrary reduction P-Q is 
presented. 

The most useful applications of these results may per
haps be found in gauge theories; nevertheless, in order to 
achieve a better understanding of the quantities involved, 
applications to general relativity. where there are no funda
mental physical problems, are described in Sec. III. 

Finally, in Sec. IV, we see that, at least formally, the 
method works also in the case of a graded Lie group. This is 
shown by deriving the structural equations in the 
McDowell-Mansouri theory. 

II. THE MAIN THEOREMS 

Let P = P (M,G ) be a principal fiber bundle over a mani
fold M with group G, and Q = Q (M,H ) a reduced subbundle 
of P with group n, a closed subgroup of G. Assume that the 
Lie algebra g of G admits a subspace/such that g = hEll/ 
and adh /Ej. Using the following index convention, 
i,jEg, a, f3Eh, A, BEf, letp i be a connection form in P with 

'lThis work was carried out under the auspices of the National Group of 
Mathematical Physics ofC.N.R. 

curvature R i = Dppi and fli = i* (p i), i being the injection of 
Q in P. Then we have 

Theorem 1: (a)fl" is a connection form in Q with curva
ture fl a = Dhfl"; 

(b) fl A is a tensorial form on Q of type (ad,J) (i.e., 
fl AEhorA * (Q ),R :flA = ad(a-1)ABflB, aeH); 

(c) the connection form pi is reducible to a connection 
form in Q if and only if flA = 0; 

(d) setting e = DhflA (2-forms of generalized torsion), 
the following generalized Maurer-Cartan structural equa
tions (GMCSE) hold: 

i*(R ") = fl a + ~C "ABflA AflB, 

j*(R A) = e A + iCA Bcfl B I\flc, 

Proof (a) is verified by using the Proposition 6.4 of Ref. 
3 (see p. 83). It is clear that fl (l = Dhfl'" = dfla + ~caAf3flA 
A fl{l. 

(b) Defining Di' the generators of g and D r, as the fun
damental vector fields associated with Di in the fiber bundle 
P, we havep(D r) = D j and thenpA (D!) = O. On the other 
hand, the field D: are i-related to field D !)Q (the vector 
fields associated with theDI'Eh, in the bundle Q), and, there
fore, for each flEQ, we have 0 = pA(i. (D !)Q)) 
= (i*(pA ))(D !~)Q) = flA (D !lQ)' This implies that flA 

EhorA *(Q). Furthermore, 
R :pA = ad (a - l)A BpB + ad(a -I )Al'rl"; the second term on the 
right side vanishes for the assumption on h and the injection 
of both sides now gives R :flA = ad(a-1)AnflB. 

(c) is a trivial consequence of Proposition 6.4 of Ref. 3, 
(d) is proved by straightforward calculation using the 

relations R a = dpa + !C Upi I\rl~ R A = dpA + !C A ijP' 1\/, 
the injection i*, and the fact that i*d = di*. Q.E.D. 
Furthermore we have: 

Theorem 2: Under the same assumption of theorem 1, 
by denoting D = D h , we have 

ia)Dfla =0, 
(b) De A + C A BAflB A {} A = O. 
Considering, respectively, a tensorial form of type 

(ad. h ) and (ad,j) on Q, the following formulas hold: 
(c)DDrt = Ca"vfll' Ar)", (d) DDr/ = CA"Bfll'- A7Jc 

Proof (a), (b), (c) are trivial because li a is a connection 
form on Q. (d) follows from the general definition of covar
iant derivative for a tensorial form oftypep: DD77A 
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= pA B.IL (ej.n IL A 1]B; pA B.IL (e) are the "generators" of the re
presentation p. In the actual case pA B.I' (e) = C L; then (d) 
follows. Q.E.D. 
III. APPLICATIONS TO GENERAL RELATIVITY 

(A) The first example is the well known reduction 
P (M, A (n ))-Q (M,GL(n)), here described only for complete
ness. The GMCSE are the usual structural equations i*(R ii) 
= n ij, i*(R ') = du/ + u/ k A w\, where Wi k is the h-compo
nent of the connection form/ = (W i

k ,cd) in P. Notice that pi 
is never reducible (i.e., cd#O). 

(B) Consider the reduction P (M,A (n))-Q(M,O(n)).The 
subbundle Q exists if and only if the associated bundle 
P 10(n) admits a global section, that is, a field of symmetric 
(n X n) matrices and of I-forms globally defined over M. The 
condition adh fEfholds, wheref = R n Ell B, B being the 
linear space of symmetric matrices. Denoting by (pik ,pi) the 
connection form on P, tt ik = i*(pik), tt i = i*(P') and setting if;ii 
= tt (ijl, w ii = tt!iil, the G M CSE are 

i*(R !iiI) = n ij + if;ik A if;kj' (3.1) 

i*(R WI) = Dif;ij=e ij, (3.2) 

i*(R i) = DJ-Li + if;ik AJ-Lk = e i + if;i k AJ-Lk. (3.3) 

To clarify the geometrical meaning of Eqs. (3.1)-(3.3), let us 
restrict ourselves to linear connections (i.e., nongeneralized 
affine connections), making the choice J-Li = u/,o./ being an 
orthonormal basis ofthe cotangent space (orthonormal with 
respect to 1]ij = diag( -, + , +, + ). The fields Ti = i*(R i) 
became the usual torsion 2-forms and, via the metricity of 
Wi), we have D 1]ij = 2if;ij; the generalized 2-forms (e ii,e k) 
are the covariant derivatives of the couple (if;ij,w k

). Clearly, p 
is never reducible to tt, but, whenever if;'i vanishes (i.e., is 
metric), p is reducible to a connection r in the bundle 
Q' = Q '(M, R nXO(n)). The system (3. 1)-(3.3) is nothing but 
the resolution of a linear connection into its associated "clas
sical torsion field" Ti and "no-metricity forms" D1]ij' If we 
introduce the Riemannian connection if;ij' and define Nii 
= flij - if;ij' a simple calculation yields Ti = N'k A w\ if;ij 
= Q (ijl, where Q Ii = Qk ij A w\ Qkij being the no-metricity 
tensor explicitly given by 

Qijk = ~ir(Vjgrk + Vkgrj - Vrgjk ). 

(C) Consider the reduction P (V4, A (4) )_Q (V4, sot 3)). 
Theorem 1, in this case, gives a simple, very compact, for
malization of the theory of physical frame of reference in 
general relativity.4 In this example we have 

g=a(4), h=so(3), f=R 4 E1lB(4)$L, 

where L is the homogeneous space SO (3, I )lSO( 3), that is, 
from a physical point of view, the Lobacewsky velocity 
space. In order to construct the reduction P-Q we need: 

(i) a field of symmetric matrices, 
(ii) a basis Wi of the cotangent space, 
(iii) a field of velocity ,.1,0' 

globally well defined over V 4. The field ,.1,0 will be tangent to a 
congruence r whose lines (timelike in this example) are the 
world lines of physical observers.s In general, the GMCSE 
are quite cumbersome and not particulary enlightening; on 
the contrary, considering a metric, nongeneralized affine 
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connection, setting p = (Pij,pk) and w = i*(p), 
_ i k 

W - (w j,W ), we have 

i*(R 1''''1) = n ILV + aIL A a", (3.4) 

i*(R (OV
I) = Dav, a, tt,.·· = 1,2,3, (3.5) 

i*(R ") = DuI' - aIL A aO, (3.6) 

i*(R 0) = Dwo - aIL A wIL, (3.7) 

where, in terms of the tetrad (,.1,0' A,,) and of the dual base 
(WO, w a), we have set a'" = wO". Here the metric tensor is '11" ., I) 

and the fundamental form is <1> = 1] ijWi ® wi. Let us recall the 
following4

: 

Definition 3.1: A linear connection V over V 4 is said 
adapted to r if: 

(i) V is a linear connection, 
(ii)VAo=O, 
(iii) (Vv)'" = V(if), vET( V4) if v = (VO, if). 
Now we can state: 
Theorem 3.1: The connection forms wij realize the most 

general connection adapted to r. 
Proof: It is an easy matter to verify that w is adapted to 

r. To show the generality of w, notice that the existence of Q 
provides a field ,.1,0 and, through the metric, the form 
WO = - <1> (,.1,0)' On the contrary, there is no unique way of 
choosing the fields w a

, every choice of which yields a "spa
tial soldering form". The observation that a I' does not de
pend on the form uI', the use ofEqs. (3.6)-(3.7) and the well
known 'theorem stating that a metric connection can be 
uniquely determined by its "classical torsion field" i*(R i) 
completes the proof. Q.E.D. 

The field DuI' is related in a very simple way to the 
"classical spatial and temporal torsion fields"e'", S. We 
leave the reader to verify the following: 

e,L = (DuI'IAv AAa )WV AQa, 

S = (DwILIA" AAo)w V Aw'". 

Let us introduce the first order objects associated with r: 
C = .'1~ Ao (d') acceleration, 

n = - 2dwo - 2w A C spatial vortex tensor, 

K = .Y Ao (<1> ) + 2w0C spatial deformation tensor of the 
congruence r. 
Finally we have: 

Theorem 3.2: Let p be the Riemannian connection 
(R I = 0); then e = 0, S = - n,a" = !(K'''' - nILV)w" 
+ C"WO. 

The proof is straightforward using Eq. (3.6) and the 
definition of ii, K, C. The connection formp realizes for w" 
the Fermi-Walker transport law, that is, the wa are absolute
ly nonrotating. 

IV. AN EXAMPLE AND RELATED PROBLEMS IN THE 
SUPER FIBER BUNDLE 

Finally we check our results in a nonclassical applica
tion. Consider the McDowell-Mansouri gauge theory ofsu
pergravity; doing so, we have to study a fiber bundle with a 
graded structural group, namely, OSP (1,4). Obviously, we 
have to generalize our theorems to include in the formalism 
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anticommuting vectors in the algebra of the structural 
group. It is not easy to perform such a generalization in a 
rigorous way; on the other hand, it is possible to write down 
the GMCSE in a formal manner, insofar as they involve es
sentially only the graded Lie algebra of the group. In other 
words, the actual geometrical problem is the description of 
the graded manifold of the fiber; although some important 
results have been obtained (see among others, Ref. 6), the 
whole problem is still a matter of discussion (see Ref. 7 and 
the references therein). 

However, bypassing these problems, we take into ac
count a principal graded fiber bundle P = P (V 4, asp (1,4)) 
and its reduced subbundle Q = Q (V4, SL (2C)). TheGMCSE 

i*(R ij) = Ii i) - (J/ I\wl - !ici)kstUksY5I\t, 

j*(R i) = Du/ - vtt 1\ t, 
i*(R ) = Dt + !lli/I\ Yit 

are, directly, the equations obtained in Ref. 2, by means of 
which the expansion of the Lagrangian density 
L = R ij I\R kSCijk, + RY51\R gives (via a Wigner-Inonu 
contraction of asp (1, 4) the Lagrangian of supergravity. 
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Notice that the necessary (and sufficient) condition for the 
existence of Q now yields the global existence of a field 
asp (1, 4)/SL(2C), that is, a field (a/,t). This point, together 
with theorem 1, ensures that t is a spinorial tensor form well 
defined over V 4 that can be used as a basis for the tangent 
superspace. 

IA. Trautman, Symp. Math. 12. (Bologna. 1973) 
's. W. McDowell and F. Mansouri, Phys. Rew. Lett. 38,739 (1977). 
's. Kobayashi and K. Nomizu, Foundations of Differential Geometry 
(Interscience, New York, 1969). Vol. I. 

'E. Massa, Gen. ReI. Grav. 5, 555, 573. 715 (1976). 
'We wish to point out that these requests are not satisfied by a generic 
space-time manifold M; in particular condition (i) and (ii) [allowing the 
reduction P(V', A (4))~Q(V', SO(3,1))] are satisfied by a paracompact 
orientable M. On the other hand, condition (iii) (allowing the reduction 
from Q • to Q) is satisfied if the Euler class eM of M is vanishing; in other 
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reduction. 
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The expli~i~ form ~or the infinitesimal operators and the (finite) matrix elements with respect to an 
SO(n I basIs ~s obtamed for the representations of the most degenerate series of the group SL(n,R ), 
and for the Irreducible unitary representations ofthe group SU(n) with highest weight (M,O •...• O). 

PACS numbers: 02.20.Qs 

1. INTRODUCTION 

In this article explicit expressions are derived for the 
infinitesimal operators. and for thefinite matrix elements of 
the group GL(n,R ) for the case of its most degenerate series 
representations. and for the group U(n). for its unitary irre
ducible representations with highest weight (M,O, ... ,O) with 
respect to an SO(n) basis. As a consequence the correspond
ing representations are obtained also for the groups SL(n,R ) 
and SU(n). 

The groups SL(n.R) and SU(n), and their SO(n) sub
group. have found wide applications in physics. For exam
ple, applications of the group SU(n). making use of the SO(n) 
subgroup. are found both in the nuclear shell model' and in 
the atomic shell model. 2 The group-subgroups of these mod
els which are relevant to the present article are SU(2) + 1) 
---+SO(2) + 1) and SU(2l + 1)-SO(2l + 1). with) represent
ing the total angular momentum and I the orbital angular 
momentum for single particles (nucleons. electrons). An
other type of application is found in the harmonic oscillator 
model of nuclear forces where the group-subgroup relation 
U(3n)-0(3n) is of relevance. with n representing the num
ber of nucleons. 3 The case for n = 1 corresponds to the fa
miliar Elliott model.4 More recently the interacting boson 
model of the nucleus has been developed,5 based upon the 
quadrupole excitations of the liquid drop model by Bohr and 
Mottelson.6 Adding to the five d-boson excitations an s-bo
son, the following (complete) symmetry chain has recently 
been investigated?: 

U(Y7~31 

V(3) 

This provides three examples ofU(n)-O(n) group-sub
group relationships. The six bosons transform according to 
the defining representation ofU(6). and according to the (re
ducible) representation of 0(3) with I = 2.0 (I is the orbital 
angular momentum). Still another example is provided by a 
group theoretical formulation of band theory in solid state 
physics.8 If n denotes the number of (equidistant) levels 
which are to be taken into account then, after a Bogoliubov 

"On leave from Physics Department, Southern Illinois UniVersity, Carbon
dale, I\Iinois 62901. 

transformation. the quasi particles transform according to 
the group 0(4n + 1). And again. in the symmetry chain that 
leads from 0(4n + 1) to the physically relevant 0(3) sub
group. the U(n)-O(n) group-subgroup relation appears. Fi
nally. the group-subgroup relationship SL(3.R )-SO(3) has 
found applications in the theory of nuclear rotational 
bands,9 in the quantum theory of general relativity. 10 and in 
particle physics. II A detailed analysis of SU(3)_0(3) has 
been given in Ref. 12. The representations of the groups 
SL(3.R ) and SL(n.R ) have been discussed in Refs. 13 and 14. 
respectively. 

In order to make use of symmetry considerations. it is 
essential to know. in explicit form. the infinitesimal opera
tors of the group, as well as the representation matrix ele
ments for the group elements themselves (which represent 
finite transformations). Different physical problems require 
in general different types of basis with respect to which the 
representations are to be determined. In Refs. 15 and 16 (see 
also Ref. 17) a method'has been developed by means of which 
the infinitesimal operators and the finite matrix elements can 
be obtained for the compact semisimple Lie groups with re
spect to different choices of basis by making use ofthe princi
pal nonunitary series representations. The possibilities that 
are admitted by this method are listed in Table I of Ref. 15a. 
In the following this method is used to determine the infini
tesimal operators and the tinite matrix elements for the re
presentations of the group SU(n) [and SL(n,R )] in an SO(n) 
basis. 

2. REPRESENTATIONS OF THE MOST DEGENERATE 
SERIES OF THE GROUP SL(n,R) 

In the first part of this article we restrict our attention to 
the special linear group SL(n.R ). The general linear group 
GL(n.R ) will be considered later on. 

The group SL(n.R ) has a maximal compact subgroup 
which is isomorphic to SO(n). Let G = ANK be an Iwasawa 
decomposition ofSL(n,R ).18 We shall consider the represen

. tations of the most degenerate series of SL(n.R ). They are 
induced by the representations of the maximal parabolic 
subgroup P e. which can be represented as 

(1 ) 

where the symbols A and N are the same as in the Iwasawa 
decomposition. For a description of the subgroups 
Ae.Ne.Me and Me(K I. we refer to Ref. 18 or 17. The 
I wasawa decomposition and the decomposition( 1) can be 
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chosen in such a manner that: 
(a) A is represented by the subgroup [of SL(n,R )] that 

consists of all diagonal matrices with positive (real) elements. 
(b) N is represented by the subgroup of all upper trian

gular matrices (with all matrix elements equal to 1 along the 
main diagonal). 

(c) The group Ae is of the form Ae = exp(ta) with a a 
diagonal matrix of the form 

. (-1 -I -I) dlag --,--, ... ,--,1. 
n-I n-I n-I 

(2) 

(d) Me(K) is represented by the subgroup 
SO(n - 1) rill Z2 (Z2 a cyclic group of order 2) and consists of 
the matrices 

diag(O(n - 1), ± 1) 

with the condition that the determinant is equal to l. 
(e) The subgroup Me consists of the matrices 

diag(GL(n - I,R), ± 1) 

with determinant equal to I. 

(3) 

(4) 

In the following it will be more convenient to consider 
representations ofSL(n,R ) that are induced from representa
tions of the subgroup Pm rather than from the subgroup P e' 

The subgroup Pm differes from P e insofar as the subgroups 
of matrices given by Eqs. (3) and (4) are replaced by the sub
groups SO(n - 1) and SL(n - I,R ), respectively (this 
amounts to disregarding the subgroup Z2 in Me(K) and in 
Me]· The subgroup Pm then has the decomposition 

Pm =AN·SO(n - 1) = AeNe·SL(n - I,R). 

The representations of SL(n,R ) that are induced from the 
representations of Pm decompose into a direct sum of repre
sentations that are induced from representations of P e' The 
precise nature of this decomposition can be obtained by con
sidering the representation spaces. 

We consider representations of SL(n,R ) that are in
duced from one-dimensional representations of Pm ; 

hnm-exp[A. (logh)], hEAe,nEN'e,mESL(n - I,R). 
(5) 

Here A. is a linear form on the Lie algebra ae of the Lie group 
A e' Since ae is one-dimensional the linear form A. is defined 
by one number. The representation 1rJ.. ofSL(n,R ) which is 
induced by this representation of Pm can be realized on the 
Hilbert space L ~ (K ), K = SO(n), of square integrable func
tions (with respect to an invariant measure on K) that satisfy 
the condition 

f(mk) =f(k), mESO(n - 1), kESO(n). (6) 

The action of the operators 1r). (g) that represents the group 
element g on functions fEL ~ (K) is gi ven by 

7T" (gJf(k ) = exp [A (logh )] f(kg), (7) 

where hEAe and kgEK are defined in the following manner: 
kg is defined by the Iwasawa decomposition 
kg = h 'nkg, h' EA, nEAT; the element h ' is uniquely decom
posed into a product hh " with hEAe [this is the h ofEq. (7)] 
and with h "EA (8) [the group A is a direct product of its 
subgroups Ae and A (8)]. For details see Ref. 18. 
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3. INFINITESIMAL OPERATORS FOR THE 
REPRESENTATIONS OF THE MOST DEGENERATE 
SERIES OF SL(n,R) 

In order to evaluate the infinitesimal operators for the 
representations 1r)., Lemma 5.2 of Ref. 17 will be used (see 
also Ref. 15a). This lemma will be stated below. 

Let g denote the Lie algebra ofSL(n,R ). The commuta
tive subalgebra ae defines the system of restricted roots for 
the pair (g,ae ) (see Ref. 18). Since ae is one-dimensional, 
there exists only one simple restricted root. Let B (',) be a 
Cartan-Killing form and 8 a Cartan involution. Then 
(x,y> = - cB (x,8y), c > 0 and fixed, is a scalar product on g. 
Let 9 = f + p be a Cartan decomposition of g. The adjoint 
representation of G = SL(n,R ) in 9 will be denoted by Ad. 
Now Lemma 5.2 of Ref. 17 can be formulated as follows: 

Lemma: The infinitesimal operators d7T,,(Y), YEl>c(l>c 
the complexification ofl», of the representation 7T). act upon 
the infinitely differentiable functions of L ~ (K) in the 
manner 

d7T).(YJf(k) 

= «(Adk )Y,H)A (HJf(k) - «(Adk )Y,p)f(k) 

+ HQ,«(Adk )Y,h) V(k), (8) 

where His a normalized element of ae , h is an element of ae 
such that a(k ) = 1 [a is a simple restricted root of the pair 
(g,aa)], Q is identical to the operator QI offormula (5) of Ref. 
15a, p is half the sum of the positive restricted roots of the 
pair (g,ael (including multiple roots), and [.,.] denotes the 
commutator. 

For the space L 6 (K ) an orthonormal basis is chosen in 
the following way. According to the Peter-Weyl theorem, 
the space L 2(K) has a basis which consists of all the matrix 
elements of all nonequivalent irreducible representations of 
the group K =SO(n). The elements of L ~ (K ) satisfy the addi
tional property given by Eq. (6). Thus a basis for the space 
L 2( K ) can be chosen which consists of all the matrix elements 
which are left invariant with respect to SO(n - I). The irre
ducible representation ofSO(n) with highest weight 

will be denoted by Dm ==[m] .Into the space of this represen
tation we introduce two different orthonormal basis: the 
Gel'fand-Zetlin basis and another arbitrary, but fixed, orth
onormal basis. The elements of this latter basis will be denot
ed by I}; >. The Gel'fand-ZetIin basis element that corre
sponds to the Gel'fand-ZetIin pattern 

o o 
o o 

(9) .. 
o 

where the first row is a highest weight of a representation Dm 
ofSO(n), will be denoted by In) [i.e., the vector In ) is invar
iant with respect to the subgroup SO(n - 1)]. It is obvious 
that a representationDm has an SO(n - I)-invariant vector 
if and only if its highest weight is of the form (m I n ,0, ... ,0). 
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Now we consider the matrix elements of the form 

(dim[m ])1!2(flIDm (k )1~)=(dim[m])1/2D ;;,l: (k), 

kESO(n),m = (mln'O,,,.,O). (10) 

The set of all such functions, for all [m] and~, constitutes an 
orthonormal basis for L ~ (K). The Gel'fand-Zetlin pattern, 
Eq. (9), and thus the vector Ifl), is determined by the repre
sentation [m]. The basis functions ofEq. (10) will henceforth 
be denoted by I m,~), where m denotes the integer m In ofEq, 
(9), The restriction of 1T,\ onto K acts on L ~ (K ) according to 
1T,\ (kol!(k ) = f(kko), Therefore, 1T,\ IK does not change the val
ue of m in Im,~), The irreducible representations [m] of 
K =SO(n) are contained in 1T,\ not more than once, More
over, 1T A I K contains all irreducible representations of SO(n) 
with highest weight [m] = (mln'O,,,.,O), and only these, 

Now we use formula (8) in order to derive an explicit 
expression for the infinitesimal operators d1T,\ (Y) in the basis 
I m,.I ). The derivation is similar to the one given in Ref. ISa 
for the representations of the groups U(p,q). Therefore, we 
omit here the details. 

The Cartan involution e in g is given as e (X) = - X T. 

Therefore, 

(X,Y) = TrXyT, (11) 

where T denotes a transposition. Then the matrix 

1 [n ~ I ] 
H= [( 1)]112 L ei/-(n-1)enn 

n n - j= I 
(12) 

is a normalized element in ae . Here eij is a matrix with ma
trix elements (e'j ls, = D'SDjt. The simple restricted root a of 
the pair (g,ae ) is given by 

a[enn - (1/n)(e\l + ... + enn )] = 1. (13) 

Hence the h of the lemma is given by 

h= [(n-1)1n]enn -(1/n)(ell+ .. ·+en~l.n~I)' (14) 

The formulaa(h ') = (ha,h '), h 'Eae , defines the correspon
dence between a and the element ha Eae . It is easily found 
that 

n-j+l{ 
2 0 

2 

~'-kJ ~ k{ 

j = 1,2,,,.,n, k = O,l,,,.j, 

Since, for bEso(n), one has 

(adb )Iii = (adb )ei;. 

(adb)h = [(n - l)1n](adb )enn , 

0 

0 
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0 

0 

(21) 

(22) 

o 

ha = enn - [1/(n - l)](el\ + ... + en ~ I,n ~ 1)' 

It is also easy to verify that 

(Adk )Y,H)A (H) = (Adk )Y,h )A (ha) 

and 

(IS) 

(16) 

«(Adk )Y,p) = ~(p + 2q)(a,a) «(Adk )Y,h), (17) 

where p is the multiplicity of the root a and q the multiplicity 
of the root 2a. In our case p = n - 1, q = O. Since we consid
er the degenerate series of representations, the chain (2) of 
subgroups of Ref. lSa reduces to 

SO(n) =K=K1:JK2==SO(n - 1). 

Moreover, the chain of subgroups (3) of Ref. lSa re
duces to the same two subgroups, i.e" there are no subgroups 
between SO(n - 1) and SO(n). This information is utilized to 
define the operator Q [see Eq. (S) of Ref. lSa]. The operator Q 
acts upon the state Im,~) as 

Q Im,~) = q(m)lm,~), (18) 

According to Eq. (16)-(18) it follows that 

d1T'\(Y)lm,~) 

= I (A,a) - [(n - 1)/2](a,a) + HQ - q(mllJ 

X(Adk)Y,h )Im,~). (19) 

The expression «(Adk )Y,h ) Im,~) is evaluated as fol
lows. For the elements YEfl we take the basis elements of fl. 
The space fl forms the carrier space for an irreducible repre
sentation of the subalgebra so(n) with respect to the action 
adb, bEso(n). We choose in fl a Gel'fand-Zetlin basis (i.e., a 
basis such that the representation is given by the Gel'fand
Zetlin formulas). The space fl is the carrier space of the irre
ducible representation ofso(n) with highest weight (2,0, ... ,0) 
and the Gel'fand-Zetlin basis coincides with 

Iij = eij + eji , i <j, 

f = e - ~(~ e H
), i = 2,3, ... ,n. 

II II ~ JJ 
n J= 1 

The correspondence with the Gel'fand-Zetlin patterns is 
then 

o 

o 
o 

(20) 
o 

o 

it follows that 

(Adk)Iii,h) = [(n-1)ln]«(Adk)eii ,enn ), (23) 

«(Adk )Isj,h ) = [(n - l)1n ]«(Adk )Isj,enn ), s <j. (24) 
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Since (Adk )Iv,enn ) is the matrix element D ie~;).(l"1 (k) of the 
representation {2} with highest weight (2,0, ... ,0) we have, 
due to Eq. (10) [here (enn ) and (Is)) denote the vectors that 
correspond to the appropriate Gel'fand-Zetlin pattern of 
Eq. (20)]: 

«(Adk )Is),enn ) Im,I,) 
= (dim [m ])1/2D 1;"~).\I,)(k)D ;;.1: (k) 

= I (dim[m]!dim[m'])Jl2([m']n;{21,(enn )l[m'],n > 
m',1:' 

X ([m' ],I,' I [m ],I,; PI ,(Is) l) 1m' ,I.'), (25) 

where < ... ;.+ .. ) and <-+ .. ; ... ) are Clebsch-Gordon coeffi
cients (CGc) for SO(n). The first CGc is taken for the Gel
'fand-Zetlin basis, the second CGc for the basis Im,I,), 
which may differ from the Gel'fand-Zetlin basis. The sum
mation in Eq. (25) is over all vectors Im',I,') for which the 
second CGc is not equal to zero. 

Because of the properties ofthe CGc the tensor product 
[m,O, ... ,O] ® {2 J in Eq. (25) decomposes into a direct sum of 
irreducible representations: 

[m,O, ... ,O] ® (2j = [m + 2,0, ... ,0] EB (m - 2,0, ... ,0] 
EB [m,2,0, ... ,0] EB [m + 1,1,0, ... ,0] EB [m - 1,1,0, ... ,0] 
EB [m,O, ... ,O]. (26) 

I 

This decomposition is valid as it stands for m>2. For m < 2 
the terms that do not satisfy the dominant weight condition 
m 1n >m2n ) ... must be deleted. 

In the restriction 1T';.ISO(n) only representations ofSO(n) 
occur which have highest weights (m,O, ... ,O). Thus in Eq. (26) 
it is only the representations [m + 2,0, ... ,0], [m - 2,0, ... ,0], 
and [m,O, ... ,O) that are of relevance and thus the values of m' 
in Eq. (25) are restricted to m' = m + 2, m - 2, m. Now Eq. 
(19) is considered. The number (.-\"a) .-\, (h,,) will be denot
ed by a. Then the following relation holds: 

[(n - 1)/2} (a,a) = [(n - 1)/2] (ha"h,,) = n12. (27) 

The decomposition given by Eq. (25) is now applied to 
«(Adk )Y,h )/m,I,). Theoperator[Q - q(m)J/2, acting from 
the left on the sum in Eq. (25), yields the number 
[q(m') - q(m)]/2. This number is evaluated for m' = m ± 2 
(either directly, or by utilizing the considerations given in 
Sec. 4ofRef. ISa). The formula for the action of the infinites
imal operators d1T';. (Is)) of the representation 1T'). ofSL(n,R ) in 
an SO(n) basis is then obtained as 

n-I (dim[m) )112 " d1T,dI'j)lm,I,) = --(0' + m) . I([m],[J;(2J,(enn )1 [m + 2],[J )([m + 2],I, I [m],I,;(2j,(I,))) 1m + 2,I, ) 
n dtm[m + 2) 1:' 

n - I ( dim(m] )1/2 + --(0' - m - n + 2) . I ([m],fl;( 2J,(enn ) I [m - 2],fl) ([m - 2],I,'1 [m],I,;(2 j,(Is))) 1m - 2,I,') 
n dtm[m - 2] :I' 

n - I( n) + -- 0' - - 2:([m},fl;{2!.(enn )j(m],f} ) «(m],l:'j[m],I,;{2).(ls)lm,l:'). 
n 2 :I' 

(28) 

This formula expresses the infinitesimal operators with the 
help ofCGc of the group SO(n) for the tensor product 
[m,O, ... ,O] ® [2,0, ... ,0). These CGc will be evaluated for var
ious types of basis in another article. 

The infinitesimal operators d1T;. (Isj) change the number 
m by ± 2, or they leave m unchanged. Thus they leave in
variant the subspace that is spanned by the vectors Im,I,) 
with m odd and the subspace that is spanned by the vectores 
Im,~) for which m is even. On these subspaces representa
tions of SL(n,R ) are realized that are induced by the one
dimensional representation of the subgroup P e' These are, 
for the case of even m the representation 1T' (7+ of SL(n,R ), 
induced from the representation 

hnm~exp['-\' (logh)J, hEAe , nENe , mEMe' (29) 

of P e, and for the case of odd m the representation 1T;; of 
SL(n,R ), induced from the representation 

hnm'z-.exp['-\' (logh )]b(z), 
hEAe, nENe , m'ESL(n - I,R), zEZ2, (30) 

of P e' Here bIz) is a nontrivial representation of Z2 [i.e., 
c5(z) # 1, for z#e, the identity], and 0' = A (h a ). 

4. THE STRUCTURE OF THE REPRESENTATIONS 
+ -

7Tu , 7Tu 

The mUltiplicity of the irreducible representations of 
the subgroup SO(n)in 1T'; and 1T;; does not exceed 1. More-
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over, the explicit form for the infinitesimal operators 
d1T' ,,± (Y), YEj), is known. Thus it is possible to determine the 
subset of irreducible representations from among the set of 
representations 1T / , 1T ,,- ,0' a complex number, and to investi
gate the structure of the reducible representations 1T ,,+ ,1T' ,,- . 
The procedure to be followed is completely analogous to the 
one which was followed in Ref. 17 for the case of the groups 
U(n, I) and SOo(n, I). Thus we list here merely the theorems 
without giving proofs. It will be easy for the reader to obtain 
the proofs by following the proofs given in Ref. 17. 

Theorem 1: The representation 1T,,+ is completely irre
ducible if and only if 0'#0, - 2, - 4, - 6,. .. and 
0'# n,n + 2,n + 4,. ... The representation 1T' ,,' is completely 
irreducible if and only if 0'=/= - I, - 3, - 5,,,, and 
a#n + I,n + 3,n + 5,. ... 

Theorem 2: If a = p, p = 0, - 2, - 4, .. " then 1T;: ===1T/ 
contains two completely irreducible representations of 
SL(n,R ); a finite-dimensional representation D .. p with high
est weight ( - p,O, ... ,O) and an infinite-dimensional represen
tation, denoted by D d_ p + 2' The representation 1T'p+ is not 
completely reducible (i.e., it is indecomposable) and the fin
ite-dimensional representation is realized on the invariant 
subspace. Under restriction to the subgroup SO(n) the finite
dimensional representation D _ p decomposes into a direct 
sum ofSO(n) irreducible representations with highest 
weights (q,O, ... ,O) q = 0,2,4, ... , - p. The representation 
D d_ P + 2 decomposes into a direct sum of SO{n) irreducible 
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representations with highest weights (q,a, ... ,a), 
q = - p + 2, - P + 4, - P + 6,.· .. If (7 = p', 
p' = n,n + 2,n + 4, .. ·, then the representation 1T/ is inde
composable and contains two completely irreducible repre
sentations of SL(n,R ), namely the finite-dimensional repre
sentation Dp ' _ n with highest weight (p' - n,O, ... ,O) and the 
infinite-dimensional representation D :' _ n + 2' which is real
ized on the invariant subspace. Thus the representations 1T/ 

and 1T,~_ p' P = a, - 2, - 4, .. ·, contains the same completely 
irreducible representations of SL(n,R \. 

Theorem 3: If (7 = p,p = - 1, - 3, - 5, .. ·, then the re-

presentation 1T;; = 1T; is indecomposable and contains two 
completely irreducible representations ofSL(n,R ): the finite
dimensional representation D _ p with highest weight 
( - p,a, ... ,O) and the infinite-dimensional representation 
D d_ P + 2' The representation D _ p decomposes into a direct 
sum of SO(n) irreducible representations with highest 
weights (q,O, ... ,O) q = 1,3,5, ... , - p and D "- p + 2 decomposes 
into a direct sum of SO(n) irreducible representations with 
highest weights (q,a, ... ,a), 
q = - p + 2, - P + 4, - P + 6,.··. The representation D _ p 

is realized on the invariant subspace. If (7 = p', 
p' = n + l,n + 3,n + 5,.··. Then the representation 1T j is in
decomposable and contains the same completely irreducible 
representations of SL(n,R ) as 1T ~-_ p', but now the infinite
dimensional representation is realized on the invariant 

subspace. 
The representations 1T;~ + n/2' i = ( - 1) liZ and r a real 

number, form the principal most degenerate unitary series of 
representations of SL(n,R ). 

5. INFINITESIMAL OPERATORS FOR THE UNITARY 
REPRESENTATIONS OF THE GROUP SU(n) IN AN SO(n) 
BASIS 

Consider the finite-dimensional representations of 
SL(n,R ) which are contained in the reducible representations 
1T,: (see Sec. 4). The Lie algebra of SL(n,R ) has the Cartan 
decomposition 

g = f + \.1, f = so(n). 

The corresponding compact Lie algebra su(n) [the Lie alge
I 

bra of the group SU(n)] has then the Cartan decomposition 

g = f + (_I)1/2lJ. (31 ) 

Hence, by multiplying the infinitesimal operators YEp ofthe 
finite dimensional representations ofSL(n,R) by ( _ 1)1/2, 
one obtains the infinitesmial operators 
X = (- 1) t I2YE( - 1) 1/2:\.1 for the finite-dimensional repre
sentations ofSU(n). Thus Eq. (28) gives, after multiplication 
by (- 1)112,for (7 = a, - 1, - 2, - 3, .. ·, the infinitesimal op
erators l,; = ( - 1)1/21v for the finite-dimensional representa
tions ofSU(n) with highest weights ( - (7,o, ... ,a) in an SO(n) 
basis. These infinitesimal operators do, however, not satisfy 

the unitary condition 1 ~ = - l'j' In order to obtain infini
tesimal operators which satisfy the unitarity condition, it is 
necessary to introduce a new basis. The new basis elements 
1m,!')' are defined, for the finite-dimensional representa
tions with highest weights ( - (7,0, ... ,0), (7 even, by 

with 

1m,!') = (A,~ )tI2Im,!,'), 

1m .. 2112 n - (7 + 2j 
A 0+ = 1, A,~ = I . ' 

j= 0 (7 + 2) 

(32) 

(33) 

and for the finite-dimensional representations with highest 
weights ( - (7,0, ... ,0), (7 odd, by 

1m,!') = (A.,; )1/2Im,!')', (34) 

with 

.._ 1m - W2 n - (7 + 2j + 1 
A () = 1, Am = II .' 

j~O (7+2}+1 
(35) 

Note that the expressions (33) and (35) are the matrix ele
ments of the intertwining operators for the representations 
1T;} and 1Tn±_ a (see Refs. 16 and 17). For the representations 
1T;; + n/2 of the principal most degenerate unitary series an 
analogous introduction of a new basis will also lead to repre
sentations by unitary matrices (i.e., to skew-Hermitian in
finitesimaloperators). 

In the new basis 1m,!')', introduced by Eqs. (32)-(35), 
the following expression is obtained for the infinitesimal op
erators l,j of the finite dimensional SU(n) representations 
with highest weights (M,a, ... ,O)in an SO(n) basis, 

l<} 1m,!,)' = n - 1\ _ [(M _ m)(M + m + n)] I/Z( . dim[m] )1/2 I ([m],il;\2 ),(enn)1 [m + 2],il) 
n dlm[m + 2] l:' 

( 
dim[m] )1/2 

X ([m + 2],!,'1 [m ],!';\2 ),(l<)) 1m + 2,!")' + [(M - m + 2)(M + m + n - 2)] 1/2 --=-. ...:.....!:~
dlm[m - 2] 

X2:([m],il;[2),(enn )l[m - 2],il )([m - 2],!"I[m]'!';\2J,(I,j)lm - 2,!")' 
l:' 

- ( - 1)1/2(M + .!:.)I < [m ],il; [2l ,(enn)1 (m],il ) < [m ],!"I [m ],!';l2 L(l,j) Im,!")'l· 
2 l:' 

(36) 

The matrices l'i in the basis 1m,!')' satisfy the unitary condi

tion J: = - l'j' 

6. MATRIX ELEMENTS FOR THE REPRESENTATIONS 
OF THE PRINCIPAL MOST DEGENERATE SERIES OF 
GL(n,R) IN AN SO(n) BASIS 

It will be more convenient to consider in this section the 
group GL(n,R ) rather than the group SL(n,R). The group 
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GL(n,R ) is isomorphic to the direct product of the group 
SL(n,R ) and the group of all real numbers, excluding zero, 
with ordinary multiplication as group operation. The con
nected component of this group of real numbers will be de
noted by Ro. The group GL(n,R) consists of two disjoint 
pieces, with detg > 0 and detg < 0. Here we consider only the 
connected subgroup ofGL(n,R), and in what follows 
GL(n,R ), will denote the connected subgroup. The Iwasawa 
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decomposition for GL(n,R ) is of the form G =A 'NK, where 
A I = ARQ • [A is a component of the Iwasawa decomposition 
of SL(n,R ) and N,K are the same as for the group SL(n,R ).] 

We consider the space L ~ (K ), which was introduced in Sec. 
2, and induce on it a representation ofGL(n,R ) from the one
dimensional representation of the subgroup P = A 'N 
·SO(n - 1)=RoPm==RoAeNe·SL(n - I,R ).ThegroupRo 
can be identified with the subgroup of G L(n,R ) that consists 
of the diagonal matrices 

diag(s,s, ... ,s) s > O. (37) 

The subgroup A e consists of the diagonal matrices 

diag(t,t, ... ,t,t - (n - I)), t> O. (38) 

It follows from Eqs. (37), (38) that the subgroup RoAe can be 
represented as a product A IAz, where A I consists of the 
matrices 

diag(s,s, ... ,s,I), s>O, (39) 
and A 2 consists of the matrices 

diag(l,I, ... ,I,t), t>O. (40) 

We consider the one-dimensional representation of the 
groupP= RoAeNe·SL(n -1) =A\A2Ne·SL(n -1,R )giv
en by 

h ,h2nm-+expl}.t(logh2)]' 

(41) 

The linear form J.l on the Lie algebra Qz of A2 is defined 
by one number. We denote this number also by J.l in view of 
the fact that expLu(logh 2)] = t u, with t representing the ele
ment h2 as given by Eq. (40). The operators of the representa
tion of G L(n,R ) that is induced by the representation of the 
group P, Eq. (41), on the space L ~ (K) is given by the formula 

7ru (g)f(k) = exp[J.l(logh 2)V(kg ). (42) 

where h2 and kg are defined in the following manner: The 
e1ementsgofG =A 'NK =A IA 2NKcan be uniquely decom
posed into a product of elements of A l.Az,N, and K. Thus we 
have the unique decomposition kg = h,hznkg, hlEA 1, 

hzEAz, nEN, kgE/(. The elements h2 and kg ofEq. (42) are 
uniquely defined by this decomposition. 

By decomposing the group GL(n,R) into the direct 
product SL(n,R ) ® Ro, it is easy to see that the representation 
11'1" ofGL(n,R ) decomposes into the product of the represen
tations 11' -I' of SL(n,R ) [see Eq. (7)] and a one-dimensional 
representation of Ro. This fact will be needed in what 
follows. 

In order to obtain the matrix elements of the represen
tation 11'1' of G L( n,R ) in the SO(n ) basis, an orthonormal basis 
has to be introduced into L ~ (K). In this basis the matrix 
elements 

(43) 

need to be evaluated, where!l(k ).!2(k) are orthonormal basis 
elements of L ~(K land dk is an invariant measure on SO(n). 
We proceed as follows: The group elementsgeGL(n,R) can 
be decomposed into a product 

g = k 'hk, k,k 'eSO(n), hEA '==ARo. (44) 
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The matrix elements for the representations of SO(n) with 
highest weight (m,O, ... ,O) in the Gel'fand-Zetlin basis are 
known. 19 [The expression for the matrix elements as given in 
Ref. 19 contains an integral. However, the matrix elements 
for the representations of the group SOo(n, I) in the Gel'fand
ZetIin basis, given in Ref. 20, can be utilized to obtain the 
matrix elements for the representations of the group 
SO(n + 1). For details see Ref. 16.] Thus we actually need to 
evaluate merely the matrix elements for the operators 11'1" (h ), 
hEA '. According to Eq. (44) the matrix elements for the oper
ators 11'1" (g) can be represented as a finite sum of products of 
matrix elements for the operators 11'1" (h ) and of matrix ele
ments for irreducible representations of SO(n). 

Since 

we have to evaluate matrix elements forthe operators 11'1" (a,), 
where 

a, =diag(I,I, ... ,I,t), t>O. (46) 

The matrix elements of the operator 11'1" (a;), where 

a; = diag(I,I, ... ,I,t,I, ... ,l), (47) 

are obtained from the matrix elements of the operator 11'1" (a, ) 
and the matrix elements of the operators 7r1" (r) 11'1" (r-'), 
where rand r- I are elements ofSO(n) that affect a permuta
tion of the matrix element t of a, along the diagonal [analo
gous to Eq. (45)]. Thus the matrix elements for the operator 
11'1" (a,) need to be evaluated, where a, is of the form ofEq. 
(46). 

According to Eq. (6) the functions of L ~(K) can be con
sidered as functions on the sphere S n - I = SO(n - 1) 
\ SO(n). In order to introduce a parametrization on S n - I, 
we consider the parametrization of the elements g of SO(n) 
with the help of the decomposition 

g = k 'gn," _ I (edgn _ I,N _ 2 (eZ)·"g21(en _ I)' (48) 

where k 'ESO(n - 1) and gjJ _ I (e) is a rotation in the plane 
Ijj - 1) about an angle e (see Chap. 1 of Ref. 19). Then el , 

ez,· .. ,fJ n _ 1 provide a parametrization on S n - I. The func
tions of L 6 (K ) can thus be considered as functions 
!({}I,{}2""'{}n _ I ). Now we define the action of 11'1' (a,) on these 
functions. We have 

gn,n - I ({}I)gn - I.n - Z ({}Z)· .. g2'({}n _ I )a, 
= g".n -I ({}da,gn_ I.n - 2 ({}2) .. ·g21({}n _ I)' (49) 

Since 

(
cose - Sine)(l 
sin{) cos{} 0 

= (~' ~)(~ 
with 

0) = (c~se 
t sm{) 
X)(COS{} , 
1 sin{} I 

- [Sine) 
tcos{} 

- Sin8'). 
cos8' 

(50) 

( 
1_tZ )1/2 A. = (sin28 + t 2COS2{) )II2 = t 1 + ~sin2{} , 

sinO' = Ii - Isin{}, cosO' = A. -, teosO, 

it follows that 
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(53) 

Thus the generalized spherical functions [see, for example, 
Eq. (1.8) of Ref. 20]can be taken as an orthonormal basis for 
L6(K), 

n-l 
v =N rrCmj+IJ-11/2( B ) 
.1. (m",m" \ .... ,rn:d n m

J
-+ t-mJ cos n-j 

j~ 2 

Xsinm'Bn _jexp( - im2Bn _ I)' (54) 

In this result the C: (cosB ) are Gegenbauer polynomials and 
N n is a normalization factor: 

N
n 

= (217r l /2ntf r(m
j 
+ j-l )2m,+V-2J12 

j= 2 2 

( 
[mj+ I + U - l)!2]T(mj+ I - mj + 1))112. 

(55) 
1TT(mj+l +mj +j-l) 

The functions Yare the matrix elements ofEq. (10) for which 
2: is a Gel'fand-Zetlin pattern which corresponds to the re
presentations ofSO(n) with highest weight (mn,O, ... ,O). The 
number m k corresponds to the (n - k + l)th row of the pat
tern ~. 

According to Eq. (44) the matrix elements of the opera
tors 1T,• (a, ) are given by the integrals 

(Y M(BI,B2,···,Bn ._ I ),1T,Ja,) Y M' (B 1,B2,···,B n _ I)) 

= ( dfln Y M(B 1,B2,· .. ,Bn _ I) 
JSI! 1 

[t (1 + 1 ~/ 2 sin2BJ/2r 

X Y M' (B ; ,B2,· •• Bn._ I ). (56) 
where the integration is over an invariant measure on 
S n - I, B; is defined by Eq. (52), and M denotes the set of 
indices (mn ,mn _ 1 , ... ,mzl, The integration in Eq. (56) sepa
rates for the variables B1.B2 •• ... Bn _ I' The integration over 
e2 ,B." ... ,8n _ I leads to a product of Kronecker deltas 
8 ,8 , .. ·8" Utilizing standard consider-

,n" I,m" 1 m" 2,m" 2 ,n!,m2 

at ions. it can be shown that the matrix element given by Eq. 
(56) does not depend on m" _ 2 ..... m 2. Therefore, we denote 
this matrix element by d ;~".m;"m" ,((). It is equal to 

d l', (t)=im" ,+"-31T - 1[T(m n_
1 

+ n-2)]2 
In".m"_'",, 1 2 

X [( m" + n ~ 2)( m~ + n ~ 2) r2 

( 
(mn - m n._ I )!(m;, - mn _ I )! )1/2 

X (m" + m" _ I + n - 3)!(m;, + m" _ I + n - 3)! 

X ("del (sin" - 2e l Hsine l r" , 
J() 

xC m" ,+ In - 21!2(cose )(sine '(" , 
m" - m" , 1 [ (I 1 _ (2 )1/2]1' 

xC m" ,+ In - 21!2(COSe ') t 1 + ---sin2e . 
m;, - mIl , 1 t 2 1 

(57) 

We denote the expression preceeding the integral sign by N. 
Then 

d ~~".m;"mll 1 (1 ) 

= Nt I! - m" ,(7Tdel (sine ,)2m" ,+"' 2 

Jo 
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( 1 
1 - t 2 • 261)11' - m". ,)/2 

X + --2-sm 1 
t 

xC m" ,+ In -. 21/2(COSe )(C m;, ,+ In - 21!2(COSe ' ). (58) 
m" - mIl I t mIl - m

tr 
I 1 

For C; there exists the expansion (Ref. 21) 

C;(cose) 
1 [p121 (- l)mT(A +p _ m)2P - 2m _ 

= -- L cosP 2me, 
T(A)m~o m!(p-2m)! 

(59) 

where the expression W!2] denotes the integer part of p/2. 
Subsituting this expansion for C; into Eq. (58), and taking 
into account the expressions (51) and (52) for sine; and 
cosB ;, it follows that (to simplify the notation we replace 
mn,m~,mn __ 1 by m,m'.mJ! 

dJ.1 , (t)= 4N (I' m, 

m.m ,m, [T(m
l 
+ (n - 2)/2)f 

X Urn -f,)12l1lm ' I,)l21 ( - l)k + k'T(m + (n - 2)/2 - k) 

k = 0 k' = 0 k !k '!(m - m 1 - 2k )! r (m' + (n _ 2)/2 _ k ')2m + ",,' - 21m, + k + k'i 

X--~--~--~----~-------------
(m'-m , -2k')! 

X i1T de (sine f m , + n - 2(cose t + m' - 2m, - 2k- 2k' 

( 
1 - t 2. )1J.1 - m' +- 2k ')/2 

X 1 + __ ,_sm2g 
(-

(60) 

For the evaluation of the integral we make use offormula 
3.681 (1) of Ref. 22, According to this formula one has. for 
even s 

(1T (sine )'(cose r de 
Jo (1 + ksin2e)P 

= B ( r + 1 s + 1) F ( r + 1 r + s + 2. _ k ). 
2 • 2 2 I p. 2' 2 ' 

(61) 
Thus 

d~,m'.m, (t) 
[1m - m,)l2111Im' - m,)l21 

= t I' - m, L L N (k,k ') 
k=O k'=O 

XB(m,+ n~l, m+;'+1 -m,-k-k') 

X ,F ( - f-l + m' k ' n - 1 _m __ +_m_' _+_n_ 
, I - .m l + -~. 
- 2 2 2 

_ k _ k '. (2 - 1) (62) 
, ( 2 ' 

where 
4N( _ l)k + k'21n +m' 2(m, + k f k'i 

N (k.k ') = ------'---'--------
k!k 'lIm - m l - 2k )!(m' - m l - 2k ')! 

X TIm + (n - 2)/2 - k )T{m' + In.,- 2)12 - k '),(63) 
[T(m, + (n - 2)12)1-

7. MATRIX ELEMENTS FOR THE UNITARY 
REPRESENTATIONS OF THE GROUPS Urn) IN AN SO(n) 
BASIS 

Equation (62) gives the matrix elements ofthe operators 
1T J.1± (at) for the representations of the most degenerate uni
taryseries(forf-l = iT - n/2.TER ) of the group GL(n.R )[and 
consequently also for SL(n.R )]. as wen as the matrix ele
ments for the representations 1T,f. where f-l is an arbitrary 
complex number. We use these matrix elements to derive the 
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corresponding matrix elements for the unitary irreducible 
representations ofU(n) in an SO(n) basis. In the following we 
use the method which was suggested in Ref. 16 (see also Ref. 
17). 

It was pointed out at the begin of Sec. 6 that the repre
sentations 1T1'± of GL(n,R ) differ from the representations 
1T'!:.1' ofSL(n,R), introduced in Sec. 2, by a multiplier only. 
This multiplier forms a one-dimensional representation of 
Ro. Therefore, the results which were obtained for SL(n,R ) 
transfer trivially to GL(n,R ). 

We consider the matrix elements given by Eqs. (62) and 
(63) for those representations 1T1'± that contain finite-dimen
sional subrepresentations ofGL(n,R ), i.e., fortherepresenta
tions 1T1~ with,u = 0,1,2,.··. For the values 
m,m' = ,u,,u - 2,,u - 4, ... 0 (or 1) Eqs. (62) and (63) give the 
matrix elements for finite-dimensional representations of 
GL(n,R ). AnalyticcontinuationofttoeW

, O.;;;t? < 21T, leads to 
matrix elements for finite-dimensional representations of 
U(n). The representation matrices which are obtained are, 
however, not unitary. 

In order to obtain unitary representations the basis 
Im,L) has to be changed to the basis Im,L)' by means of the 
formulas (32)-(35). The matrix elements for the representa
tions ofU(n) with highest weight (M,O, ... ,O) are then given in 
the new basis by 

d M
. (e HJ

) = [A ±/A:±;] I12d M 
• (ew ) (64) m,m ,m, m m m,m ,m, ' 

where the A ~ are defined by Eqs. (33) and (35), with 
0' = - M, and the matrix elements d ;:'m'.m, (ei~) are defined 
by Eqs. (62) and (63). If Mis even, then the plus sign applies in 
Eq. (64); if M is odd, then the minus sign is to be taken. 

It was mentioned before that in the basis Im,L)' the 
representations 1T1'± of the principal most degenerate unitary 
series also leads to unitary matrices. In the basis Im,L)' the 
matrix elements for these representations are given by 

d l ' . (t)=[A±/A±.] I12d l ' . (t) m,m ,m, m m m,m ,m, ' 

where theA ~ are given by Eqs. (33) and (35) with,u = - 0'. 

Formula (64) gives the representation matrix elements 
for the elements ofU(n) which correspond to the subgroup 

diag(I,I, ... ,I,eiU
). (65) 

These matrix elements, together with the representation ma
trix elements for the group elements of SO(n), define com
pletely the matrix elements for all the operators ofU(n) with 
respect to an SO(n) basis, in precisely the same way as was the 
case for the group GL(n,R ) 

Formula (64) expresses the matrix elements for the re
presentations ofU(n) by means of hyper geometric functions. 
Since now M is an integer, the hypergeometric function re
duces to a finite series [in Eq. (62) 
( -,u + m')l2 - k (- M + m')/2 - k is now a negative 
integer]. According to 8.962 (1) of Ref. 22 this finite hyper
geometric series can be represented by means of Jacobi 
polynomials. 
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Finally let us mention that Eq. (62) contains a B func
tion, B (x,y), with nonnegative half-integer arguments. This 
function can be represented as a ratio of products offactor
ials. According to 8.335 (1) of Ref. 22 one has 

rip +!) = (1T)11222p-lr(2p)/r(p), (66) 

where p is a nonnegative integer. Thus 

B (x,y) = r(x)r(y)/r(x + y). 

Equation (66) can also be utilized in the expression for 
N(k,k ') given by Eq. (63), in which r functions with half
integer arguments can appear. 
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The direct product of several copies of a representation decomposes into a direct sum of 
components each with a definite permutation symmetry. The decomposition of any of the 
components into a direct sum of irreducible representations is the computation of a plethysm. The 
decomposition is often simply effected when the dimension and its analogs, the second and fourth 
indices of the plethysm, are known. The paper contains formulas for second and fourth indices of 
many specific plethysms as well as a prescription for the general plethysm. The same formula is 
valid for the plethysm based on any finite representation of any semisimple Lie algebra. 
Applications are illustrated by decomposition of all plethysms of degree 3 based on the Eg 
representation of dimension 3875; all fourth-degree Eg-scalars are enumerated. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

The second and fourth indices 1 of representations of 
semisimple Lie groups, together with the dimension, have 
proven useful in finding branching rules and Clebsch-Gor
dan series 1.2 and for other, physical, applications. 3 They can 
be just as useful in the computation of plethysms; a plethysm 
is the component, whose permutation symmetry is pre
scribed by a Young tableau, of the direct product of n copies 
of some representation R. When no ambiguity can arise, we 
may use the terms plethysm and Young tableau 
interchangeably. 

The (2n) index I ~n) of a representation (.-1, ) is defined as 
the sum of the (2n)th powers of the magnitudes of the weights 
of (.-1, ); in particular, I~) is the dimension of (.-1, ). 

The purpose of this paper is to provide formulas for the 
second and fourth indices of plethysms of any symmetry. An 
attractive property of these formulas is that they depend on 
the representation R only through its dimension and the 
rank of the group it represents; only one formula is needed 
for each Young tableau and each index. Weare doing for the 
second and fourth indices what was done recently4 for the 
SU (n) triangle anomaly number. 

Section II contains explicit expressions for I (21 and I (41 of 
some Young tableaux. In Sec. III two general relations are 
established [Eqs. (29) and (30)] and a general derivation of 1121 

and 1141 formulas is described. Section IV contains an exam
ple of application: determination of all scalars of degree 4 
and computation of all three-box plethysms based on the Ex 
representation of dimension 3875. Some observations are 
made in Sec. V 

II. RESULTS FOR PARTICULAR YOUNG TABLEAUX 

In this section we present formulas for second and 
fourth indices of plethysms corresponding to some particu-

"Work supported in part by the Natural Science and Engineering Research 
Council of Canada and by the Ministere de I'Education du Quebec. 

lar Young tableaux. In the following section we explain how 
they are obtained, and how one could find the analogous 
formulas for any plethysm. 

We denote the representation R on which the plethysm 
is based by a single box D. The representation R may be 
reducible or irreducible. Its dimension is I~) = N, its second 
index isI~) and its fourth index isI~). Formulas for I~) and 
I~) for representations of semisimple groups are given in 
Ref. 1; numerical tables are found in Ref. 5. A plethysm is 
denoted by its Young tableau. 

For Young tableaux of up to four boxes the formulas 
are 

Il~ = (N - 2)I~), 

IChJ =! (N + 2)(N + 3)I~), 
liEF = (N 2 

- 3)I~), 

1 12 ) =! (N - 2)(N - 3)I~), 

o 
I~=! (N + 2)(N + 3)(N + 4)I~), 
I[f:u=! (N + 2)(N 2 + N - 4)I~), 

lEEr *N(N - 2)(N + 2)/~), 

1 12 ) =! (N - 2)(N 2 
- N - 4)I~), 

~ 

(I) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

1~=!(N-2)(N-3)(N-4)/~1, (10) 

Itb = (N + 8)/~) + [(l + 2)111/~)2, (11) la = (N - 8)I~) + [(l + 2)1l]I~)2, (12) 

IIlJ= ~ (N 2 + 17N + 54)I~1 + (N + 4)[(1 + 2)/11/~12, 
(13] 
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111P= (N 2 - 27)l~1 + 2N [(I + 2)/1 JIgl2, (14) 

I§ = ! (N 2 - 17N + 54)I~1 + (N - 4)[(1 + 2)/11IgI2, (15) 

ItIT:o = k (N + 4)(N 2 + 23N + 96)I~1 
+! (N + 4)(N + 5)[(/ + 2)1/ ]Ig)2, 

I~ =! (N + 8)(N 2 + N - 16)I~1 

+ ! (3N 2 + 9N - 8)[(/ + 2)11 JIgl2
, 1m = !N(N2 - 58)l~1 + (N 2 + 2)[(1 + 2)111Igl2, 

IW = ! (N - 8)(N 2 - N - 16)l~1 

+! (3N 2 - 9N - 8)[(/ + 2)1/ JIgl2, 

I~~ liN - 411N' - 23N + 96)I~ 

+! (N - 4)(N - 5)[(/ + 2)// ]Ig12, 

Here / is the rank of the group represented by O. 

(16) 

(17) 

(18) 

(19) 

(20) 

For Young tableaux with one row or one column, or for 
one row or one column with a single additional box, the 
second index is 

112/ = (N + k )! 1121 
gk~ (N + 1)!(k - I)! 0' 

112/ _ (N - 2)! 1121 
~t -(N - k - l)!(k - I)! 0' 

k. 
/::jJ-

(21) 

(22) 

112) (N+k-I)! [N2+N(k-2)-k-lJI 121 
Ef ]]- (N + I)!(k - I)! 0' 

~k-) 
(23) 

/121 _ (N - 2)! [N 2 _ N(k _ 2) _ k - IJI§I. 
I=P l' - (N - k )!(k - I)! 

k 
/::j J, 

(24) 

Equating the indices of both sides of the identity 

provides a useful check on our results. The coefficients on 
the right are the dimensions of the representations of the 
group S4 corresponding to the Young tableaux. The left side 
is known from the general formula for indices of a direct 
product[Eqs.( 15) and (16) of Ref. 1 or Eqs. (2.10) and (2.11) of 
Ref. 5]. Clearly a similar identity holds for a product of any 
number of representations O. 

III. GENERAL PROPERTIES AND DERIVATIONS 

In this section we indicate how the formulas of Sec. II 
are found and show how to derive a formula for the second 
and fourth indices of any plethysm. 

2771 J. Math. Phys., Vol. 22, No. 12, December 1981 

As a simple illustrative example we first derive (1), (2), 
(11), and (12), the second and fourth indices of two-box pleth
ysms.· The Young tableaux rn and B refer to the symmetric 
and antisymmetric components of the direct product of two 
copies of the representation denoted by O. Clearly 

O®O= OJ~B. (25) 

Also, we may write symbolically 

rn = 02u8. (26) 

where 0 2 denotes the weights of 0 with the scale doubled. 
Equation (26) states the obvious fact that the weights ofrn 
are just those contained in 8 together with those of 0 2

• Simi
larly (25) has a straightforward interpretation in terms of 
weights. Since the indices are defined in terms of weights. 
Eqs. (25) and (26) lead immediately to relations for indices. 
According to Ref. 1. 

(27) 

and 

I~I"D = 2NI~1 + [2(1 + 2)111Ig)2. (28) 

Obviously. Igl = 41 g) and I~\ = 16I~). Equations (1), (2), 
(11), and (12) follow. 

We now wish to demonstrate the general relations 

I~~ = PYT(N)Igl. (29) 

I~~ = QYT(N)I~) + [(I + 2)/1 ]RYT(N)Ig) 2, (30) 

where YT is an arbitrary Young tableau of p boxes. N is the 
dimension of the representation 0 and I is the rank of the 
group. PYT(N). QYT(N). and RyT(N) are polynomials in 
N ofdegreesp - l,p - 1. andp - 2 respectively; they do not 
depend on the group or on 0 except through the dimension 
N. 

The proof of (29) coincides with the proof ofEq. (3.1) of 
Ref. 4, and is not repeated here. The proof of (30) is also very 
similar. The difference is that the formula 

( 

k ) k 1
(4

) 
1 (4

) - TIN '" -<, 1-<,) .. ··· .. 1-<.) -. j.~-N 
J= I 1= I -<, 

( 

k ) k 1 (2 )1 12
) 

+ IIN-<. I ~ 
h = I i>j= I N"N-< , I 

(31) 

for the fourth index of the direct product of k representations 
(A.I ).···.(A. k ) replaces formula (A5). Ref. 4. 

The polynomials P YT (N) for conjugate Young tableaux 
(obtained from each other by transposition) are simply relat
ed. One is obtained from the other by changing the sign of 
terms whose degree in N differs by an odd integer from the 
degree of the polynomial. The same statement holds for 
QYT (N ) and R YT (N ). The proof follows from the expressions 
for Young tableaux in terms of symmetric polynomials. 6 

A pedestrian. but practical. derivation of I~~ (or I~~) 
for a Young tableau of p boxes starts with Eq. (29) [or (30)). 
SincePYT (N )containsp [Qn (N) and R YT (N ) together con
tain 2p - 1] undetermined coefficients, it suffices to choose p 
(or 2p - 1) representations of the same or different groups 
with different N. Each N must be at least as great as the 
number of rows in YT. Substitution of the values of N, 
IgI, I~~ [or N, IgI, Itt}, I~~] yields linear equations 
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which determine the unknown coefficients. The values of the 
plethysms YT, given by branching rules for SU(N) to the 
group in question, are provided by the tables of Ref. 5. 

The derivation of Eq. (22) begins with the identity 
k 

[Ik]=k- I I (-l)j-I[l k -
j]®Oj, (32) 

j=1 

where [1 k ] stands for the weights of the plethysm whose 
Young tableau consists of a single column oflength k, and 0 i 
stands for the weights of 0 with scale increased by a factorj. 
The proof of (22) proceeds by induction. Take the second 
index of both sides of(32), using Eq. (15) of Ref. 1 to evaluate 
the index of the direct product, and assuming the validity of 
(22) forj <k. The result is 

k 

IW'l=k-IIgl L (-l)j-I 
j=1 

( 
N (N - 2)! fN!) 

X + . 
(N - k + j - 1 )!(k - j - I)! (N - k + j)!(k - j)! 

(33) 

The sum on the right side of (33) may be evaluated by notic
ing that it is a polynomial in N of degree k - 1 whose leading 
term is kN k - I/(k - I)! and which vanishes for 
N = 2,3, ... ,k. It is therefore k (N - 2)!/(k - 1)!(N - k - I)! 
and (22) is established. 

Since the plethysm in (21) is conjugate to that in (22), the 
right side of (21) is obtained from that of (22) by changing the 
sign of alternate powers of N. Eq. (24) is obtained from the 
relation [1 k ] ® 0 = [1 k + I] 6> [2,1 k - I], where [2, I k - I J is 
the Young tableau of (24). 

We complete this section by describing a procedure for 
deriving J ~~ and J ~~ for any Young tableau. For complete
ness we also give NYT(N)=J~~(N), the dimension of the 

plethysm YT. It is just the dimension of the representation 
(At,··.,AN_ I) ofSU(N), whereA k is the number of columns 
oflength k in YT: 

(34) 

where 
N-I 

lj= LAk+N-j, l<,.j<,.N-l, 
k =j (35) 

IN=O, I~=N-i, 1 <,.i<,.N. 

Proceeding as in the case of Eq. (29), one verifies that 
NYT = LyT(N)·N, whereLYT isapolynomialofdegreep - 1 
and N is the dimension of D. 

In order to find J ~~, it suffices to know it for one repre
sentation for each value of N. But J ~~ is known when we 
take for 0 the defining N-dimensional representation of 
SU(N). It is given I by 

(36) 

Since J ~~ in (30) contains two polynomials QYT (N) and 
R YT (N), it suffices to know J ~~ for two representations, each 
of dimension N, but with different values of the ratio 
(I + 2)Jgl 2 [lI~lt-l. We may take for 0 (i) the defining re
presentation ofSU(N) and (ii) the direct sum of the defining 
and scalar representations of SU(N - 1). The left sides of (30) 
for the two cases are obtained from the formula I for J ~I of an 
SU(N) irreducible representation (A )== (A I"" AN _ I ), 

J~4J = F(l) - F(/O), (37) 

where 

F(l -N ( (I) (N-l)(N
2

+7N+6) + [ (/)- (I) (I)] N
2
+7N-6 

) - ,( P4 N2(N + I)(N + 2)(N + 3) P4 PI P3 N 2(N + I)(N + 2) 

1 
+ {3[P2(lW - 3[PI(lWp2(/) + [PI(lW - P4(/)} N 2 

+ ([P2(lW + PI(l)P3(l) - P4(1) - [PI(lWp2(/)} N~;: 1) - i ~ (I; -Ij )2) 
Here Pa (I) in (38) is the symmetric function of degree a defined by? 

N 

II(1-zld- 1 = Da(lV'· 
i= 1 a 

(38) 

(39) 

For case (i), 0 the defining representation ofSU(N), the left side of(30) is given by Eq. (37), with A; equal to the number of 
columns ofYT with length i. On the right side of (30), we put I = N - 1, J~J = (N - If/N, and J~I = N - l. 

For case (ii), 0 the direct sum of the defining and scalar representations ofSU(N - 1), the plethysm YT is a direct sum of 
the SU(N - I) [not UrN - 1)] representations contained in the reduction of the SU(N) representation (A ) of the preceding 
paragraph. Their fourth indices are obtained from (37). On the right side of (30), put I = N - 2, I~I = (N - 2)2/(N - 1), and 
IgJ=N-2. 

To illustrate the method, let us take YT = fE ' and rederive Eq. (18). For case (i), Eq. (30) reads 

~ (N - l)(N - 2)(2N2 + SN - 16) 

= Q LTI (N) (N - 1)2 + N + I REB (N)(N _ 1)2. (40) 
W N N-I 

For case (ii)8jcontains the irreducible representations (0 2 0 ... 0), (1 I 0 ... 0), and (20 ... 0) ofSU(N - I). Then Eq. (30) reads 

2772 J. Math. Phys .• Vol. 22. No. 12. December 1981 McKay. Patera. and Sharp 2772 



                                                                                                                                    

N(N-2)(4N 3 _5N 2 _52N+1l0)=Q (N)(N-2)2 +~R (N)(N-2)2. 
3(N - 1) EB N - 1 N - 2 EE (41) 

Solving (40) and (41) for Qrn (N) and R rn (N), we find the polynomials in Eq. (18). 

IV. AN EXAMPLE FROM E8 

As a nontrivial application of the results of Sec. II, we 
construct all plethysms of two and three boxes based on the 
3875-dimensional representation (000000 1 0) of E8 • It 
turns out that with no further work we can enumerate E8 
scalars in all four-box plethysms; this has some physical in
terest, for construction of a Higgs potential in a certain uni
fied field theory8 requires a knowledge offourth-degree sym
metric scalars in the representation (000000 1 0). 

Since the index I (2k I, k = 0,1,2, ... , of a reducible repre
sentation is equal to the sum of the (2k )th indices of the irre
ducible components lour procedure is to search, with the 
help of a computer, for that combination of irreducible re
presentations whose dimensions, and second and fourth in
dices, add to the required values. To simplify our tabulation, 
we refer to the irreducible representations of E8 as 1,2,3, .. · in 
order of increasing dimension. The trivial (scalar) represen
tation is labelled 1, the one of dimension 248 is 2, that of 
dimension 3875 is 3, etc. In case of equal dimensions (e.g., 32, 
33) they are ordered according to increasing second index. 
For explicit values see p. 79 of Ref. 5. 

TABLE I. Multiplicities of irreducible E.-representations in low plethysms 
based on the representation 0 of dimension 3875. The representations are 
numbered in order of increasing dimensions and [121 in case of equal 
dimensions. 

Plethysm 

Representation CD 8 ITO EF § 
1 
2 2 
3 3 3 
4 2 2 
5 1 3 3 
6 4 1 
7 2 5 3 
8 
I) 3 3 

10 1 3 
11 2 2 
12 1 3 2 
13 2 3 2 
14 2 
15 3 2 
17 2 
18 
20 2 
21 
22 
23 
25 
27 
30 
31 
33 
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The relevant plethysms are given in Table I. Each col
umn represents a direct sum of representations contained in 
the corresponding plethysm. By adding the multiplicities in 
the first two columns, one gets the multiplicities of represen
tations in the direct product 3 ® 3. Similarly, the direct prod
uct 3 ® 3 ® 3 is given by the sum of columns 3, 5, plus twice 
column 4. Relevant dimensions and indices oflow plethysms 
are given in Table II, 

From the information in Table I we can deduce the 
number of scalars in each of the five four-box plethysms. 
Denote by SYT the number of scalars in the plethysm YT. 
Since the plethysms CD and B have no irreducible represen
tations in common, the direct product CD ® 8 contains no 

scalars. But CD ® B = EfD at b Hence.5 g-=o= S W 
= O. Since ITIJ contains three copies of the representation 
3. it follows that ITO ® 0 contains three scalars. But 

ITO ®O= DITD at tpJ HenceS ITIIJ= 3. Since~con-

tains one copy of 3, it follows that § ® 0 contains one sca

lar. But § ® 0 = q at W. Hence S ~= 1. Since EFcon-

tains three copies of3, it follows that ~ ® 0 contains three 

scalars. But EF ® 0 = EfD at rn at EF' Hence S m= 3. 

V.COMMENTS 

The main advantage of computing plethysms in the way 
described in the article is in the fact that it is independent of 
the rank or type of the Lie algebra (group) involved. Once the 
dimensions and indices for a plethysm are known, the com
putation is reduced to the same search in a list of dimensions 
and indices of irreducible representations. The example of 
Sec. IV was chosen to illustrate the method because it is the 
largest one we know with physical motivation. 8 

TABLE II. Dimensions, second and fourth indices of the plethysms of the 
example (Sec. IV) and of Table I. The numbers 31,480, and 960 dividing the 
dimension,! 121 and! 14 1, respectively were chosen for convenience [cf. proper
ty (42Ij. 

Dimension/31 [12'/480 [(4'/960 

0 125 25 43 
CIJ 242 250 96 925 354 469 

B 242 125 96 825 353 781 

ITO 313 067 750 187 937 575 1 051 565 911 

EF 625 651 000 375 390 550 2 098 795 714 

§ 312 583 375 187 453 200 I 047 233 286 
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In our particular cases, the search yielded unique solu
tions to our problems. However, it is conceivable that the 
equalities of dimensions, second, and fourth indices allow 
several solutions. It appears that such an ambiguity would 
occur in cases far more complicated than anything of practi
cal interest at present or in the foreseeable future. 

During the course of solving the problem of Sec. IV we 
. I 

where K is given by 

algebra A3 A4 As A6 A7 As Bz B3 B4 Bs B6 B7 Bg 
K 5 5 7 7 7 -- 5 7 -- 11 13 -- 17 

noticed that the irreducible representations of Eg fall into 
three classes characterized by their dimension N (mod 31). 
Turning then to other simple Lie algebras of rank..;; 8 we 
found that all but Ds, Dg, C7 , B4 , B7 , and As have the follow
ing property: 

N = 0, + 1, or - 1 (modK), (42) 

algebra 

K 
C3 C4 Cs C6 C7 Cs D4 Ds D6 D7 Ds Gz F4 E6 E7 E8 

7 7 11 13 -- 17 7 -- 11 7 -- 7 13 13 19 31 

Obviously (42) is trivial for A 1 and Az. Analyzing the relative
ly simple dimension formula for Gz, one finds more specifi
cally, that 

N = 1 (mod 7) for representations (i,i), 0..;;i..;;5 

N = - 1 (mod 7) for representations (i,2 + 3i), 
0..;;i..;;5. 

Here the representation labels are given (mod 7) and in the 
conventions of Ref. S. 

N = 0 (mod 7) for all o~her irreducible representa
tions ofGz. 

Let us point out that a proof of this observation when K 
is a prime would follow from the existence of an element of 
finite order K (in the appropriate Lie group) whose character 
on irreducible representations takes the values 0, 1, - 1 only. 
The existence of an element of order 1 + Coxeter number 
has been proved by Chang9 for all simple Chevalley groups 
over the integers; however, the character values have not 
been established. 

The formulas for indices of plethysms found in previous 
sections remain valid not only if the representation denoted 
by 0 is a direct sum of representations but also ifit is a formal 
difference. It was noticed recentlylO that such differences of 
representations have some interesting properties. Corre
ponding plethysms then contain representations with nega
tive multiplicities. 

Indices of degree 6 and 8 are also of interest. 1 Formulas 
for indices I (6) and I (S) of plethysms may be derived. Their 
applicability is restricted to representations of certain alge
bras only. 1 Namely, ](6) may be used for plethysms of all 
simple Lie algebras except An (n> 1); the index I (S) of pleth
ysms may be used only for A I' G2, F4 , E 6 , E 7 , and E 8 · 
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Our computation for decomposing plethysms of Es 
used the programming language ALGES of David Ford with 
arbitrary length integer facilities on the PDP/II. 
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Irreducible representations of the central extension of 51(2) /\ T 2 
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Using shift operator techniques a classification is given of the irreducible s~ar re~resentations of 
the central extension algebra C (SI(2) AT 2)' It is found to possess two genenc senes of such 
representations, together with an isolated representation which is just the meta~lectic 
representation ofSI(2). This is the only representation it possesses in common with the 
superalgebra Osp(2, 1). 

PACS numbers: 02.20.Rt, 02.20.Sv, 02.1O.Sp 

1. INTRODUCTION 

In a previous paper 1 a classification was given of the 
irreducible star representations of the superalgebra Osp(2, I), 
where the even part satisfied the star (Hermiticity) require
ments of the noncompact SI(2) [or Su(I,I)] algebra. All the 
IR's were found to be dispin, i.e., subduce to precisely two 
IR's ofSL(2), where the two I values [I (l + 1) being the eigen
value of the SI(2) invariant L 2] differ by!. One of these repre
sentations, corresponding to the I values -;l and -!, was 
seen to be a simple example of a metaplectic representation, 
considered in greater generality by Sternberg and Wolf.2 

Here we consider another algebra (in this case a Lie 
algebra) which also possesses the same metaplectic represen
tation among its irreducible representations. This algebra is 
the central extension of the semidirect product algebra 
SI(2) A T2 • We shall give a classification of the irreducible 
star representations of both algebras; it turns out, in fact, 
that SI(2) A Tz possesses only projective star IR's. 

A basis for both SI(2) A T2 and C (SI(2) A T2 ) consists of 
the SI(2) basis [/o'! ± I and the T2 basis [p ± \ I which satisfy 
the commutation relations 

[10'/ + ] = ± I :t ,[ 1+ '!-l = 2/0, 

[lo,P ± \ ] = ±! p ± \ ' [I ± ,p += \ ] = p ± \ ' 

[Pl'P - \] = yI, (1.1) 

where I is the identity operator and y = ° for SI(2) A T2• For 
C (SI(2) A T2 ), y is an arbitrary nonzero number which, with
out loss of generality, can be chosen to be y = i; the reason 
we make this choice rather than the obvious y = 1 is for 
convenience of comparison of the metaplectic representa
tion for this algebra and for Osp(2, I). 

and 

In the above two relations, k is an extra state-labeling param
eter. As we shall see, no I degeneracies occur, and k can be 
defined in terms of the eigenvalue of the invariant of the 
algebra. 

The algebras have one independent SI(2) scalar operator 

Y+ = -(PIP-I/O+P-IPJO+p2_1/+ -pfL) (1.2) 

and a single invariant 

I, = 2yL 2 - Y +; (1.3) 

for SI(2) A T2, Y + is itself an invariant operator. Let R be the 
operator with eigenvalue I, so R (R + 1) = L 2; then the fol
lowing operators, which shift I and the eigenvalue m of 10 by 
+ 1 will be used to classify the IR's of the algebras': - 2' 

0\'\ =p\(lo + R + 1) + P J+, 

o \. - l = - P _ l (10 + R ) + Pll 

(1.4) 

(1.5) 

Throughout this paper we shall be considering IR's for 
which the SI(2) subalgebra satisfies the star conditions 
Ii; = lo'! t± = - 1+= . Had we taken I t± = 1+= ' i.e., the star 
conditions appropriate to a compact SU(2) algebra, then, as 
is well known, it would not be possible to close the [p ± 1 I 
with respect to the star operation. However it is easy to check 
that with the SI(2) star conditions, one may have 
P t± I = bp += I provided, for SI(2) A T2, only that 1 b 12 = 1. For 
C (SI(2) A T2 ) one also needs b 2 = y* /y. Thus whether y = ° 
or y = i one may take b = i, so we look for IR's of both 
algebras satisfying the star conditions 16 = 10 , I t± = - 1+= ' 
and p t± I = ip += I . 

Asaconsequenceofthis,(L 2)t=L 2butY\ = - Y+ 
and I; = - 13' Also, using standard techniques, I., one can 
easily show that 

(0 1/2.1/2)t(2R + I) = - iO - l. - \(2R), 

(0 - \. -If(2R + 1) = - iO 112.1/2(2R + 2). (1.6) 

Thus, when acting on eigenstates Ik; I,m) of L 2 and 10, one 
obtains the relations 

(1.7) 

(1.8) 

j 

2. IRREDUCIBLE REPRESENTATIONS of SI(2) 1\ T2 

For SI(2) 1\ T2, Y = 0, i.e., p + \ mutually commute. In 
this case I, = - Y +, so that Y +1s itself the invariant of the 
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algebra. One may easily check that, when acting on eigen
states of L 2 and 10> 

O . _. 0" (I 1I';.m'l~ i,'j,,= +m+I)Y+, (2.1) 

0)'" ~.m ~ 0 I.m~· ~ = (I + m)Y +. (2.2) 

Suppose that, within an I.R., I has a minimum value L 
i.e., 0 ~--;.,j. -llk;L,m) = 0 for all values ofm within the corre
sponding I.R. of SI(2). Thus also 
o rl_ I,m _\ 0 L-:-~' -Jlk;L,m) = 0 so, by Eq. (2.2), since 
(/, + m + 1) cannot vanish for all m values, Y + = O. Hence 
by Eq. (2.1), 0 iJI~ml+ \ Or~m Ik;L,m) = 0 which, using Eq. 
(1.8), implies that 0 i:~m Ik;L,m) = 0 and L is therefore also 
the maximum I-value for the I.R. and so the only I-value 
within the I.R. Furthermore, since the matrix elements of 
the p ± I are proportional to those of 0 ± I· ± l,p ± I them
selves vanish for all states of the I.R. Thus such an I.R. of 
SI(2) A T2 reduces to just a single I.R. ofSl(2) and contains no 
further structure. Clearly an analogous argument holds if 
the I.R. possesses a maximum I-value, so an I.R. ofSI(2) A T2 
containing more structure than that due to SI(2) alone can 
possess no maximum or minimum I-value, and must corre
spond to a nonzero value of Y +. 

Let Y + Ik;l,m) = ik Ik;l,m), where k is real and nonze
ro. Then substituting from Eqs. (2.1) and (2.2) into Eq. (1.8), 
we obtain 
I (k;l + ~,m + ~IO i:;" Ik;/,m) I" 

= k (21 + 1)(1 + m + 1)(21 + 2) - I, (2.3) 
and 

l<k;l- ~,m - ~IO I.m~· ~lk;l,mW 
= k (21 + 1)(/ + m)(21 + 1)-1. (2.4) 

Suppose first that k > 0; then Eqs. (2.3) and (2.4) show that 
for a star I.R. of SI(2) A T2 we must have, for alII and m 
values within the I.R., (I + 1)-1(2/ + 1)(/ + m + 1);>0 and 
1- 1(2/ + 1)(/ + m);>O. Now if - I <i < -~, the inequalities 
require both (I + m + 1)<0 and (/ + m);>O, which is clearly 
impossible; but since I has no maximum or minimum values 
and therefore takes on an infinity of values differing by inte
gral multiples of~, within an I.R. there must be one value of I 
satisfying - I < I < - !, and hence violating the star condi
tions, unless the range of I actually consists precisely of 0, 
±~, ± 1, ± ~, .... In this case, however, the range of I in-

cludes the values 0 and - 1, for which the matrix elements 
of 0 . " j \ and therefore of the P.t \ themselves, become 
singular. 

Had we chosen k < 0, we should find that an I-value 
between - ~ and 0 would violate the star conditions. Hence 
we conclude that SI(2) A T2 possesses no star 1.R.'s apart 
from those for which the p ± I are identically zero. 

3. IRREDUCIBLE REPRESENTATIONS OF C(SI(2) 1\ T2) 

For C (SI(2) A T2 ) we choose y = i. In this case, there
fore, the invariant is 11 = 2iL 2 - Y +, and the states of the 
1.R.'s may be labelled by the eigenvalues of I" We define the 
label n by 

I1In;l,m) = in(2n + 1)ln;l,m). (3.1) 

The eigenvalue of Y + is then determined in terms of n and I, 
so we need consider Y + no further. 

The shift operators now satisfy 
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o i~l;.;;;~! 0 I:~ = (I + m + I)(Y + + i(1 + 1)/), (3.2) 

o l'~ I,m -10 1:;;,1, -j = (l + m)(Y + - ill). (3.3) 

Using Eq. (3.1) we therefore have 

o i~li.;;; 1+ j 0 j:~ In;l,m) 

= i(1 + m + 1)(/ + n + 1)(2/- 2n + 1)ln;i,m), (3.4) 

01'·\ 0 -J.-lln·lm) -J.m-J I,m " 

= i(1 + m)(/- n)(21 + 2n + 1)ln;i,m). (3.5) 

Comparison of these equations with Eq. (\.8) then yields 

I (l + ~,m + ! I 0 i:~ I/,m) 12 

= (l + m + 1)(/ + n + 1)(2/- 2n + I) 
X(2/+1)(2/+2)-I. (3.6) 

and 

1(1- !,m - !IO I:;;')'" 11/,m) 12 

= (I + m)(/- n)(21 + 2n + 1)(2/ + 1)(2/ )-1 (3.7) 

which give the star conditions to be satisfied by the 1.R.'s, 
namely that for all states of the 1.R., 
(l + m + 1)(1 + n + 1 )(21 - 2n + 1 )(21 + 1)(1 + 1) - I and 
(I + m)(/- n)(21 + 2n + 1)(2/ + 1)(1)-1 must be real and 
non-negative. Furthermore we see from Eqs. (3.4) and (3.5) 
that any minimum or maximum I-values occuring for the 
I.R. of C (SI(2) A T2 ) corresponding to 11 = in(2n + 1) must 
satisfy 1= n or - (n + !) and T = - (n + 1) or (n - 4). Also, 
since the I.R. are labelled by n(2n + 1), which is sy~metric 
about n = -1, rather than by n itself, we may impose with
out loss of generality the restriction n;> - ! for real n. 

The 1.R.'s ofSI(2) are well knowns and summarized in 
the previous paper by the author. I The principal series of 
representations cannot occur since 0 ±~. ± ! acting on a state 
for which I = -! + ip with p real would produce states 
with I = ip or - 1 + ip, which would violate the internal 
SI(2) star conditions. This means that only the supplemen
tary or discrete SI(2) representations can arise, for all of 
which I is real. 

First we consider the possibility that n be complex. The 
reality of n(2n + I) shows that the only possibility is 
n = -! + ib where b is real and nonzero. The star condi
tions (3.6) and (3.7) then become 

(l + m + 1 )(2/2 + 31 + 2b 2 + ~)(21 + 1)(1 + 1) - 1;>0 

and 

(l + m)(2/2 + 1+ 2b 2 + A)(21 + 1)1-1;>0. 

Since I is real and b #- 0, (2/2 + 31 + 2b 2 + ~) and 
(2/2 + 1+ 2b 2 + M are always positive and nonzero, so I can 
have no maximum or minimum value. Hence, unless I is 
half-integral, there must be an I-value inbetween - 1 and 
- !, where the star conditions require the impossible 
1+ m + 1 <0 and I + m;>O. If I is half-integral, then 1=0 
and I = - 1, where the matrix elements of the 0 ± \. ± I be
come singular, would occur. We therefore conclude that no 
star 1.R.'s for which n is complex can exist. 

Now we consider what star 1.R.'s occur for real n. In 
addition to the positivity conditions for the I-shifting opera
tors, we also have the internal SI(2) star conditions that 1+1_ 
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n 

1= -n - 1 

FIG. l{a). The (/,n) plane for n> - i. The diagonal lines I = n - ! and 
1= - n - I represent possible maximum I-values within a star I.R. For the 
shaded regions labelled by A, (/ + m + l»Oand (1- m)<O, whereas in the 
shaded regions labelled by B,Il + m + 1)<0 and (1 - m);;>D. On the bound
ary lines between the regiolls, the sigrt of (/ + m + 1) is arbitrary but oppo
site to the sign of(l- mi· 

B 

8 

n 

I - 1 

I _5/
4 

I )/ 
1- 2 A 
1- 'Y, 
I 
I 

l = -[')-'/2 

FIG. lib). Her(; the diagonal lines I = n and I = - n -1 represent possible 
minimum I-values within a star LR. For the shaded regions labelled by A. 
(/ + m»O, and (/- m + 1)<0, whereas in the shaded regions labelled by B, 
(I + m)~O and (/- m + 1);>0. On the boundary lines between the regions, 
the sign of (/ + m) is arbitrary but opposite to the sign of (1- m + I). 

and 1_1+ have real nonpositive values, i.e. that 
(1- m)(l + m + 1)<;0 and (I + m)(l- m + 1)<;0. Also with
in an LR. ofSl(2) the only possible minimum and maximum 
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m valuesarem = - /or(l + l)andm = / or - (I + 1). The 
classification-of the star I.R. 's of C (SI(2) 1\ T2 } therefore 
amounts to solving the (I,n) and (I,m) inequalities making use 
of the possible maximum and minimum values of I for fixed n 
and of m for fixed l. 

This is achieved with the help of Figs. l(a) and l(b), in 
which the (J,n) plane is divided into regions A and B. In Fig. 
l(a), (/ + n + 1)(21- 2n + 1)(2l + 1)(1 + I)-I is positive in 
region A, negative in region B, and vanishes on the lines 
1= n -! and / = - n - I, which are lines of maximum t. 
Hence in region A, II + m + 1 »0 and (/- m)<;;O and in re
gion B, {I + m + 1)<;;0 and (I - m»O, except on the dividing 
lines between the regions where the sign of (f + m + 1) is 
arbitrary and opposite to that of (/- mi. In Fig. I(b), 
(I - n )(2/ + 2n + 1)(2/ + 1)/ -I is positive in region A, nega
tive in region B, and vanishes on the Jines / = nand 
I = - n - ;, which are lines of minimum t. Thus in region 
A, (/ + m»O and (/- m + 1)<;0 and in region B, (/ + m)<;O 
and (I - m + 1 »0. except on the dividing lines between the 
regions where the sign of (/ + m) is arbitrary and opposite to 
that of (/ - m + 1). 

Now in a BA region, [i.e., a region in the (/,n) plane of 
overlap between a B region of Fig. I (a) and an A region of 
Fig. lib)] we must have both (f + m + 1)<;0 and (l + m»O, 
which is impossible; on the other hand, in an AB region we 
must have for all m values within an SI(2)I.R.: (I + m + 1»0 
and (I + m)<;O, which is also impossible since the star I.R.'s 
ofSl(2) all have an infinite number of m-values differing by 
integral amounts. Hence AB and BA regions are forbidden 
territory for the I values within an I.R. of C (SI12) 1\ Tz) la
belled by n. 

The (I,m) inequalities show that, within an AA region, 
m must have a minimum value, so an 1.R. of C(SI(2) (I. T21 
with I values in an AA region contains only the positive dis
crete type SI(2) I:R.'s, i.e., D +'s. On the other hand, for I 
values in a BB region, only the negative discrete D - I.R. 's of 
SI(2) are permitted. In fact, as we shall see, no I.R.'s contain
ing D -'s can occur. This, essentially, is due to the fact that, 
for fixed n, one cannot have I-values in a BB region without 
of necessity incurring I-values in an AB or BA region, where 
the star conditions are violated, but if I-values occur in an 
AA region, they can stop at the minimum / = n line without 
entering the BA region, or they can stop at the maximum 
1= - n - 1 line without entering the AB region. If n > ;\' 
this is easy to see. First note that ~ = ° or r = - 1 are not 
possible since the matrix elements are singular at these 
points. An I.R. with 1 = n, n + ~,n + I, .. , is obviously possi
ble, and this contains D + 's with m = (1 + I); also an I.R. 
with / = - (n + I), - (n + ~), -In + 2),· .. can occur, and 
this contains D +'s with m = - 1. These I.R.'s are, however, 
equivalent due to the symmetry of L 2 = 1(/ + 1) under 
1---. - (/ + I), and since one conventionally chooses 1;;,0 for 
the LR.'s of the compact SU(2) algebra and / < 0 for those of 
SI(2), we shall choose C (SI(2) 1\ T2 ) I.R.'s, denoted r l , to con
sist of 1= - (n + 1), - In + ~), - In + 2), .. ·D +'s with 
'!!: = -/. These are the "mainstream" LR.'s ofC(SI(2) (I. Tz) 
and, as we shalI see, occur for all values of n, even including 
- !(;n<;1. Clearly, for n > 1, an I.R. with ~ = - n - ~ can-
not occur since such an 1.R. would contain 1 = - n, which is 
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in a BA region; for similar reasons we cannot have an I.R. 
with r = n - !. Thus r, are the only C (SI(2) 1\ T2 ) star I.R.'s 
which occur for n > a. 

If n < 1, the situation becomes more complicated. If 
- ! < n < 0 or 0 < n < 1, in addition to the r, I.R. 's, we also 

now have I.R.'s for which I = - n -~, - n, - n + ~,. .. 
which contain D +'s with m = (/ + 1) and I.R.'s with 
/ = n - ~,n - l,n - k·whichcontainD +'swith'!' = -I. 
These are again equivalent so we get just a single extra class 
ofI.R.'s, r Il with 1= n -!, n - 1, n - ~" .. and,!, = -I. 
For n = - l, r Il also exists but is identical to r, . It might 
appear for - !<n <! that it is possible to get I.R.'s with no 
maximum or minimum I-values, but they are not in fact star 
I.R.'s since the m values for I < - ! states cannot be connect
ed via the p ± 1 to the m values for I> -! stat~s since they do 
not differ by multiples of ~. If n = 0, r, has I = - I, but in 
this case the matrix elements are not singular due to a cancel
lation of the 1-' term with the (I - n) term, so r, is permissi
ble. This is the only star I.R. of C (SI(2) 1\ T2 ) which contains 
an I = - 11.R. ofSI(2). However, for n = 0, rn does not 
occur since the value / = -! cannot occur together with 
I = - 1 due to I = - 1 being itself a maximum I-value. 

If n = !, r, again clearly exists. However r Il does not 
occur since £ = - n - ~ = - ~ and ( = n - ! = -! now 
differ by ~; instead we get the pathological metaplectic repre
sentation r M which is "dispin", containing an / = -~, 

'!' = ~ D + and an 1= - 1, '!' = ! D +. The I.R. with 
I = - i, '!' = ! and I = -!, '!' = ~ also exists but, since 
1(/ + 1) is the same for 1= - ~ and I = - 1, this I.R. is en
tirely equivalent to r M' 

To summarize, the full set of inequivalent I.R.'s of 
C (SI(2) 1\ T 2) consists of the following: 

r,: n:;> - 1; 1= - n - 1, - n -~, - n - 2, ... 
D +'s with m = -I. 

r Il : -!<n<O,O<n<!; I=n-~,n-l,n-~, 
... D + 's with m = - I. 

r M: n =!; 1= - i D + with m = - ~ and 
1= - iD + with'!' = 1· 

~-r~~L-~~~~ n 
-1;4 0 1/4 1/2 3/4 1 5/4 

_1/4 ;" 

FIG. 2. The star I.R. 's of C (SI(2111. T21 together with their SI(21 content are 
depicted in the (I,n) plane. Points on unbroken lines are (I,n) values for T" 

those on the broken lines are (I,n) values for Tn; the circles correspond to 
r M' The I-values contained in an LR. labelled by n are connected vertically. 
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These I.R.'s are depicted in Fig. 2. 
Note that, unlike the case of SI(2) 1\ T2 itself, 

C(SI(2) 1\ T21 does not permit any I.R.'s which reduce to a 
single I.R. of SI(2) with p ± I = 0 since such I.R.'s could not 
satisfy (PI ,P _ \ ] = iI. In particular, C (SI(2) 1\ T2 ) does not 
possess a trivial representation. 

Using Eqs. (3.6) and (3.7) we may now calculate the 
actions of 0 ± \. ± \ on states In; I,m) of an I.R.; with a suit
able choice of relative phases of the states, we obtain 
OHln;l,m) 

= [ (I + m + 1)(1 + n + 1)(2/- 2n + 1)(2/ + 1) ]1/2 
2(1 + 1) 

X In; 1+ !, m + p, 
o -!. - !In;l,m} 

= i[ (I + m)(/- nl(2/2~ 2n + 1)(2/ + 1) ] 1/2 

X In; I - !, m - !). 
From these one obtains 

In-I m} = [ (I + m + 1)(1 + n + 1)(2/- 2n + 1) ]112 
Pj" 2(/+1)(2/+1) 

X In; I + ~, m + ~) 
-i[ (m-l)(/-n)(2/+2n+l)]112 

2/(21 + 1) 
X In; 1- l' m + p, (3.8) 

p_;ln;l,m) 

= [ (m - ! - 1)(1 + n + 1 )(21 - 2n + 1) ] 112 

2(1 + 1)(21 + 1) 

X In; I + ~,m - p 
_ i[ (/ + m)(/- n)(2! + 2n + 1)]112 

2/(21 + 1) 
X In; 1- l' m - !}, 

together with the SI(2) actions 

(3.9) 

1+ln; I,m) = [(m -1)(1 + m + l)]ll2jn; I,m + 1), 
(3.10) 

I_In; I,m) = - [(I + m)(m -1- 1)] If2ln; I,m - 1). 
(3.11) 

Equations (3.8)-(3.11) are valid for all the I.R.'s, except for 
the n = 0 r 1 , where the actions of P ± l on the I = - 1 state 
become, instead of Eqs. (3.8) and (3.9), 

p\IO;-I,m) = -i[(m+ 1)/2]11210; -~,m+~), 
- (3.12) 

P _ \ 10; - I,m) = - iUm - 1)/2J 11210; - ~,m - ~). 
(3.13) 

4. THE METAPLECTIC REPRESENTATION 

r M is the only "dispin"l.R. that C (SI(2) 1\ T2) possesses, 
and the only one it therefore possesses in common with the 
superalgebra Osp(2, 1). I In order to compare r M for the two 
algebras, we give the actions of P + \ and I + explicitly. We 
represent the states by \i; - M +-S) and ij; - !,1 + S ), 
where S = 0,1,2, .... Eqs. (3.8)-(3.11) now become 
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pd~; - M + S) = (2(S + 1)] 1121!; - !,a + (S + 1), 
(4.1) 

p_! 11; - M +S) = [2S + 1]11211; - M +S). (4.2) 

Pll2 11; - H + S) = - i [2S + 1] 112 11; - M + S ). 
(4.3) 

P _! 11; -1.1 + S) = - i[2S] 1121~; - M + (S - I). 
(4.4) 

1+11; - M + S) = [IS + 1)(2S + 3)12]112 

X 11, - M + (S + 1). (4.5) 

I-Ii; - M + S) = - [S(2S + 1)12] 112 

X Ii; - M + (S - 1). (4.6) 

1+ 11; -1.~ + S) = [IS + 1)(2S + 1)12] 1/2 

X 11; - M + (S + 1), (4.7) 

L 11; - 1.1 + S) = - [S(2S - 1)/2]112 
X 11; - 1,1 + (S - 1). (4.8) 

Now for the metaplectic representation. L 2 = -~, 
13 = ii. so using Eq. (1.3). we see that Y + = - ~i. These are 
precisely the values obtained if C (SI(2) 1\ T2) is realized by 

10 = ¥d Idz + 11. 1+ = !iz2, L = !id 2Idz2
, (4.9) 

P! = - iz. P _! = d Idz. 
(4.10) 

[it is easy to check that these satisfy the commutation rela
tions (1.1 I]. Comparing these expressions with those ob-
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tained for the basis elements in the metaplectic representa
tion ofOsp(2.1) [Eqs. (5.9) and (5.10) ofHughes1j, we see that 
the realizations of the metaplectic representations of 
C(SI(2) 1\ T2 ) and Osp(2.1) are connected by 
q ±! = ~e - iTr/4p ± ! ;10 and 1 + have identical realizations for 
both algebras. The star conditions p t± I = ip =F! then corre
spond to qt± I = - q =F!' the star conditions used for 
Osp(2.1). Finally, substituting for the p ± I in terms of q ± I in 
Eqs. (4.1 )-(4.4) yields the actions of q ± I on states of the me
taplectic representation ofOsp(2, 1) as given in Eqs. (5.1)
(5.4) of Hughes, I except for phase factors. The difference in 
phase factors arises because of different conventions used for 
the relative phases of states within I.R.'s ofC(SI(2) 1\ Tz) and 
those of Osp(2, 1). 

In conclusion, we note that had we chosen for the I.R. 's 
of C (SI(2) 1\ T2 ) the star conditions p t± I = - ip +' I' we 
should have obtained a similar classification of I.R. 's, except 
that instead of D +'s only D -'s would occur. 
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4A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton 
U. P., Princeton, N.J., 1957). 
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Non-self-adjoint Zakharov-Shabat operator with a potential of the finite 
asymptotic values. I. Direct spectral and scattering problems 

Naruyoshi Asano and Yusuke Kato 
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The Zakharov and Shabat equation for the scattering problem is studied. The estimates, analytical 
properties, and asymptotic expansions of the Jost solution are presented for a general class of the 
potentials Q (x) not vanishing at infinity. The existence of the similarity transformation is also 
shown. For Q (x) vanishing at infinity, the continuous part of the spectrum doubly degenerates. 
However, non vanishing (finite) asymptotic values of Q (x) dissolve the degeneracy completely. The 
expansion theorem is given in Co 2(R) and for a class of Q (x) we prove that the Zakharov and Shabat 
equation yields a non-self-adjoint spectral operator in the Hilbert space in the sense of Dunford 
and Schwartz. 

PACS numbers: 02.30.Hq, 03.65.Nk, 03.65.Db 

I. INTRODUCTION 
Following the successful application to the Korteweg

de Vries equation, I the inverse scattering method2
,3 was em

ployed to study classes of nonlinear evolution equations. Es
pecially, Zakharov and Shabat4 introduced a system of the 
differential equation 

Vx = - iJ..u3v + Q (x)v, 

Q(x) = (0 
r(x) 

(1.1) 

q(X)) 
a ' 

where A., Q (X)EC and XER and solved the nonlinear Schro
dinger equation. Equation (1.1) was extensively studied by 
Ablowitz, Kaup, Newell, and Segur5 and shown to yield the 
spectral problem relevant to the wide classes of evolution 
equations. We may regard it as an extended form of a one 
dimensional Dirac equation and, in fact, the direct and the 
inverse spectral problems of (1.1) under various conditions 
have been investigated historically as those in quantum me
chanics. Gasymov and Levitan,6 for example, discussed the 
inverse spectral problem of (1. 1 ) on the half-axisO<x < 00 for 
the potentials satisfying the conditions 

r=q, c 
jReqj< , 

(l+x)l+< 

c 
jImqj< , 

(1 +XfH 
where q is the complex conjugate of q and c and € are positive 
constants. Ablowitz et ai, studied (1.1) for the nonsymmetric 
potentials rapidly decreasing at infinity x----+ ± 00. In order 
to obtain the solution of the nonlinear Schrodinger equation 
with the nonvanishing boundary values at infinity, Kawata 
and Inoue 7 considered (1.1) with the potentials not vanishing 
at infinity; q----+q ± ,r----+r ± as x----+ ± 00 under the restriction 
q + r + = q _ r _; here and henceforth ± signs are ordered. 

We examine the direct and inverse spectral problem of 
( 1.1 ) and the present paper deals with the direct spectral and 
scattering problems. It is worthwhile to note that the equa
tion 

Q(X) = (P(X) 
r(x) 

q(X)) 
six) 

( 1.2) 

can be reduced to (1.1) by the transformation 

v----+ eS~dX e~dX) v, e) ----+(eS~ ~ sldx eJ(s ~ PldX) e)·(U) 
Throughout the paper, the asymptotic values of Q for 
x----+ ± 00 are assumed to be constants Q ± (=1= O)Ec' In Sec, 2, 
the properties of the Jost solutions off 1, 1) are studied and the 
correspondence of the functional spaces of the potentials and 
the Jost solutions are presented, The existence of the similar
ity transformation is also proved. In Sec. 3, the results of Sec. 
2 are used to introduce the Green function and we obtain the 
expansion theorems for (1.1) together with the stability of the 
continuous spectrum under the perturbation of the poten
tiaL For Q + = 0 the continuous spectrum degenerates. 
However, it is shown that the asymptotic condition 
q +r + - q _r _EC(eR) dissolves the degeneracy completely. 
It is shown that the convergence of the expansion for the test 
function in C(?(R) is uniform in each finite interval of XER. In 
Sec. 4 we study the scattering matrix for the class of the 
asymptotic values of Q + ,q +r + - q _r _ER, and, in this 
case, investigate the spectral resolution of the operator L in 
the Hilbert space H = ® (L 2(R}f Thus, the Zakharov-Sha
bat system (1.1) yields a non-self-adjoint spectral operator

H 

solvable by means of the Jost solution method. For later use, 
we introduce some notations: 

CF ± (n)={f(x)lfEC, + J~ '" dy(1 + lylfl)lf(Y)1 < oo'XER}, 

n = 0,1,. .. , 

CF'cr (n)={f(x)lfEC, + {~ (1 + lylfl)ldf(Y)1 < oo,XER}, 

n = 0,1,. ... 

The asymptotic valuesf + of/Ix) for X-" ± 00 are defined, if 
and only iff + (x) = fIx) - f + ECF+ (0) in the sense of the 
first definition. The second definition is given for f of bound
ed variation on the entire axis, yER, andfis piecewise differ
entiable,J'( y) existing except on a denumerable set of YER, 
where Idf(y)1 = iffy + 0) - fly - 0)1. We note that if 
jECF'± (n + 1) andj + = 0, thenfECF'+ (n), and if 
JECF ~ (a), then If(x) - f ± 1< + r±+~-idj(Y)I, and that 
S/ oc dy(1 + lylfl)lf(Y)IECF ± (0) 
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and r+ '" (1 + \y\")\df(y)\ECF ± (0) are equivalent to 
fECF: (n + 1) andfECF + '(n + 1), respectively. When 
each component of a matriX F(x) belongs to the class 
CF + (n) or CF + 'in), we write it as F(X)ECF ± (n) or F(x) 
ECF + '(n), respectively. Let v = ! Vi ) and M = ! M ij) be a 
vector and matrix, respectively, then we define a new vector 
and matrix with positive components; 

Ivl = !lvliHlvl, = Iv,I), IMI = IIMlij)(IM\ij = IMijl)· 

It is easy to see that 

\Mv\<\M\\v\, \MNI<\M\\N\,etc., 

where inequalities Ivl < )wl and 1M I < IN I mean 
IVi )<)wi )(Ivlio Iwl) and IMij!<INij\()M \io)N\), 
respectively. 

2. PROPERTIES OF THE JOST SOLUTION 

In the standard form of the spectral problem, (1.1) is 
written in the form 

Lv =AV, (2.1) 

L . a . Q = 1(J~ - - 1(J, . . , ax . (2.2) 

The Jost solutions¢ ±' (x,A,,A, ±) and ¢ ±2(X,A,,A, ± ) of(2.1) 
are the linearly independent solutions specified by the 
boundary conditions 

(
e - iA. . X) ( ° ) 

¢ 1:' - ° ,¢ ± 2 - e'A..x' x~ ± 00, 

where A + = (A 2 - u2 + )'12ER,u 2 + = q + r + EiC. The ma
trix lost solution 4> + (X~,A + ) for -A + ER is-defined by the 
solution of (2.1) satisfying the condition 

4> ± (x,A,,A, ± )~4> ± (O\(X,A,A, ±), x~ ± 00, 

(2.3) 
4> ± (O'(x,A,,A, ± ) = T ± (A,A ± )J (X,A, ± ), 

where 

J(x 1 + ) = (e -iA. j x 0) 
Y" _ ° eiA. + x • 

The vector solutions ¢ ±' and ¢ ± 2 are chosen so as to con
stitute 4> ± in the form 4> ± = (¢ ± , ,¢ ± 2)' Our analysis 
of the Jost solution is based on the integral equation equiv
alent to (2.1) and (2.3), 

cp ± (x,A,,A, ± ) = rp ± (o/(x,A,,A, ± ) + JX dy V ± (x,y,A,,A, ± ) 
too 

X rp ± (y,A,,A, ± ), (2.4) 

where the kernel is given by 

V ± (x,y,A,,A, ± ) = 4> ± (O)(X,A,,A, ± )rp ± (O)(y,A,,A, ± I-I 

XQ± (vI, (2.5) 
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cp ± \O\(X,A,A ± )rp ± (O\(y,A,,A, ± i-I = -:f
± 

(
A ± cosZ ± - iA sinZ ± 

X 'nZ r ± SI ± 

q + sinZ+ ) 

A ± cosZ ± + iA sinZ ± ' 

Z± =A± (x-y). Q ± (Yl = Q (Yl - Q ± ' 

Later we must examine the analytical properties of the 
functions orA, A. +, andA. _. The Riemann surface for the pair 
A. + and A _ generally consists from four sheets R J (J = I-IV) 
according to the signs of (A. 2 _ u2+ ) '12 and (A. 2 _ u2_ ) '12. 

We define the first sheet of R ,R r' such that A. ± -A. as 
)A I~oo on it. An example of R( is shown in Fig. I for the 
special case where both of u + (I u + I > \ u _\ > O,argu + 
< argu _) are on the first quadrant. R( has two branch cuts 
between u + and - u + and it is convenient for later discus
sions to define one of them so as to include the other as a part 
and to be symmetric with respect to the origin A = 0, as 
shown in Fig. 1 by the dotted curves r,r' 
(r = r' + A+ + A_). The curves C" C4 and C2, C3 are the 
loci corresponding to v ± = ImA. ± = 0, respectively, and 
are the parts of the rectangular hyperbolas 517 = Reu ± 1-
mu ± (A = 5 + i17l. Thus, R\ is divided into four regions by 
these curves and branch cuts;R ,(v ± >0,R 2(v + <O,v _ > 0), 
R3(V + > O,V _ < 01, and R4(v ± < 0). Similar curves may be 
drawn for other conditions on u ± . It is clear that, without 
loss of generality, we may assume Reu ± > 0. In Sec. 3 it will 
be shown that the totality of the curves C, constitutes the 
continuous part of the spectrum of(2.1). Each of the remain
ing sheets Rn ,RIll ,Rrv has the same branch cuts r,r' and 
curves C,-C4 and, hence, the same regions R ,-R4 as R r . In 
this paper we study various functions of ! A,A, +,A, _ J exclu
sively on R, and identify the complex A plane to R,. First of 
all, we analyticaly continue the lost solution rp + (X,A,A, + ) of 
(2.1) with its boundary condition (2.3) defined only for-
A ± ER. Let D be the region in Rr where the Jost solution, as 
well as the boundary condition, can be continued. Employ
ing the same notations as before, we have the boundary con
dition for AED, 

RI 

u_._ .... ~14 
/ A+ 

I C, 
,:' (R 1) 

:' Cl 

FIG. I. The tirst Riemann sheet and branch cuts. 
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¢J ± 1 (X,A.,A t )-¢J ± \ (OI(x,A,A. J ) = T £ (A,A. ± ) (e -; , ) 
x~ ± 00 for v+ ~O, (2.6) 

¢J t 2 (x,A.,A ± )-¢J ± 2 (OI(x,A.,A. ± ) = T 1:: (A, A ± ) C;.O+ x), 
x~ ± 00 for v ± ~O. 

They are, if they exist, the single valued functions of A and 
might better be written as ¢J ±j(x,A.,}. ±(A ))as weUas the single 
valued functions ¢J ±j (OI(x'}',A. ± (A ))(AER,). We, however, 
omit variables A,A. ± frequently for brevity. Instead of (2.4), 
we examine the integral equation 

¢J ±j(x) = ¢J ±ll(x) + J: 00 dy V ± (x,y)¢J ±j (j = 1,2), 

(2.7) 

where 

v ± ~O fori = 1, v ± ~O for j = 2 

and V ± (x,y) is given by (2.S) for AER,. Each of(2.7) is equiv
alent to (2.1) with the condition (2.6). 

Lemma 1: Let Q ± ECF ± (0), then ¢J ± I and ¢J ± 2 are 
analytic in the half-plane v ± :sO and v ± ~O of R" respec
tively, and <P ± = (¢J ± I,¢J ± 2) is continuous inA on the curve 
corresponding to v ± = 0 except at A = ± u ± ' + u ± ' 

which corresponds to A ± = O. We have the estimates for 
I 

A± '1O, 

{
1¢J±dX)I} «l+a )(l)t!ilj,(XI{ev

+

X

} {v±~O} 
1¢±2(x)1 ± 1 e-",x ' v± ~O' 

(2.8) 

where a ± and f3 ± are constants depending on A, A ± ' and 
Q±, and 

I ± (x) = + IX dy(lq ± (Y)I + Ii ± (y)J). (2.9) 
too 

Further, let Q ± ECF ± (1), then <P ± is continuous even at 
A = ± u ± ' + u ± and has the continuous first derivative in 
A along the curve v ± (A) = 0(,1, ± #0). 

Proof- Let us introduce ifJ ±j (x) by 

¢J ±j = <P ± (OI(X)U ± (x)ifJ ±j(x), j = 1,2 (2.10) 

where 

(

eli12)jl), 

U+(x)= - 0 

e ± (x,A ± ) = ~ fX dy(q ± r ± (y) + r ± ij ± (y)). 
A ± ± 00 

Then, (2.7) is transformed to the integral equation for ¢ ±j; 

ifJ ±j(x) = (~I)) + fX dy W ± (y)¢ ±j(Y), j = 1,2 
2) ± 00 

(2.11) 

~ () i(U, x - I) + If q± xe - -

o 
(2.12) 

where bij is Kronecker's delta and 

q ± (x,}.,). ± ) = q ± (x) + (A:: ± Y r ± (x), r ± (x,}.,). ± ) = i ± (x) + Ci :±A ± Y q ± (x). 

The integral equation (2.11) is of the Volterra type and the Neumann series for ifJ ±j is given formally as 

ifJ±j(x)= f ifJ±r, 
(2.13) 

"=0 

n> l. 
We show the details of the calculation only for ¢ ± \; 

¢ ± I (2m)(x) = ± dX 1 dx1••• dx2m q ± (xdf ± (x2 ) .. ·q ± (X2m - I)f ± (x2m ) (
A + A )2m (1) IX I'" I"zm , 
u± ° too too ±~ 

(2. 14a) 

Then t/! + I In) exists and the estimates 

1
>/. 12ml(x)I«I)_I_!g (x)1 2ml,(XI, 
'f'±1 0 (2m)! ± 
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1
_/, (2m-l)(x)l.;;; (0) 1 'g (x)12m-leht(XI+2V±X, 
'I' ± 1 1 (2m _ I)! l ± 

hold for v ± SO, where 

g ± (x,A,A ± ) = + I A ~ ~ ± I f: 00 dyllq ± (y,A,A ± )1 + If ± (y,A,A ± )11, 

For Q ± eCF ± (0), we have I ± (x) < 00 for XE[Xo, =+ 00), (xoER ), 

IA+A± I 2 ( g ± .;;; U ± (1 + a ±)I ± (x), a ± = 

and 

I tP ± dx) I < C2 ~ i x) eg
" (x) + h + (x) • 

Iq ± I + Ir ± I ), 

IA +A± I 

From (2.16), (2.17), (2.10), (2.6), and (2.3) one has (2.8) with 

IA +A± I 2 
/3 ± = (1 + Sa ± + a ± ). 

21A± I 

I 
A +A+ I h ± .;;; A ± - a ± I ± (x), 

(2.15) 

(2.16) 

(2.17) 

Since the convergence of(2.14) is uniform in each bounded region of XER and v +(A ).;;;0 except in the vicinity of A+ = 0, tP+ 1 

and hence ¢ + 1 = cp + (0) U + tP + 1 is analytic in A for v + < 0 and continuous for v + .;;;0 (A + # 0). The continuous differentiability 
of ¢ ± j with respect to A along the curve A ± (A )ER is also obtained under the stronger assumption, Q ± eCF ± (1). Indeed, the 
differentiation of tP + 1 (n)(x) of(2.14) with respect to A+ (or A) yields the factor Xj from exp[iA+Xj] which is, however, inte
grated and estimated with slight modification of the case Q ± ECF ± (0). Further, one may construct the Neumann series 
representation of ¢ ±j from the original integral equation (2.7) instead of (2.11). Then, due to the inequality I cosZ I, 
IsinZ /Z l.;;;e11mZ I, one has V ± ECF ± (0) for each fixedx,A,A ± (A ) and the absolute and uniform convergence of the series even 
in the vicinity of A ± = O. Hence ¢ ± 1 is continuous at A = ± u ± ' + u ± . The discussions go parallel with ¢ ± 1 for ¢ ± 2 and 
we omit them. Q.E.D. 

Asymptotic behaviors of ¢ ±j(x)(j = 1,2) can be seen by Lemma 1. However, we can give the more efficient estimate and 
asymptotic forms for large IA I as well. 

Lemma 2. Let Q + eCF ± (O)nCF'± (0), then we have the estimate 

where r ± is a constant such that r ± -1 as IA 1-+00 and J ± (x) is defined by 

J ± (x) = + f: 00 (ldq(Y)1 + Idr(y)II· 

The asymptotic form of the Jost solution is given as 

v± SO, 

v± ~O, 
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to the order 1..1 1- I uniformly for XE[Xo, ± 00 ),(XoElR), where 

1T ± (x) = JX dy I q(y )r(y) - q ± r ± J. 
±'" 

The summation L:j~x should be taken under the restriction Xj ~x at \ Xj V = 1,.··,n,;;;; 00 I, where Q ± (x)ECF '± (0) makes leaps 

(D~j 8~j). 
Proof Let ~ ±j(} = 1,2) be the right hand side of (2.13) subtracted the first term, then we have, from (2.3) and (2.10), 

¢±leIA,X_ ( ir~ ) =rJ>± IOlu±eiAcx[.s±1 + (~}1_e-(i/218.)]. (2.21) 

~+A± 
In (2.14), the integrations by parts in X 2m or x2m _ I yield new series containing A ± I as a factor and we have the estimate 

Ilf ± 1 {2m
l(X)I.;;;; I/± \ eh

, (xl (~) ((I + a ± 2) (2m ~ 1)1 g ± (x)2m -I + a ± (2~)! g ± (X fm ] 1..1 ~ ~ ± (J ± (x) (v ± §l0), 

ilf 12m-ll(x)\.;;;;_I_ehcIXI+2V±,,(0)[(1+a 2) 1 g(x)2m-2+a I ()2m-l) IA+A± \J+_(X) 
± I /..1 ± I I ± (2m - 2)! ± (2m _ 1)1 g ± X U ± 

(v± >0); 
here g ± (x) and h ± (x) are given by (2.15), and 

l
.s I.;;;; /..1 + A ± I (1 + a + a 2)eg ~ (xl + hi (xl ( 1 ) J () 

± I 21..1 ± 12 ± ± \/v±x ± x. 

Substituting the last inequality and 11 - e'1.;;;; /zle1zl into (2.21) and estimating g ± (x), h ± (x), and so on, we have the first 
inequality of(2.18) with r ± given by 

r ± = ~(1 + 1..1 /..1 ± 1)( 1 + a ± )( I + a ± + a ± 2). 

The second inequality of(2.18) is obtained likewise and hence the first half of the lemma is proved. The asymptotic expansion 
(2.20) for if> ± I is obtained from that of the right hand side of(2.21). Integrating by parts once in (2.14) and using the Riemann
Lebesgue theorem to evaluate each order of A ± 1, we have ~ ± 1 in the series of A ± 1. The first approximation of.s ± I is 
enough to obtain (2.20). The convergence of.s ± I is, as seen above, uniform for XE[Xo, + 00 ),XoElR. The estimate and the 
asymptotic expansion for if> ± 2 is similarly shown and we omit the calculations. Q.E.D. 

The similarity transformation from rJ> ± (Olto rJ> ± plays an important role in both the direct and inverse spectral problems 
and is defined by 

rJ> ± (x) = rJ> ± (O)(x) + f: co K ± (x,y)rJ> ± (O)(y)dy. (2.22) 

The existence of K ± (x,.) in L 2[x, ± 00) is suggested by the estimate given in Lemma 2. The condition of Q (x) for the existence 
of K + , however, is stronger than those given there and presented in the following; 

Lemma 3: For Q ± ECF ± (1 )nCF '± (0), K ± (x,y)(x~) exists and has the estimate 

IK ± (X,y) 1 < if ± (x + y) + I ± (X ~ Y ) N ± (x), (2.23) 

_ 1 M± 2 ± 2 

(

Q I (x+y) J' (~)) 

M ± (x + y) = 2' I '± ( x; y) QMI ± ( X ~ y) , 

where if ± (x) and if ± (x) are the matrices with the components, positive and monotonically decreasing as x~ ± 00, and 
I ± (x) is defined by (2.9). 

Since J ± (x)C CF ± (0), the properties K ± (x,.)EL1[x, ± 00) and K ± (x,.)EL2[x, ± 00) are the direct consequences of 
(2.23). 

Proof We first assume the existence of K ± (x,y)(x§ly). The substitution of(2.22) into (2.4) results in the integral equations 
for 

~ ± 11 (x,y)) ~ ± 12 (x,y)) 
M ± (t,71) = ()' N ± (t,71) = () , 

±22 x,y ±21 x,y 

where K ± ijare iJ components of K ± and t = x + y,71 = x - y (71§10): 
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1 i"l IS N ± (S,1]) = N ± (s,O) - - d; P ± (s + ;,v +;)N ± (v,; )dv, 
4 0 ± "" 

where 

= (- q ± ; ± (1]12) - q ± (S 12)r(1]12) 

r ± (r(S 12) - r(1]12)) 

q ± (q(S 12) - q(1]12)) ) 

- r ± q ± (1]/2) - ; ± (S /2)q(1]12) . 

The Neumann series for N ± (S,1]) is obtained from (2.25) as 

N ± (S,1]) = ! N ± Im l(S,1]) (1] SO), 
m=O 

N ± 10'(S,1]) = N ± (S,O), 

N ± Im'(S,1]) = - ~ J: "" dSI 1"1 d1] IP ± (s + 1]1,SI + 1]1)N ± 1m - II(SI,1]I) 

= (_ ~)m r dSI {"I d1]I'" rm
-

l 

dSm {"Im- I d1]m P ± (S + 1]1,51 + 1]tl ... 
4 J ± "" Jo J ± "" Jo 

X P ± (Sm _ 1 + 1]m,5m + 1]m)N(Sm,O). 

Using the inequality 

We have from (2.27), under the condition Sj-I '>Sj' 

! 171 d1]j P ± (Sj- 1 + 1]i,Sj + 1]j)! < =+= J~ "" d1]j lP ± (Si-I + 1]j,5j + 1]j)! 

"I (lq±(Si-
1
2
+1]j)I+I;± (Sj:1]j)1 Iq(Sj-1

2
+1]j)-q(Sj:1]j)l) 

< +QM I d1]j 
± 00 1 r ( 5i - 1

2
+ 1]j ) _ r ( 5j : 1]j ) 1 I; ± (Sj - 1

2
+ 1]j ) I + 1 q ± ( Sj : 1]j ) 1 

< 2QMI ± (Sj - 12 + 1] ) G ~), 
where 

QM = sup!q! + sup!r!. 

Hence, 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(1],>0, m>l) 
and 

!N ± (O'(S,1])! <~ I '± ( ~ ) G), I ± '(x) = Iq ± (x)! + I; ± (x)!. 
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These estimates and (2.24) lead to the following estimates, which together with (2.24), (2.25), and (2.22) reproduce (2.4); 

IN±(t'17)I<~{l'± (; )+QMI± (; )I± (t;17)exp[ +QM f:oo d;I± (;;17)]}C), 

1M ± (t,17) I < Q; I ± ( ; ) {I + Q; f: 00 d; I ± (;; 17) exp[ + QM f: 00 d; I ± (;; 17)]} C), 

or (2.23) with 

and 

Thus, under the condition given in the lemma, K ± (x,y) exists and the lemma is proved. 
We consider solution i ±j of (2.1) which has the following asymptotic forms: 

Q.E.D. 

jJ ± I iii , x = ( ir 1± ) + o( 1), v ± ~O 
\l+A± 

X-7 ± 00, (2.28) 

¢ d ",' ~ (,! :1~:) + 0(11. v"O 

where the signs of v,;t are opposite to those given in (2.6) for the Jost sol~tions ¢ ±J' _ 

Lemrr:a 4: LetQ ± ECF ± (0) and A ± :/:0, then (2.1) has the solutions ¢ ±J satisfying the condition l2.28)and¢+2~nd¢+ I 
(¢+ I and ¢+2) constitute a fundamental system of solutions for v+>O(v +<0) and similarly ¢-2 and ¢_I (¢--l and ¢-2) for 
v_<O (v_>O). 

Proof It is sufficient to discuss only the case ¢ +2 and jJ + I for v + >0. For v + = 0 we put jJ + I = ¢ + I which, by (2.6), 
satisfies (2.28). Since W[¢+2'¢+ 1]:/:0, these constitute a fundamental system. For v + > 0 we consider an integral equation 

jJ+I(X.A.A+) =¢+I(OI(x)+ ,1,~A+ {SXdye-iA+(X_YI( ir~ )(1, ,1,iq~ )Q+lv)jJ+Ilv) 
+ 00 ,1,+,1,+ + + 

+ f dy ,'" ,. + ~t ) C -:.':++ .1) Q ,IYI¢ + 'IYI} (2,291 

which, by ¢+I = ~+leiA.X, is written as 

Let x>a. Since Q+ECF +(0), we can fix a such that 
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Then we can determine ¢ -t-J(x) by the successive approximation and have 

1~-t-J(x)1 < G) (l + a-t-) 1 _1 r(a) = rJ(aJ(~). 
Inserting the estimate into the R.H.s. of (2.29) we have for X----+oo 

11¢+d+I"I""'1 < I\~~+ I{ r dy C ::,)1. A ~:,+ ) IQ+,bnl 

+ f dye",(H F~~: )c-;:++ .1) IQ+.,b+d} 
< 1 A ~~+ 1 (1 + a-t-)2rJ {i: dylQ+ 1+ e - v+x i X12 

dYIQ+ I} C) 

< 1 A ~~+ 1(1 + a+)2rl{I-t- ( ~ ) + rv+xI-t-(a)} C)-o, 
hence (2.28). It is easy to extend the solution ¢+I or¢+ J given forx;;.a toallxElR. Since W[tP+2,¢+d = - U+/(A + A+)~O, 
tP+2 and ¢+J constitute a fundamental system. Q.E.D. 

3. GREEN FUNCTION AND EXPANSION THEOREMS 

Let us consider the spectral problem of the operator L 
of(2.1) in thespaceH = L 2(R) ®L 2(R) constructed from the 
column vector functions v(x) = (v l (X),V2(x)) T with 
Vj(x)EL 2(R)(j = 1,2). The domain of L,D (L )CH, contains 
v(x)EfJ such that vj(x) is absolutely continuous and LvEfI. 
The resolvent operator GJ,. = (L - ,,1)- J plays an important 
role, for the spectrum analysis of L. We study the representa
tion of G J,. as an integral operator on H = L 2(R) ® L 2(R) and 
introduce the Green function Glo.(x,y) as the kernel of G;.. 
Since our complex plane R, , the first sheet of the Riemann 
surface, is divided into four regions R J-R 4,GJ,. also is com
posed offour functions of A defined on AERj(i = 1, ... ,4). As 
discussed in Sec. 2 and exhibited in Fig. 1, the structure of 
R I-R4 depend on the values of u ± . However, the procedure 
to obtain the Green function and the expansion theorem 
does not essentially depend on the values of u ± . Hence, it 
may be enough to classify the totality of u ± into two groups 
C,and Cd and to examine one example from each group: 
Cs;U+ 2 - u_ 2Ee - R,Cd;u+ 2 - u_ 2ElR. The group Cs will 
lead to the expansion theorem with simple continuous spec
trum, while Cd to the doubly degenerate spectrum. Below 
we consider the case 0 < lu-I < lu+ 1,0 < argu-t- <argu_ 
< tr/2 as given by Fig. 1 for the group Cs and case 
Reu _ < Reu + for the group Cd' 

Let us introduce the matrix S, the components of which 
are defined by the Wronskians of the Jost solutions 
4> ± I and 4> ± 2 , 

Sll = W[tP-t,4>+2]' SI2 = W[4>-2,4>+2]' 

SZt = W[tP+t,tP-11, S22 = W[tP+l,tP-2]' 
(3.1) 

where W[a,b] = a1b2 - azb l is the Wronskian for the vec
tors a = (a l ,a2 ) T and b = (bl,bz) T. Each of Sij is an analytic 
function of A in the region of R" if two vector Jost function 
determining Sij are both analytic there. From the definition 
of Rj(1.;J'4) inR r , Lemmas 1 and 2, the following lemma is 
obvious. 
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Lemma 5: Let Q ± ECF ± (0). then for the case Cs 

4>-1,4>+2' SII are analytic for AER I , 

4>-1,4>+1' S21 are analytic for AER 2, 

4> -2,4> -t-2' S12 are analytic for AER3, 

4> - 2' 4> + I' S22 are analytic for AER4 , 

and for the case Cd the regions R2 and R3 disappear. 
Thus we derive the asymptotic form of Sjj easily from 

(2.20) and (3.1). 

Lemma 6: Let Q ± ECF (0) ± nCF'± (0). Then the as
ymptotic form of Sjj as 1,,1 1----+ 00 is given to the order A - J as 
follows, in the case Cs ; 

- 1 
S'I = 1- 2iA [tr_(O)-tr-t-(O)] +0(1,,1 1-1) (AER,), 

S21= -~-( I orj e- 2iA ,Xi+ 2: orj e- 2iA Xi) 
2U ~>O ~<O 

+ o( IA I-I), (AER 2j, 

(3.2) 

1 ('" II U;"Xi + '" l1 2i;' Xj) - -.- L. uqje L. uqje 
2iA Xj<O xj>o 

+ O(/A I ~ I), (AER
3

), 

- 1 
S22= 1 + 2iA [tr_(O)-tr+(O)J +0(/,,1 1-'), (AER4)' 

In the case Cd the analytic regions R 2,R3 of S21,S12 
disappear. 

From this lemma, it is seen that zeroes of SII and S22 are· 
restricted within the bounded regions in R J and R 4 , respec
tively. For the later discussion, we introduce two classes of 
the potentials Q ~ and Q s:Q £ is the subclass of 

Q ± ECF ± (O)llCF '± (0) such that the leaps of Q,oQ satisfy 

II8Qj/sXj!>E(~ ~). (R3s----+oo), (3.3) 

where E is a positive constant, while Q S is the subclass of 
Q ± ECF ± (l)nCF ± '{OJ, for which Sij has only a finite num-
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ber of simple zeros within its analytic region (R I-R4) and 
does not vanish on the boundary of the corresponding region 

exceI:t A = 00. It is noted that for Q ± EQ ~ the zeros of S21 
and SI2 are restricted within the bounded region of R2 and 
R}, respectively, where v + -*0 as 1,1. 1-*00. A simple exam
ple of Q ± EQ EnQ S is the ~tep potential" 
Q (x) = Q ± (I=O)(x~O). 

Let us introduce a function GA (x,y) by the following 
formula and prove in Lemma 8 that G). (x,y) is the Green 
function for (2.1): For the case CnG). (x,y) = 

x<y x>y 

; ¢_I(X)¢+2(y)A, S! ¢+2(X)¢_I(y)A, (AER I ), 

II 11 

- S! ¢+I(X)¢_I(y)A, (AER 2 ), 

21 
(3.4) 

}2 ¢'_2(x)¢'+2(y)A, }2 ¢'+2(X)¢'_2{y)A, (AER 3), 

- ~2 ¢'_2(X)¢, + l(y)A, - ~2 ¢'+ I{X)¢'_2{y)A, (AER 4 ), 

where v A is the row vector (V 2,V I) adjoint to the column vec
tor v = (V I ,V2) rand uv A is the tensor product. For the case 
Cd' where R z and R3 disappear, GA (x,y) is composed of two 
sets of functions defined for AER I and R 4 • Further, we intro
duce some symbols; the set of all zeroes of Sij on the domain 
of definition R t-R4 including its boundary is denoted as 
o-p (L ) and the loci on the A plane corresponding to its real 
axesofthd ± plane (Le., thecurvesC t-C4 inFig.l)aso-c (L) 
and let o-(L ) = o-p (L ) + O-e (L ),p(L ) = c - o-(L ). The analy
sis in this section will show below that o-p (L ),o-c (L ),o-{L ), and 
p(L ) are the point spectrum, the continuous spectrum, the 
spectrum, and the resolvent set of the operator L, 
respectively. 

We present the lemma which plays an important role in 
the derivation of the expansion theorems. Before it, we must 
give an estimate of tP tj{x)(j = 1,2) for x;§;O. 

Lemma 7; For Q + ECF + (0\, there is a constant K (A ) 
such that- -

{
I¢'± t(X)I} (1) { e'"lX } 
1 ¢' r 2 (x) I < K (A) 1 e - v ,x ' 

{
I¢'I(X)I} (1){eVIX} 
)¢':z(x)) <K(A) 1 e-v,x' 

{
V ~O} 

± ;;;'0' x~O, 
v + """ 

{
VI' ~O} 

O 
' x;§;O. 

v+ ~ 

Proof The first inequality is the straightforward conse
quence of Lemma 1 since I + (x) is bounded for x~O. K (A) is a 

constant larger than (1 + ;; ± )? ill (0) and determined be
low. To obtain the second inequality, we expand 
¢' ± i(X) for x;§;O by ¢ +' k,c$ +' i(i-:j.k). The expansion coeffi
cients depend onA but are finite for A ± 1=0 due to Lemma 4. 
Then, from the first inequality and (2.28), we have the sec
ond. The constantK (A ) stands for the maximum of the coeffi
cients of the right hand side of the above four 
estimates. Q.E.D. 

Lemma 8: Let Q ± ECF ± (0), then GA (AEp(L )) is the re
solvent operator in H: For AEp(L ), 
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G A (L - A ) = I, on D (L ) = range of G A , 

(3.5) 
(L - A )G Jc = I, on H. 

Moreover, GJc defined by (3.4) separately in R I ~R4 yields a 
single analytic function with regard to the operator norm in 
H for AEp(L ) C C. 

Proof From Lemma 7, we deduce the estimate 

)G).(X,Y)I<K(A)2G ~)e-t:X-YI, AEp(L), 

where X = minI I v + 1,1 v -I). Then, for vEH, we have 

IIG),vW<2K 4 f dx(f dye - t'Y- Xl(\v,(y)! + !Vz(Y)llr 

<2K4 f dx(f dye-:t'~Y-x) 

X [f dy e - t',Y- x'(iv,(y)! + !v2(y))f] 

The standard method for the Green function of the differen
tial operator leads to (3.5). Note thatL is closable since G" is 
closed. To prove the analyticity of G). for AEp(L), it suffices 
to show that G). (x,y) for each fixed (x,y) is analytically con
tinuable across the boundaries of Rj(j = 1-4). As an exam
ple, we consider the case presented by Fig. 1, where the 
boundary of RI and R 2, say, is composed of A+ and Ct. 
AcrossA +,A _ (A ) is continuous while A + (A ) changes the sign 
and, hence, ¢ + ,(X,A I ,A +(,1. '))~ + I(X,A, - ,1.+(,1. )) and 
tP+2{X,A ',,1.+(,1. '})~+2{X,A, - ..1.+(,1. ))asR2 3A '-*,1., where 
,1.81 + is approached from R I. Since ¢+ I(X,A, - ,1.+(,1. )) and 
¢' +z(X,A,A + (A )) are the solutions of (2.1 l for the common 
,1.81 +, they differ only by a factor C (A ) determined from the 
asymptotic forms of ¢ + t and ¢ + 2' 

'" "(x,,t, - A" I~ (A ~~++ )," " x~oo, 

¢,+,(X,..1.,..1.+)-*( i:+ )e --iA,x, X-oo, 

..1.+..1.+ 
for A81 +(v + > 0). Thus, we have 

<P+2(x,A,A+) = CIA )¢,+,(x,A, -,1.+), (,1.81+), 

C(A) = - iq+ 
,1.-,1.+ 

which yields for ,1.81 + 

(3.6) 

SII = W[¢_I,¢+2] = - CIA lW[¢'+1>¢-I] = - CIA )S21' 
(3.7) 

Substituting (3,6) and (3.7) into GA (x,y) for AERI(x <yl in 
(3.4) and continuing it into R2 across A +, we see that 
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-2- tP_,(X,A"L(A ))tP+/ (y,A,A+!A)) (AERd 
SII 

- - -l-tP_,(X,A,A_(A ))tP+/(Y,A,A+{A)) (AER z)· 
S21 

Thus, each G). (x,y) defined separately on R I or R z is the 
analytic continuation of the other. There is no essential dif
ference for the other cases and components. Q.E.D. 

From Lemma 8 we obtain easily the identity on D (L ), 

UA + G). = (lIA )G).L, AEp(L). (3.8) 

We note that (3.8) contains A ± (A) only though the Green 
function which is, by Lemma 8, analytic across the branch 
cut on the first Riemann sheet R, and, for the discussion of 
(3.8) we may consider the single A plane without the branch 
cut, instead of R,. Let Cp be the circle on theA plane with the 
center at A = 0 and the radius p sufficiently large and let 
w(x) = (wdx),w2(x)) TECo

2(R) be the column vector with Wj 

vanishing outside the finite interval and possessing the con
tinuous second derivative. 

Lemma 9: Let Q + EQ E and consider the case C,. Then 
for u = Lw, WEC~(R)-

I x {O(IA I-I), IA 1----..00,AER
"

R4 

"00 dyG,dx,y)u(y) = 0(1), IA 1----..00,AER
2
,R

3
, 

(3.9) 

r dA foo J. - dy G;.(x,y)u(y) = Ot;o-I), p-oo, (3.10) 
C,' A - 00 

the convergence being uniform in any finite interval of x. For 
the case Cd(u+ 2 - u_ ZER) the first equation of(3.9) and 
(3.10) hold under the weaker condition 
Q ± ECF ± (O)nCF' ± (0). 

Proof First, let us show the first equation of(3.9) under 
the condition Q ± EQ E. In the expression (3.4) in R "R4 we 
use the asymptotic forms of tP ±j given by (2.20); 

tP±1 - (~)e-i"LX, tP±2 - (~)ej;,±x=O(IAI-l). 
The contributions to (3.9) by the relevant term of tP ± I ,tP ± 2' 
i.e., 

are estimated as ° (IA 1- I) through integration by parts. Us~ 
ing (3.2) for SII,S22 we obtain the first equation. The calcula
tion is similar for the second equation of(3.9) under the con
dition Q ± EQ E. Under the last condition we consider the 
special configuration of ! q ± ,r ± I EC, given as Fig, 1. Divid
ing the A integral of (3.10) into four parts 

i . dA = .± ( . dA (CpjCRj ). 

Cp J = I JCpj 

We derive easily from (3.9) 

L
p

, + C

p4 

~ J dyG,,(x,y)u(y) = 0t;o-I), 

p_oo, (3.11) 

t",+c", d: f dyG,,(x,y)u(y)=Ot;o-'), 
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since the lengths of the paths in R 2 and R 3 are ° t;o - I) and 
hence we have (3.10). For the case Cd the regions R2 and R3 
disappear and we obtain the result under the weaker 
condition. Q.E.D. 

Remark. If p + ,s + #0 for the potential Q in (1.2), the 
spectrum (J'c (L ) for IA 1-00 suffers an important alteration 
due to the change in (2.3) and the spectral problem requires a 
separate study. 

We exhibit the expansion theorems for the cases Cs and 
Cd separately. 

Theorem 1. Let Q + EQ <nQ S and consider the case 
C, (u + 2 - U _ 2~R), then-we have for WECo 2(R ), uniformly in 
any finite interval of x, 

w{x) = ;i~ J: 00 dy dp (x,y)w( y), (3.12) 

..1p(X,y) =..1p C(x,y) +..1p d(X,y). 

..1p C(x,y) = _1_ {_ (_ dA _d-t;. tP_I(x)tP_/(y) 
21T Je", SllS21 

(3.13) 

..1p d(X,y) = {- i I S '~A ) tP-dx)tP+/(y) 
",ER, II k 

'" 1 A( + i ;.~, S2t'(Ad tP_I(X)tP+ I y) 

- i I S '~A ) tP-2(X)I,b+/(y) 
AIo:E R.1 12 k 

+i I S I~A ) tP_2(X)tP+I
A

(y)}, 
).,ER, 22 k 

d ± = detT ± = 2A ± I(A + A ± ). 

where ejp (~p) denotes the integration to the direction of the 
arrow along the curve Cj wit~in the circle Cp (see Fig. 2_ 
corresponding to Fig. 1) and Sij '(A k ) is the derivative of Sij 
with respect to A at A = Ak • 

Theorem 2: Let Q + EQ' and consider the case 
Cd (u +2 - U _ 2EIR), then-we have for WEC()2(R) the expansion 
formula similar to (3.12); if argu _ > argu +, 

dpC(x,y) = 

_1 ( dA {tP_I(X)~+/(Y) + 1,b_2(X)~+IA(y) } 
21T Jc ,P + c," SII Sn 

(3.14) 

+ _1_ ( dA _d ___ tP+2(X)tP+IA(y), 
21T Jc.,+ c. SIIS22 

.:1p d having no contribution from R2 and R 3• Here the 
integral path C 1p ,(C4p ) is obtained as overlap ofC,p and C2f' 
(C3p and C4p ) of the preceding theorem, while Cs and C6 are 
nonoverlapping parts (see Fig. 3). 
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~--------~~o--------~-~ 

'0c~ 
~u.\;j_ 

, 

FIG. 2. Curves for the nondegenerate spectrum. 

Proof By (3.8) and (3.10) 

- 21Tiw(x) = £p dA f dy G" (x,y)w(y) + 0 (p - I) 

asp~00(3.15) 

uniformly in any finite interval of x. We evaluate the first 
term on the right hand side of(3.15) by modifying Cp to the 
contours along C1p-C4p and ap(L) which, by the a~sump
tion, consists of finite number of simple zeroes of Sij(A ) and 
does not overlap to Cj • The integral along the Cip 's are rear
ranged by the use of the identities: 

rP-.(X,A,A-) 

= (lId+)(rP+ I(X,A,A+)SII + ¢+2(X,A,A+)S2.) (3.16a) 

for AEC I (A + > 0), 

rP-2(X,A,A-) 

= (lId+)(¢+I(X,A,A+)SI2 + ¢+2(x,A,A_)Sd (3.16b) 

for AEC4 (A + < 0), 

COl ' c ll. 

o I t 

FIG. 3. Curves for the degenerate spectrum. 

2790 J. Math. Phys., Vol. 22, No. 12, December 1981 

rP+I(X,A,A+) 

= (lId_)(rP_I(X,A,A _)S22 - ¢ _2(X,A,A -)S21) (3.16c) 

for AEC2 (A _ > 0), 

¢+2(X,A,A+) 

= (lid _)( - ¢ _(X,A,A_)S12 + ¢-2(X,A,A_)SII) (3.16d) 

for AEC, (A _ < 0), 

we obtain easily (3.12) and (3.13). For the case Cd' (3.14) is 
derived analogously. Q.E.D. 

In Theorem 1 all the point and continuous spectra, 
ap(L) and ac(L) are simple, while in Theorem 2 some parts 
of the continuous spectrum are doubly degenerate. From 
Theorems 1 and 2 we see easily that the continuous spectrum 
is determined in terms of the asymptotic values Q ± ' while 
the point spectrum requires the separate examination. 

Corollary: The continuous spectra given in Theorems I 
and 2 are stable under the perturbation.d Q of the potential Q 
such that Q ± ' (Q +.dQ) ± EQ€nQswith.dQ t = O. 

4. SPECTRAL RESOLUTION IN L 2@ L 2 AND THE 
SCATTERING THEORY 

We show that the operator L in the Hilbert space 
H = ((L 2(R)) ® (L 2(R)) is a spectral operator in the sense dis
cussed by Dunford and Schwarz, i.e., it has the family of the 
spectral projection 

(E(e)) for each bounded seteCa(L ) = ap(L) + ac(L), 

under the condition for the potential 

Q±EQ snCF'±(I), u± ¥O, U+
2
-U_

2
ER. 

The last condition indicates that the system belongs to the 
case Cd defined in the preceding section. We present the 
Dunford-Schwarz condition for the spectral operator in a 
convenient form for our application. 

Lemma 10 (Dunford-Schwarz); Let the closed operator 
S in the Hilbert space H have a spectrum a(S) which is the 
disjoint union ofa finite set of points ap(S) = !A1 .. ··,An I and 
of a set ac (S) contained in a simple Jordan curve C, dividing 
the complex plane C into two regions C ± . C is expressed by 
a single valued function A (t )(tER), which is smooth, differen
tiable, and such that the limits A '( + 00) = A '( - 00) exist. 
Suppose that there exists a dense linear manifold DoCH 
with the following properties. 

(i) For J,gEDo there is a constant K (J,g) such that 

IAII(J,R" g)1 <K(J,g), AEp(S) - U(ap(S)), (4.1) 

where R" = (S - A ) - I is the resolvent of S, <,) denotes the 
inner product of H, and U (ap (S)) is a neighborhood of a p (S) 
in C. 

(ii) For eachf,gEDo,(J,R" g) has finite limiting values 
R ± (i,J,g) as A approaches almost any point iEC from C ± 

in a nontangential direction. 
(iii) There is a constant M depending only on S such that 

r IR +(A,f,g) - R -(A, J,g) I IdA I <M Ilfll·llgII, 
)'7<ISI 

J,gED(), (4.2) 

where IdA I is the arc length along C. 
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Then S is a spectral operator. For each bounded set 
e ~ U c (S). the spectral projection E (e) is given by the formula 

(f,E(e)g) = _1 .1{R +(A,J,g) -R -(A,J,g)l dA.(4.3) 
2m e 

We obtain the following result for the operator L. 
Theorem 3: Let Q ± EQ'nCF' ±(1). u+ 2 

- u_ 2ER. 

u2+ .u~ #0. Then Lin H = ® (L 2(RW is a 
closed operator with D (L) = D (Lo).Lo = iu3alax and IS a 
spectral operator in the sense of the preceding lemma. 

Proof We give the proof of the case 
U0

2 = u+ 2 - u_ 2> 0 (uo> 0).1T12 > argu_ > argu+ > 0 (Fig. 
4). In Fig. 4. the curves CI' C4 • C5• and C6 are loci of the 
continuous spectrum U c (L ) of L. The curves C5 + CI and 
C6 + C4 are given by functions A = A ( ± )(t). respectively. 
where 

AI + )(t) = [(t - 1)2 + u 2_] 1/2 (t> 1) 

A1-)(t)= [(t+ If+u 2_]1/2 (t.;;; -1). 

Providing a curve A (0)(t ) for - l.;;;t.;;; 1 connected to C5 

and C6 smoothly. we have the curve C of Lemma 10 dividing 
the complex plane into R I and R 2• Under the assumption 
Q ± ECF'± (O).IQ(x)1 is bounded and Q(x) constitutes a 
bounded operator as a multiplication operator in H. Since it 
is known that the differential operator Lo is definable as a 
closed operator with its domain D (Lo) dense in B.L also is a 
closedoperatorwithD (L) = D (Lo). Weshowthatthecondi
tions (i)-(iii) of Lemma 10 are satisfied for our resolvent 
(L - A )-1 with the integral kernel G). (x.y) and with 
Do=CO

I. 
(i) Letf,gECol,/[J,g] = supp(f)usupp( g) and Ao be a 

constant with the sufficiently large IAol. then for xEl [J,g] 
and AER I with IA I> IAol. we have. from (2.18) and the as
ymptotic properties of a ± ,/3 ± • and r ± • 

I (1) j). x I 1 v x (1) ¢ ± I - 0 e + .;;; IT:IKoe ± l' 

(0) 

"It) 

-------~---------{ o 

Rz 

FIG. 4. Jordan curve for the case Cd' 
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(v± SO). 

(4.4a) 

1¢±2 - (~)eiA±xl.;;; IA~ I Koe-v±xC)· (v± ~O). 
(4.4b) 

where Ko is a constant independent of x and A. By virtue of 
these inequalities and the subsitution of identities 

¢+2(X)¢_I(y)A 

= [¢+2(X)_(~)eiA±x][¢_I(Y)_ (~)e-j).±Yr 

+ (~) eiA±x[¢_I(y) - (~) e-j).±yr 

+ [¢+2(X) - (~)eiA±x] (~re-i).TY 

+ (0 0) iA±lx-y) (AER) 
1 0 e • I. 

and a similar one for¢_I(x)¢+2( y) A into (3.4). it is easy to see 
that the first term of (f,G). g) for AERI is bounded by 
KIIA 1-2 while the second and the third terms are bounded 
by K21A I-I, whereKI and K2 are constants, x,yEl[J,g] and 
IA I> IAol. The estimate of the last term is obtained in the 
form K31A I-I through the integration by parts since 
j,gECo I(R). Thus, all together, we have I (f,G). g) I <K IA I-I 
for IA I> IAol and a constant K. Since, by Lemma 1 for 
Q ± ECF ± (1 ),G A is continuous in x,y and AER I except at 
AEUp(L). the above discussion implies that (f,G). g) is 
bounded by K IA 1- I for AER I except in the neighborhood of 
up(L). The proof for AER2 is similar and we have (4.1). 

(ii) for Q ± EQs,G). (x,y) is analytic within RI and R2 ex
cept at AEUp (L ) and has continuous boundary values 
G). + (x,y) and G). -(x,y), respectively, on ue(L) (A ± = 0 in
cluded). Thus, we have 

forj,gECO
I andAEuc ' where,u = dA Idt specifies the tangen

tial direction along uc ' 

(iii) Due to Theorem 2, 

G). C(x.y)=G). +(x,y) - G). -(x,y) 

_1 (¢_I(X)?+/(y) + ¢_2(X)?+I A (y)) 
21T ~I ~2 

for AECIUC4 , 

1 d_ A. ( A ------'f'+2 X)¢+1 (y) 
21T SIIS22 

where by (3.16) 

1 - -
¢-I = d (¢+ISII + ¢+2S2d, 

+ 
for AECIUC4 , 

1 - -
¢-2= T(¢+IS I2+¢+2Sn) 

+ 

(4.5) 
1 - -

¢+I = d_ (¢-IS22 - ¢-2S2d. 

for AEUc ' 

1 - -
¢+2 = d_ (- ¢-ISI2 + ¢-2S I\)' 

N. Asano and Y. Kato 2791 



                                                                                                                                    

Since ¢i ± , (x),¢i ± 2 (x) have the bounded boundary conditions 
+ i,{ x .. 1 -

~ e - 'as x-+ ± 00 lor /LEO"<. and, for Q + ECF + (1), are 
continuous in x and A by Lemma 1, they are bounded for 
XE[O, ± 00 ),AEO"c' Hence under the assumption Q + EQ" 
S\(A ),(ij = 1,2), S" -, and S22 -, are bounded for AEO"c. 

First let AECs or C6 , then we can express G ~ in terms of 
these bounded functions; 

x<o,Y>o, 

x,Y<o. 

Thus, G~ C(x,y) is bounded except in the last equation which 
has the factor d _ - I 0::. A _ - I. Since, however, A # ° on Cs and 
C6 , the change of the variable from A to A _ implies that the 
integral 

15+6= ( IdAII(J,G"Cg)l= fUn IdA_IIA-1 (J,G"Cg ) 
k+~ -Un A 

exists for all expressions of G" C and we have 

I5+6<M, <lfl,lgl) <Mill fll·llgll, (4.6) 

where M, is a constant depending on Uo' 
For AEC, or C4 , we introduce a large constantp such 

that C I and C4 are divided into two parts as 

C'p: I<t<tp' O<A+<A,p' IAI<p, 

C'oo:tp<t, A+p<A+, IAI>p, 

C4p : -tp<t< -1, -A+p<A+<O, IAI<p, 

C400 :t<-tp' A+<-A+ p' IAI>p· 

We have analogously as 15+6 

I'pHp = l.,,+C4P IdA II (J,G"cg) I 

f~':pdA+ IAA+ I 1(J,G"cg)l< M21Ifll·llgll, 

(4.7) 

whereA = (,1,+ 2 + u+ 2)'/2#0 on C,p,C4p by u+ 2#0. Final
ly we estimate 

I, 00 + 400 = Ie," + C
h 

IdA II (J,G" Cg) I 

= _1 fldAII-J-fdxJT¢i-tfdX¢i+/g+-J-
21T Sl\ Sn 

X f dXJT¢_2 fdx¢i+/g\, Itl>tp (4.8) 

where, for example, by (4.5) 
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f dXJT¢_1 = [00 dXJT¢i_, 

+ ~~ loo dXJT¢+, + ~~ loo dxl T¢i+2' 

Due to Lemma 2 and asymptotic properties of 
at ,/3 ± ' and r ± for large IA I(AEC, 00 uC400 ), we have 

I[ 00 dxJT¢_tl 

< I [ dx(lt + ir - h)e - i,{ x I 00 A+A_ 

+ 1,.11+/ M2 [00 dx(lf,1 + If21)(J _(x) + a_ 2IA_IL(x)) 

(4.9) 

with M2 a constant. The first term of the right hand side of 
(4.9) is the Fourier transform of the function of Co(R) and 
hence square integrable with respect to A _. The second term 
is bounded, as verified by the Schwarz inequality, by 

IAI+ 1 M3 [00 dx[ J _(x) + a_ 2IA_IL(x)]'llfll, 

where M3 is a constant depending on J _(a),! _(0) andp, and 
the integrations of J _(x) and I _(x) in x exist for 
Q ± ECF ± (1 )nCF ± '( 1). Collecting these inequalities togeth
er, we obtain Sill >IJdAlls~- 00 dxJT¢i_11 2 

< constant X II f112. Other integrals in (4.8) can be treated 
similarly and we have the inequality 

(4.10) 

where M depends on tp and Q ± but not onf and g. The 
equations (4.6), (4.7), and (4.10) yield (4.2) for our operator 
L. Q.E.D. 

In the above theorem, we restrict ourselves to the case 
of u ± #0 and Cd' If, for instance, u + = ° and u _ is pure 
imaginary,O"c crosses with itself at A = ° and does not con
stitute a simple Jordan curve as assumed in Lemma 10. The 
spectral problem for the later case, as well as the case C, , will 
be studied in the future. 

Finally, we summarize the relation of the Jost solutions 
<P ± on O"c (L ) [see (3.I6a)-(3.I6d)) and briefly consider the 
scattering problem 

(4.IIa) 

(4.IIb) 

(4.l1c) 

(4.11d) 

First we consider the special configuration u + 2 - U _ 2 > ° 
(case Cd)' For the degenerate continuous spectrum 
AEC, + C4 (A ± ER), (4.IIa) describes the scattering of a 
plane wave incident at x = + 00 ,¢ + t (0) by the potential Q + 

with a reflected plane wave (S21/S\I)¢i+2(O) atx = + 00 and 
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a transmitted plane wave (d+ISII)¢_.'O) at x = - 00 and 
similarly for (4.11b)-(4.11d). Thus we may define the reflec· 
tion coefficients r + 1 = 52 /5 •• , r +2 = S12/S22, 

r _. = - 821 /S22, r -2 = - 5J2/5f) and the transmission 
coefficients t + 1 = d +181., t +2 = d +1822, L 1 = d -/822, 

t_2 = d_/SII for AEC1 + C4• For the simple continuous 
spectrum AECs + C6(A_ER,A,+eR, see Fig. 4), we have the 
relations SlIS22 = 821812 and S12/822 = - ir +1(,.1, + ,.1,+) 
and (4.11c) is equivalent to (4.11d), whereas (4.11a) and 
(4.11b) do not hold. In this case the incident plane wave 
if> _. :0) at x = - 00 is accompanied by a reflected plane wave 
if> _ 2 '0) but no transmitted plane wave at x = + 00. In the 
configuration u + 2 - U _ 2lR (case Cs ), only one of two J ost 
solutions rP + 1.2and ¢ _ 1.2 is bounded for A_ER,x = + 00 

and ,.1,+ ER,x = - 00, respectively. Hence one equation 
from (4.11a) and (4.llb) for A+ER and one from (4.11c) and 
(4.11d) for A _ER may be used to describe the reflection of a 
plane wave at x = + 00 and - 00 without a transmitted 
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planewaveatx = - 00 and + oo,respectively. The scatter
ing theory for the cases Cd and Cs in terms of the similarity 
transformation K ± of Sec. 2 will be discussed elsewhere. 
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Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis 
approach a) 
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Oak Ridge National Laboratory. Oak Ridge. Tennessee 37830 
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Concep~s of nonlinear functional analysis are employed to investigate the mathematical 
~ou~d~tIOn~ underly.ing s.en.sitivity th~ory. This makes it possible not only to ascertain the 
hmltatIOns Inher~nt In eXistIng analytical approaches to sensitivity analysis, but also to rigorously 
formulate a con.siderably ~ore general sensitivity theory for physical problems characterized by 
system~ of nonhnear equatIOns and by nonlinear functionals as responses. Two alternative 
formalisms, la?eled the "forward sensitivity formalism" and the "adjoint sensitivity formalism," 
are developed In order to evaluate the sensitivity of the response to variations in the system 
pa~ameters. The f~rward s~nsitivi~y formalism is formulated in normed linear spaces, and the 
eXistence of the Gateaux differentials of the operators appearing in the problem is shown to be 
both necessary and sufficient for its validity. This formalism is conceptually straightforward and 
can be advantageously used to assess the effects of relatively few parameter alterations on many 
responses. On the other hand, for problems involving many parameter alterations or a large data 
base a~d c~mparativel~ few functional-type responses, the alternative adjoint sensitivity 
formalIsm IS computationally more economical. However, it is shown that this formalism can be 
developed only under conditions that are more restrictive than those underlying the validity of the 
forward sensitivity formalism. In particular, the requirement that operators acting on the state 
vector and on the system parameters must admit densely defined Gateaux derivatives is shown to 
be offundamental importance for the validity of this formalism. The present analysis significantly 
extends the scope of sensitivity theory and provides a basis for still further generalizations. 

PACS numbers: 02.30.Sa 

I. INTRODUCTION 

The use of adjoint functions for sensitivity analysis ap
peared as early as the 1940's. The main approaches to sensi
tivity analysis were either based on perturbation theory or 
based on variational approaches. In reactor theory, for ex
ample, the first use of perturbation theory is attributed 1 to 
Wigner/ while the variational principles are considered3 to 
have evolved from works of Levine and Schwinger4 and 
Roussopolos.5 The scope of both the variational formulation 
and the perturbation theory approach has subsequently been 
generalized and extended (see, e.g., Refs. 6--12). The great 
potential of adjoint-function based approaches to sensitivity 
analysis of several linear problems encountered in reactor 
theory has been demonstrated in the comprehensive reviews 
given by Stacey3 and Greenspan. 12 These successes have 
generated considerable interest in extending and applying 
such approaches to sensitivity analysis of several inherently 
nonlinear problems in other areas. 13-17 Higher-order pertur
bation theories have also been proposed 18 for sensitivity 
analysis of neutronics problems involving linear operators. 
Recent developments, through 1979, in adjoint-operator 
based approaches to sensitivity and uncertainty analyses 
have been comprehensively reviewed by Weisbin et al. 19 

To date, several alternative theoretical approaches to 
adjoint-based sensitivity equations have evolved, the three 
prominent being: 

alResearch sponsored by Electric Power Research Institute (RP 1441-1) 
under subcontract with Oak Ridge National Laboratory. operated by 
Union Carbide Corporation for the U. S. Department of Energy. 

1. variational approaches, 3,7.9, J().14 

2. perturbation theory approaches, including "general
ized perturbation theory, "0,8,12.13.16.1 H 

3. differential approaches. ls
•
17 

All of these approaches have been focused on deriving 
expressions for the sensitivities of the system responses (i.e., 
system performance parameters) to changes in the input pa
rameters. The system responses considered in these ap
proaches have been particular forms of functionals, and the 
sensitivities have been defined as the derivatives of these re
sponses with respect to the input parameters. However, the 
necessary and sufficient conditions underlying the validity 
of these approaches have not been rigorously analyzed. Con
sequently, questions have been raised20 regarding the appli
cability of these approaches to sensitivity analysis of prob
lems that are more complex than those treated so far; of 
current practical interest are, for example, thermal-hydrau
lics problems involving discontinuous state functions and 
parameters. 

In a recent article, Cacuci et al. 21 have introduced and 
employed concepts of nonlinear functional analysis22

-
24 in 

an attempt to set sensitivity theory on a more rigorous math
ematical foundation, and to extend the scope of the theory. 
In addition, they have also presented a sensitivity theory 
formulation for a class of discretized nonlinear systems, and 
have enlarged the type of functionals considered as re
sponses. Although, rigorous within explicitly stated limita
tions, their derivations repeatedly required the existence of 
the Frechet derivatives22

-
20 ofthe various operators, without 

providing an analysis of the motivations underlying the ne-
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cessity of these requirements. Since operators that are not 
Frechet differentiable can also be encountered in practice. an 
investigation of the aforementioned question of necessity is 
clearly needed. 

In view of the high level of current interest in sensitivity 
theory. there is a strong incentive to present a detailed inves
tigation ofits underlying mathematical aspects. This investi
gation is carried out by employing the concepts and methods 
of nonlinear functional analysis. 22-26 As a result. a sensitivity 
theory is formulated here in a considerably more general 
framework than before. 

The system of nonlinear operator equations and the as
sociated response. a general nonlinear functional. are intro
duced and described in Sec. II; altogether. they are intended 
to be sufficiently general to include-as particular cases
the mathematical representation of a large number of prob
lems in a wide variety of fields. The problem is formulated 
here in normed linear spaces over the scalar field of real 
numbers. This choice of space is sufficiently general for the 
purposes of this study: 

1. it provides the framework for the clear exposition of 
the necessary and sufficient conditions underlying the sensi
tivity theory formalisms presented in Sec. III. 

2. it opens the possibility to establish the limitations 
inherent in the previous approaches (by direct comparison 
with the present approach). 

3. it provides a basis for still further extensions of the 
theory. 

The formulation of the sensitivity theory presented in 
Sec. III is centered on evaluating the Gateaux differen
tiaJ22.24.25 of the response; this quantity is considered to be 
"the most general measure of the sensitivity of a response to 
variations in the system parameters.,,27 Consequently, Secs. 
IlIA and I1IB are devoted to the presentation of the two 
alternative methods for evaluating this Gateaux differential. 
The conceptually and computationally straightforward 
method is labeled the "forward sensitivity formalism." and 
is dealt with in Sec. IlIA. The alternative method, labeled 
the "adjoint sensitivity formalism." is presented in Sec. IlIB. 
The motivation underlying the development of the "adjoint 
sensitivity formalism" is well known 1-19.21 this formalism is a 
great deal more economical to apply, i/possible, to the broad 
class of practical problems characterized by large data bases 
and comparatively few responses. However. the present 
analysis also reveals a fact that does not seem to have been 
noticed so far: the "adjoint sensitivity formalism" can be 
formulated only under conditions that are more restrictive 
than those underlying the formulation of the "forward sensi
tivity formalism." 

The limitations inherent in the previous ap
proachesl-19.21 to sensitivity theory are assessed in Sec. IV by 
examination of their underlying assumptions and by com
parison to the formalisms presented in Sec. Ill. The results 
arrived at in this study are then reviewed and summarized in 
Sec. V. There. the particularly important relationship be
tween the representation of the "indirect effect term" as an 
inner-product, and the construction of the "adjoint sensitiv
ity formalism" is also underscored. By drawing attention to 
this special relationship. the ground is prepared for an ac-
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companying paper28 whose objective is to extend sensitivity 
theory to more complicated responses. 

Finally, some thoughts are offered on possible direc
tions for future research aimed at further generalizations of 
the theory presented here. 

II. MATHEMATICAL REPRESENTATION OF THE 
PHYSICAL PROBLEM 

Consider, for the sake of generality, that the physical 
problem under consideration is represented by the following 
system of K coupled nonlinear equations written in operator 
form as 

N[u(x),a(x)] = Q[a(x),x]. (1 ) 

The quantities appearing in Eq. (1) are defined as follows: 
1. x = (Xt, ... ,xJ ) is the phase-space position vector 

xEfl C f!ll J. where n is a subset of the !-dimensional real 
vector space f!ll J, 

2. u(x) = [u I(X) .... ,uK (x)] is the state vector; u(x)EEu' 
where Eu is a normed linear space over the scalar field A of 
real numbers, 

3. a(x) = [a\(x), ... ,ar(x)] is the vector of system param
eters' aEE where E is also a normed linear space. In prac
tical ~ppli~~tions, Ea a may be one of the Hilbert spaces L2 or 
12; occasionally, the components of a may simply be a set of 
real scalars, in which case Ea is f!lli. 

4. Q[a(x).x] = [QI(a,x), ... ,QK(a,xIJ Tis a (column) vec
tor whose elements represent inhomogeneous source terms 
(the symbol T denoted "transposition"); QEEQ , where EQ is 
again a normed linear space. The components of Q may be 
operators (rather than just functions) acting on a(x) and x, 

5. the components of the (column) vector 
N = [N.(u,a), ... ,NK(u.a)] Tare nonlinear operators acting, 
in general. not only on the state vector u(x), but also on the 
vector of system parameters a(x). 

In view of the definitions given above, N represents the 
mapping N:SCE-EQ' where 
S = Su XSa.Su CEu,Sa CEa, and E = Eu XEa' Note that 
an arbitrary element eEE is of the form e = (u,a). Even 
though in most practical applications E and EQ will be Hil
bert spaces (e.g., the space L 2, the Sobolev spaces Hm), this 
restriction is not imposed at this stage for the sake of general
ity. In the same vein of generality. the components of N are 
considered here to be defined in terms of operators such as 
differential. difference, integral. distributions. or infinite ma
trices. The domain S ofN is, of course, intimately related to 
the characteristics of these operators. Thus, if differential 
operators appear in Eq. (1). then a corresponding set of 
boundary and/or initial conditions-which is essential to 
define S-must also be given. This set can be represented as 

! B(u.a) - A(a) J an = O. (2) 

where A and B are operators and an is the boundary of n; 
the operator A(a) represents all inhomogeneous boundary 
terms. 

To be definite. u(x) is considered to be the unique non
trivial solution of the physical problem described in Eqs. (1) 
and (2). This requirement is usually fulfilled (or assumed to 
be fulfilled when rigorous existence and uniqueness proofs 
are lacking) in most problems of practical interest. The fol-
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lowing purposes are accomplished as consequences of im
posing this requirement: 

1. elimination from further consideration of those 
points in nonlinear problems where bifurcation (i.e., branch
ing) of solutions occurs, 

2. inclusion of the treatment of source-free problems as 
a special case of Eq. (1). 

In this vein, Eq. (1) is considered to include any equality 
constraints that u(x) might be required to satisfy. The specifi
cations introduced so far are sufficiently general to allow 
Eqs. (1) and (2) to include, as particular cases, the mathemat
ical modeling ofa wide range of problems of practical inter
est in many diverse fields. 

The system response (i.e., performance parameter) R 
associated with the problem modeled by Eqs. (1) and (2) must 
also be specified. The response considered here is a general 
nonlinear functional of e, and is represented by the mapping 

R (e):DCE--+A, (3) 

where D is considered to be finitely openB at e, and where A 
is the underlying scalar field ofreal numbers. Equation (3) 
represents a significant extension over the particular forms 
of nonlinear functionals considered as responses in previous 
works.15.17-19.21 

III. SENSITIVITY THEORY 

The most general and fundamental concept for the defi
nition of the sensitivity27 of a response to variations in the 
system parameters is the Gateaux (G) differential. The G 
differential29 VR (eO;h ) of R (e) at eO with increment h, is de
fined as22.24.25.30.31 

lim[R (eO + th) - R (eo)]!t = VR (eO;h) 
,.0 

for tEA, and all (i.e., arbitrary) vectors hEE; here, 
h = (hu,ha)' since E = Eu XEa' 

(4) 

The G differential VR (eO;h ) is related to the total vari
ation21 .30 [R (eO + h) - R (eO)) of R at eO through the 
relationship 

R (eO + h ) - R (eO) = VR (eo;h ) +.:l (h ), (S) 

where 

lim[.:l (th )It] = O. 
,- .0 

It is important to note that, in view of the properties of 
the G differential, R need not be continuous in u andlor a 
for VR (eO;h ) to exist at eO = (uD ,ao), and that VR (eO;h ) is not 
necessarily linear in h. It thus becomes apparent that by de
fining VR (eo;h ) to be the sensitivity afthe response R, the 
definitions of sensitivity encountered in the previously men
tioned works 1-19 are considerably generalized and extended. 
With the present definition, the concept of sensitivity also 
becomes meaningful for certain types of physical problems 
and responses which could not have been treated within the 
framework of the previous approaches. 1-19 The circum
stances under which the present definition of sensitivity [i.e., 
VR (eO;h )) reduces to the previous ones will be discussed in 
detail in Sec. IV. 

Thus, the objective of the sensitivity theory to be pre-
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sented in this study is to evaluate VR (eO;h ). To achieve this 
objective, two alternative formalisms-the "forward sensi
tivity formalism" and the "adjoint sensitivity formalism"
are developed and discussed. 

A. The "forward sensitivity formalism" 

It is observed that, given the vector of "changes" ha 
around the "base-case configuration" aO, the sensitivity 
VR (eO;h )ofR (e) at eO canbe evaluated only after determining 
the vector hu, since huand ha are not independent. A rela
tionship between hu and ha is obtained by taking the G dif
ferentials of Eqs. (1) and (2). This gives 

VN(eO;h) - VQ(aO;h a ) = 0, (6) 

and 

(7) 

respectively. Of course, the above system of equations
which will subsequently be referred to as the "forward sensi
tivity equations" -is meaningful if and only if (ift) the re
spective G differentials of the operators N, B, Q, and A exist. 
Note again that these G differentials need not necessarily be 
linear operators in either hu or ha' and that their existence 
does not require the operators N, B, Q, and A to be continu
ous in u or a at eO. 

For a given vector of "changes" ha around an, one must 
be able to solve the system given in Eqs. (6) and (7) to obtain 
hu; otherwise, of course, it would be impossible to perform 
sensitivity analysis of the given physical system. [However, a 
detailed analysis of the conditions under which Eqs. (6) and 
(7) can be solved for hu is not within the scope of this work.] 
Once hu is determined, it can be employed, in turn, to evalu
ate the sensitivity VR (eO;h ) of R (e) at eO, for a given vector of 
"changes" ha . 

It should be noted here that the "forward sensitivity 
formalism" is characterized in a fundamental sense by the 
fact that the solution hu of the ha -dependent "forward sensi
tivity equations" [viz., Eqs. (6) and (7)] is needed to evaluate 
VR (eo;h ). Consequently, from the standpoint of computa
tional costs, the "forward sensitivity formalism" is advanta
geous to employ only if, in the problem under consideration, 
the number of different responses of interest exceeds the 
number of input parameters. However, a large number of 
problems of practical interest are characterized by very large 
data bases (i.e., a has many components) and comparatively 
few responses. In such situations, it is not economical to 
employ the "forward sensitivity formalism" to answer all 
sensitivity questions that might arise in practice, since it be
comes prohibitively expensive to repeatedly solve the h" -
dependent "forward sensitivity equations" to determine hu 
for all possible vectors ha . Hence, it is clearly desirable to 
devise (if possible) an alternative procedure to evaluate 
VR (eO;h ), to avoid the necessity of repeatedly solving the 
"forward sensitivity equations." 

B. The "adjoint sensitivity formalism" 

The ideas underlying this alternative procedure to 
evaluate sensitivities were seeded in the earliest works2,4.5 on 
sensitivity analysis of reactor physics problems, and they 
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have remained substantially unchanged. These ideas are re
called now in order to motivate the direction of the nonlinear 
functional analysis-based derivations to be presented in this 
section. 

In all previous works. 1-19 it was possible to separate the 
expression giving the sensitivity of the response functional 
[corresponding to our VR (eo;h )] into two terms: the "direct 
effect term"-involving only quantities corresponding to 
our ha • and the "indirect effect term" -involving only quan
tities corresponding to our hu' The "indirect effect term" 
was subsequently expressed as an inner product involving 

1. a function corresponding to our hu. and 
2. a function that ultimately became the source term for 

the "adjoint equations." 
A system of equations formally adjoint to equations corre
sponding to our "forward sensitivity equations" was intro
duced. solved and the resulting solution used to evaluate the 
"indirect effect term." Since the resulting "adjoint equa
tions" were independent of changes in the input parameters. 
the solution of these equations was computed once and for 
all per response. In turn. this opened the way to an economi
cal evaluation of the "indirect effect term." for all possible 
combinations of changes in the input parameters. 

The above-mentioned procedure has been employed for 
a long time to perform sensitivity analysis of the (conceptual
ly simpler) linear problems in reactor physics and shield
ing. 1

-
12 and has been formally extended in recent years to 

certain nonlinear problems. 13-19 However. the derivations 
underlying this procedure have been carried out in a heuris
tic manner. and their formal characteristics are underscored 
by the fact that the necessary and sufficient conditions for 
their validity have not yet been analyzed rigorously. As al
ready mentioned. sufficient conditions for the applicability 
of such a procedure to sensitivity analysis of nonlinear prob
lems in real Hilbert spaces have been stated in Ref. 21. There. 
it was shown that an adjoint operator-based procedure can 
be rigorously formulated. provided that Frechet derivatives 
of the nonlinear operators describing the physical problem 
[viz .• Eqs. (1)-(3)] exist. However. the following analysis will 
show that such a procedure--can be formulated without re
quiring the existence of Frechet derivatives. This procedure 
will subsequently be referred to as the "adjoint sensitivity 
formalism." 

In view of the foregoing discussion. it becomes clear 
that the development of this "adjoint sensitivity formalism" 
must be focussed on constructing an adjoint system that is (i) 
uniquely defined. (ii) independent of the vectors hu and ha• 
and (iii) such that its solution can be used to eliminate all 
unknown values of hu from the expression of VR (eO;h ). Ad
joint operators can only be introduced uniquely for densely 
defined linear operators in Banach spaces. However. at this 
stage. VN(eO;h ). VB(eO;h ). and VR (eO;h ) are not necessarily 
linear in h. and E is not necessarily complete. It follows that 
developing the "adjoint sensitivity formalism" requires the 
introduction of restrictions in addition to those underlying 
the validity of the "forward sensitivity formalism." 

There are several equivalent theorems22
•
25 giving neces

sary and sufficient conditions in order that a nonlinear oper
ator F(e) with domain in E and range in another normed 

2797 J. Math. Phys .• Vol. 22. No. 12. December 1981 

linear space (in particular. EQ or A) admit a G differential 
VF (eO;h ) at eO that is linear in h. A set of such conditions is 
provided by the following theorem22: 

Theorem: the G-differential VF (eO;h ) of F at eO is linear 
in hEE iff: 

F(e) satisfies a weak Lipschitz condition at eO. and: 

F(eO + thl + th2) - F(eO + th l ) - F(eO + th 2 ) 

+ F(eO) = o(t). (8) 

A G differential VF (eO;h ) that is linear in h is customar
ily denoted by DF(eO;h); furthermore. 
DF (eO;h ) = F; (eo)h. where F; (eO) is the Gderivative22.25.31.32 
of Fat eO. This shows that. in the present case. VN(eO;h j and 
VB(eO;h ) are linear in h iffN and B satisfy, in turn, conditions 
identical to those stated in Eq. (8) for F(e). 

For the purposes of subsequent derivations. VN(eO;h) 
and VB(eO;h ) are henceforth considered to be linear in h. and 
denoted by D N(eO;h ) and D B(eO;h ). respectively. Recalling 
now that. in our case. E = Eu XEa. it further follows that 

(9) 

and 

(10) 

In the above expressions. N~ (eO) and B~ (eO) denote. respec
tively. the partial G derivatives25 at eO of Nand B with re
spect to u, while N~ (eO) and B~ (eO) denote the partial G de
rivatives at eO ofN and B with respect to a. Note that 
N~ (eO) and B~ (eO) are linear operators in hu with domain in 
Eu and range in EQ [i.e .• N~ (eO).B~ (eO)EY(Eu .EQ)]' and are 
independent of ha ; similarly. N~ (eO). B~ (eo)EY(Ea .EQ). and 
are independent of hu' The explicit representation of 
N~ (eO) and N~ (eO) are matrices whose elements are the par
tial G derivatives at eO of the components ofN with respect to 
the components of u and the components of a. [The elements 
of the matrices representing B~ (eo) and B~ (eO) are obtained 
in a similar manneL] For example, N~ (eo) is represented by 
the matrix 

N~(eO) = [Lu(eO)]; Lu(eO) = (N,)~)eO); i.} = 1 .... ,K. 
(11) 

In view of Eqs. (9) and (10). the "forward sensitivity 
equations" [given in Eqs. (6) and (7)] become 

N~(eo)hu = VQ(aO;ha) - N~(eO)ha (12) 

and 

!B~(eO)hu lall = ! VA(aO;ha) - B:,(eOjha laa. (13) 

Although N~ (eO).B~ (eO)EJt"(Eu .EQ). further progress 
toward constructing the desired adjoint system can be made 
only ifN~(eo) is densely defined and the underlying normed 
linear spaces are complete. (Otherwise. of course. adjoint 
operators cannot be uniquely determined.) Since the lack of 
an inner product in a general Banach space gives rise to sig
nificant conceptual distinctions between the adjoint of a lin
ear operator on a Banach space and the adjoint of a linear 
operator on a Hilbert space. the choice of space becomes 
important for subsequent derivations. To motivate the 
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choice to be made here, it is recalled that all of the previous 
approaches to sensitivity theory made use of real inner pro
ducts. Therefore, clarification of the conditions underlying 
the validity of these approaches is facilitated by the simplify
ing properties of Hilbert spaces. Specifically, the spaces Eu 
and EQ are henceforth required to be real Hilbert spaces, 
denoted by H u and H Q' respectively. The inner products on 
Hu and HQ are denoted by ( , > and ( , ) respectively. 

Since Hilbert spaces are self-dual, the following rela
tionship holds for a vector vEl! Q : 

(v,N~(eO)hul= (L*(eO)v,hu> + (P[hu,v]laa' (14) 

In the above equation, the operator L *(eO) is the K XK 
matrix 

( IS) 

obtained by transposing the formal adjoints of the operators 
Lij(eO), and (P [h u ,v] la!l is the associated bilinear form 
evaluated on an. The domain of L * is determined by select
ing appropriate adjoint boundary conditions, represented 
here in operator form as 

(B*(v;eO) - A*(eo)laa = O. (\6) 

These boundary conditions are obtained by requiring that 
\. they be independent of hu ,ha' and G derivatives with 

respect to a, and 
2. the substitution of Eqs. (13) and (16) into the expres

sion of (P [hu ,v] I au must cause all terms containing un
known values of hu to vanish. 
This selection of the adjoint boundary conditions reduces 
(P [hu ~) 1 au to a quantity designated here by i>[ha ,v;eO], 
where P contains boundary terms involving only known val
ues of h" ,v, and (possibly) eO. In general, Pdoes not automati
cally vanish as a result ofthese manipulations,33 although it 
may do so in particular instances. Hence, Eq. (14) can also be 
written as 

(v,N~(e())hul= (L*(eO)v,h u> +P[h""v;e°]. (17) 

The above equation can be further transformed by recalling 
Eq. (12); then Eq. (17) becomes 

(L *(ell)v,hu > = (v, VQ(ail;h,,) - N~ (eD)ha ) - P [h" ,v;e°]. 
(18) 

Note that the right-hand side of Eq. (18) does not con
tain any values of hu' Thus, ifin the functional VR (eO;h ) the 
hu dependence could be separated from the hex dependence, 
and the quantity containing this hu dependence could be 
expressed in terms of the left-hand side of Eq. (18), then the 
construction of the "adjoint sensitivity formalism" would be 
concluded. However, (L *(eO)v,h u ) is linear in hu' while in 
general, VR (eo;h ) is not. For VR (e();h ) to be linear in h (and, 
consequently, in hu)' it becomes apparent that R (e) must be 
required to satisfy the same conditions as those required of 
F(e) in Eq. (8). Then, the linear G differential VR (eO;h ) is 
denoted by DR (eO;h ), and can be expressed as 

DR (eO;h) = R ~(eo)hu + R ~(eO)ha' (\9) 

where R ~ (eO) and R ~ (eo) are, respectively, the partial G de
rivatives at eO of R (e) with respect to u and a. 

As desired, the hu dependence has been separated from 
the ha dependence. Note here that, historically, quantities 
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corresponding to the functiona1s R ~ (eO)h u and R ~ (eD)ha 
have been referred to as the "indirect effect term" and the 
"direct effect term," respectively. This terminology reflects 
the fact that in the previous works l

-
19 the response was con

sidered to depend on a both "directly" and "indirectly"
via the state vector u, i.e., the response was considered to be a 
mapping from the space of the input parameters into the real 
numbers. Although this interpretation of the response is in 
contradistinction with the concepts introduced and em
ployed in this work, it is still convenient to continue to use 
this traditional terminology when referring to 
R ~ (eO)h" and R ~ (eD)ha' 

Since the functional R ~(eO)hu is linear in hu and since 
Hilbert spaces are self-dual, the Riesz representation theo
rem26 ensures that there exists a unique vector V u R (eO)El! u 
such that 

(20) 

At this stage, it can be required that the right-hand side 
ofEq. (20) and the left-hand side ofEq. (18) represent the 
same functional. Then, the Riesz representation theorem en
sures that the relationship 

L*(eO)v=VuR(eO) (21) 

holds uniquely, where v satisfies the boundary conditions 
given in Eq. (16). 

The construction of the desired adjoint system--<:on
sisting of Eqs. (21) and (16)-has thus been completed. Fur
thermore, the desired elimination of the unknown values of 
hu from the expression giving the sensitivity DR (eo;h ) of R (e) 
at eO to variations ha has also been accomplished, since in 
view of Eqs. (18)-(21), 

DR (eo;h) = R ~(eO)ha + (v,vQ(eo;ha) - N~(eo)ha) 

(22) 

Once the single calculation to determine the adjoint function 
v is performed, Eq. (22) provides the most efficient means to 
obtain the sensitivity DR (eO;h ) of R (e). However, it is impor
tant to reemphasize that Eq. (22) holds if and only if all the 
requirements imposed in this section on the various opera
tors are satisfied. 

IV. COMPARATIVE DISCUSSION OF PREVIOUS 
APPROACHES 

In all of the works based on the differential 15. 17 and the 
generalized perturbation theory.1·K.I.U 6.18, 1 'i approaches to 
sensitivity analysis, the problems were a priori considered to 
depend explicitly and implicitly through the state functions 
on the system parameters. [The terminology "generalized 
perturbation theory" is customarily used in works on reactor 
theory' to denote that the perturbation estimate obtained 
accounts not only for effects resulting directly from the alter
ation of the system parameters (i.e., "perturbation theory") 
but also for indirect effects arising from the changes in the 
state function (i.e., the dependent variable) due to the system 
alteration, without explicitly calculating the altered state 
function.] This would conceptually correspond to interpret
ing the problem under consideration (including the response) 
as a complicated mapping of a subset D a C Ell into the set A 
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of real numbers. Consequently, in order to obtain expres
sions for the sensitivity coefficients, the respective deriva
tions must rely explicitly and/or implicitly on the existence 
and uniform continuity of the derivatives of the operators 
and the state functions with respect to the system parameters 
(and, possibly, with respect to the phase-space variables). 

In the works dealing with nonlinear problems, it was 
further stated that the "differentiated equations,,15.17 (ob
tained by formally differentiating the nonlinear operator 
equations and response with respect to an arbitrary input 
parameter) or, correspondingly, the "equations for the al
tered state functions" 13,16 (obtained by formal first-order 
perturbation theory expansions around the "base-case con
figuration" of the state functions and input parameters) are 
linear. In fact, these equations correspond conceptually to 
our "forward sensitivity equations" given in Eqs. (6) and (7). 
This correspondence makes the conditions underlying the 
validity of the "differentiated equations" or the "equations 
for the altered state functions" become evident: as de
rived, 13,15-17 these equations are rigorously valid only if the 
input parameters are real scalars, if the derivatives of the 
various state functions with respect to these input param
eters are uniformly continuous, and if all operators (includ
ing the response) appearing in the formulation of the prob
lem under consideration admit Frechet derivatives22.25 with 
respect to the state functions. It should also be mentioned 
that, in these works, 15-17 the adjoint system was always as
sumed to exist, and was introduced in a heuristic manner 
with initially unspecified source terms. These source terms 
were subsequently identified with the "derivatives of the re
sponse with respect to the state functions" by making use of 
inner products. Again, linearity of this "response deriva
tive" 15,17 (or, correspondingly, linearity of the "response per
turbation" with respect to the "perturbations in the state 
functions" 13.16) was implicitly assumed. Furthermore, the 
uniqueness of the end products (e.g" adjoint systems, sensi
tivities) was assumed but not actually demonstrated. 

The variational approaches3.7.10.14 relied on construct
ing an appropriate variational functional, which was subse
quently required to satisfy a stationarity condition for the 
base-case values of the state functions and system param
eters. Expressions for the sensitivity coefficients then result
ed from this requirement. In the earlier formulations [see, 
e.g., Ref. 3, p. 6], an unspecified function appeared in the 
expression of the variational functional to be made station
ary. This function was subsequently identified with the "ad
joint" function that satisfied an "adjoint system" whose exis
tence was a priori assumed. Significant advances were made 
(see, e.g., Stacey's review3

) in modifying earlier variational 
principles by using Lagrange multipliers so that restrictions 
which are mathematically necessary to impose on the class 
of trial functions correspond to the physical conditions asso
ciated with the original problem and, just as important, so 
that the constraints are directly incorporated in the vari
ational principle. Although considerable ingenuity is always 
required to construct an appropriate variational function
al-whose explicit form depends on the problem under con
sideration-these variational approaches did not require (in 
principle) the existence of derivatives of the state functions 
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with respect to the system parameters. In this sense, the as
sumptions underlying these variational approaches are less 
restrictive than the assumptions underlying the previously 
mentioned differential and generalized perturbation theory 
approaches. However, derivatives of the various operators 
with respect to the state functions and the system parameters 
were still needed. Although the exact nature of these deriva
tives (and, consequently, the necessary and sufficient condi
tions underlying their existence) were not generally ana
lyzed, Stacey defines and employs a quantity referred to in 
his work3 as the "variation of a functionaL" In the light of 
the concepts of nonlinear functional analysis,22,2s it becomes 
apparent that his definition is in fact the definition of the 
Frechet differential of that functionaL This implies that the 
"functional derivatives" encountered in these variational ap
proaches3

•
14 must be interpreted as Frechet derivatives. 

It is noted that these approaches 1-19 to sensitivity analy
sis were developed to analyze specific practical problems en
countered in reactor physics, shielding, depletion, and heat 
transfer. These specific problems involved sufficiently well
behaved operators, and the parameters considered for sensi
tivity analysis were, in fact, real scalars. Therefore, even 
though the derivation underlying these approaches are 
mathematically not entirely rigorous, the end results are es
sentially correct. 

In reformulating both the differential and the variation
al approaches to sensitivity analysis of nonlinear systems of 
equations, Cacuci et al. 21 considered a typical nonlinear 
problem as a mapping defined on a product space corre
sponding to E = Eu X Ea as defined in Sec. II. (Note, howev
er, that these spaces were considered at the outset to be Hil
bert spaces.) This completely eliminated the need for the 
existence of derivatives of the state vector with respect to the 
system parameters. In addition, the definition of sensitivity 
of a response was generalized to allow consideration of sys
tem parameters that were functions rather tr.anjust scalars. 
By requiring the existence of partial Frechet derivatives22•25 

of the operators with respect to the state vector and the sys
tem parameters, the existence of an appropriate adjoint sys
tem was ensured. Although this work generalized and ex
tended the scope of the previously available sensitivity 
theory formulations, the existence of partial Frechet deriva
tives is not actually essential for sensitivity analysis; as 
shown in Sec. III, the existence of the G differentials-for 
the "forward sensitivity formalism," -or of the partial G 
derivatives with respect to the state vectors only-for the 
"adjoint sensitivity formalism"-are both necessary and 
sufficient. 

Although the concept of an inner product has been es
sential to formulating the existing adjoint-function based ap
proaches 1-19.21 to sensitivity analysis, the implications asso
ciated with the particular use of this concept in these works 
have not been generally discussed. Clearly, the prerequisite 
for employing an inner product is that the problem under 
consideration must be formulated in an appropriate Hilbert 
(or at least pre-Hilbert) space. Furthermore, since a single 
definition for the inner product was used in each of these 
works when introducing adjoint operators, the underlying 
implication is that the problem being analyzed can only in-
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volve operators with ranges in the same Hilbert space to 
which the state vector belongs. By contrast, the "adjoint sen
sitivity formalism" developed here makes use of two distinct 
inner products [cf., Eq. (14) et seq.]; this allows sensitivity 
analysis of problems involving operators whose ranges may 
be in a Hilbert space that differs from the Hilbert space to 
which either the state vector or the system parameters be
long. Also, it is noted that no distinctions were made in pre
vious works l

-
19

,21 regarding the fundamental mathematical 
differences between the requirements underlying the "for
ward" formulations and those underlying the "adjoint" for
mulations of sensitivity theory. The present work provides a 
basis for assessing the potentially important practical conse
quences of these differences. 

The forgoing discussion has highlighted the major as
pects regarding the specific uses of perturbation theory and 
variational approaches for applications to sensitivity analy
sis. For such applications, the common scope of these ap
proaches is to obtain sensitivities. In reactor theory, for ex
ample, some authors3

•
34 regarded perturbation theory as an 

application of variational methods in the sense that a vari
ational formulation "is employed to derive a generalized per
turbation theory for estimating the change in the physical 
quantity of interest which would take place if the properties 
of the system were to be altered" (Ref. 3, p. 18). But the 
general uses of either perturbation theory or variational 
methods are not limited to deriving sensitivity functions. 
Similarities as well as distinctions between the perturbation 
theory and the variational approaches to sensitivity analysis, 
and the contributions that this work brings to sensitivity the
ory can be further clarified by briefly analyzing the relation
ships between perturbation theory, variational methods, and 
functional analysis from a broader perspective. 

Perturbation theory and variational methods are not 
sharply defined disciplines; they are bodies of knowledge 
unified more by the respective method of approach than by 
clear-cut demarcation of their respective provinces. For ex
ample, the terminology "perturbation theory" is also en
countered in celestial mechanics and in nonlinear oscillation 
theory. However, although these "perturbation theories" 
study systems deviating slightly from an ideal system for 
which the complete solution is known, the problems they 
treat and the tools they use are quite different from those 
used to derive sensitivities. In reactor theory, for example/5 

this latter use of perturbation theory has evolved from the 
work of Rayleigh on vibrating systems and ofSchrodinger in 
quantum mechanics. 

The works based on perturbation theory to derive sensi
tivities for problems involving linear operators tacitly as
sume that the eigenvalues and eigenvectors admit series ex
pansions in a small parameter that measures the deviation of 
the "unperturbed operator" from the "unperturbed" one. 
Without a proof that the series actually converges, it is diffi
cult to decide whether the first term of the series gives an 
adequate picture introduced by the perturbation, a fact well 
known in reactor theory,35 for example. For applications to 
sensitivity analysis of problems involving linear operators, 
the underpinnings of the perturbation theory approach lie in 
linear functional analysis. Although a systematic presenta-
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tion of perturbation theory for linear operators is now avail
able,36 further work remains to be done to fully exploit these 
functional-analytic techniques for sensitivity analysis. 

V ariationalmethods, just like perturbation theory, are 
not developed specifically for sensitivity analysis, although 
the variational principles developed for this purpose are, of 
course, very useful. But variational principles, even those 
restricted to limited classes of variations, are difficult to for
mulate and for many nonlinear problems of interest (e.g., 
thermal hydraulics, heat and mass transfer) variational prin
ciples are not yet available. 37 Furthermore, a systematic and 
general treatment of variational principles for problems in
volving nonlinear operators must necessarily rely on the dif
ferential concepts of nonlinear functional analysis, i.e., Ga
teaux and Frechet differentials and derivatives. 

The present work attempts to provide a general frame
work for systematic sensitivity analysis of both linear and 
nonlinear systems. The scope of the theory formulated here 
is to derive sensitivities, to be used not only for predicting the 
behavior of the response when the system parameters are 
altered, but also for ranking the importance of these param
eters, and for performing uncertainty analysis by combining 
the sensitivities with the appropriate parameter covariances. 

The link between a rigorous perturbation theory 
(and/or variational) approach to sensitivity analysis and the 
sensitivity theory presented in this work is provided by func
tional analysis. In particular, the similar overall strategy and 
the use of adjoint operators stem from functional-analytic 
concepts. In this sense, the greater general validity and appli
cability of the present sensitivity theory also contributes to 
the development of perturbation theory for applications to 
nonlinear systems. Finally, it is noted that whenever the 
variational, differential, and perturbation theory approaches 
are rigorously applicable, the end results for the sensitivities 
are identical to those produced by the sensitivity theory pre
sented in this work. 

v. SUMMARY AND CONCLUSIONS 

The methods and concepts of abstract analysis have 
been employed to formulate a sensitivity theory for physical 
problems described by systems of coupled nonlinear equa
tions, and nonlinear functionals as responses. Greater gener
ality has been achieved by considering the problem and the 
response as mappings defined on the product space 
E = Eu XEa. Consequently, it has been possible to circum
vent the need to assume a specific form for the functional 
representing the response R (e). The scope and versatility of 
the present formulation of sensitivity theory have also been 
extended by defining the sensitivity of the response to vari
ations in the system parameters (a) as the G differential 
VR (e(\h) of R (e) at eO. 

Two alternative formalisms have been developed to 
evaluate the sensitivity VR (eO;h ) of R (e): the "forward sensi
tivity formalism" and the "adjoint sensitivity formalism." 
As has been shown, there are clear distinctions between the 
necessary and sufficient conditions required for the validity 
of each formalism. On the one hand, it has been demonstrat
ed that the "forward sensitivity formalism" can be rigorous-
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ly formulated in normed linear spaces, and that the existence 
of the G differentials of all operators appearing in the origi
nal nonlinear equations are the necessary and sufficient con
ditions underlying the validity of this formalism. It has also 
been emphasized that these G differentials are not linear 
operators. 

On the other hand, it has been shown that the necessary 
and sufficient conditions underlying the validity of the "ad
joint sensitivity formalism" are more restrictive. Most 
prominent among these conditions is the requirement that 
all operators acting on the state vector u must admit densely 
defined partial G derivatives at eO = (uo,ao) with respect to u. 
Furthermore, the underlying normed linear spaces have to 
be complete in order that the adjoint sensitivity formalism" 
be unique and generally valid. By setting the development of 
this formalism in Hilbert spaces, the Riesz representation 
theorem26 was shown to playa fundamental role. Although 
this theorem does not hold in general in a pre-Hilbert space 
[e.g., V u R (eO) in Eq. (20) may not exist], in many practical 
applications it may do so. Thus, the "adjoint sensitivity for
malism" may stilI be applicable to certain problems which fit 
naturally in a pre-Hilbert space that may not be convenient 
to complete in practice. (Theoretically, of course, pre-Hil
bert spaces can always be completed.) 

Note that the need to introduce any derivatives of oper
ators acting solely on the system parameters a, or derivatives 
of the state vector with respect to a, has been completely 
eliminated. As has been shown, the existence of the G differ
entials V Q(aO;ha ) and V A(aO;ha ) is both necessary and suffi
cient. Furthermore, the use of two distinct inner products 
[cf., Eq. (14) et seq.] makes it possible to treat problems in
volving operators whose range is not in the same Hilbert 
space as the state vector. Finally, the results obtained by 
employing the previous approaches 1-19,21 to sensitivity the
ory can be recovered as particular forms of the results ob
tained here. Altogether, these factors contribute to the great
er generality and applicability of the "adjoint sensitivity 
formalism" presented here. 

It is of practical interest to mention that, in particular 
applications, additional conditions may need to be imposed 
on the operators N, B, Q, and A, in order to solve Eqs. (1) and 
(2) by some particular numerical procedure. For example, 
several of the most widely used numerical methods3l for 
solving nonlinear operator equations require the existence of 
Frechet derivatives ofN and B at eO; in such cases, the condi
tions underlying the validity of the "adjoint sensitivity for
malism" would automatically be satisfied. 

The sensitivity theory presented in this study has been 
restricted to responses that are functionals. This highlighted 
the intimate connection between the construction of the ad
joint system and the mathematical nature of the response. 
This connection is underscored by recalling the essential role 
played by the Riesz representation theorem when identify
ing the sensitivity of the response with an inner product [cf., 
Eqs. (20) and (22)]. In fact, it would not have been possible to 
employ the "adjoint sensitivity formalism"-or any of the 
previously mentioned approaches I-I C,,21_if the response had 
not been a functional. 

Hence, a logical step toward further extensions of sensi-
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tivity theory is the consideration of more complicated re
sponses. Results in this direction have been obtained, and 
will be presented in an accompanying paper. 28 
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This work extends a recent, functional-analytic formulation of sensitivity theory to include 
treatment of additional types of responses. There are physical systems where a critical point of a 
function that depends on the system's state vector and parameters defines the location in phase
space where the response functional is evaluated. The Giiteaux differentials giving the sensitivities 
of both the functional and the critical point to changes in the system's parameters are obtained by 
alternative formalisms. The foward sensitivity formalism is the simpler and more general, but 
may be prohibitively expensive for problems with large data bases. The adjoint sensitivity 
formalism, although less generally applicable and requiring several adjoint calculations, is likely 
to be the only practical approach. Sensitivity theory is also extended to include treatment of 
general operators, acting on the system's state vector and parameters, as response. In this case, the 
forward sensitivity formalism is the same as for functional responses, but the adjoint sensitivity 
formalism is considerably different. The adjoint sensitivity formalism requires expanding the 
indirect effect term, an element of a Hilbert space, in terms of elements of an orthonormal basis. 
Since as many calculations of adjoint functions are required as there are nonzero terms in this 
expansion, careful consideration of truncating the expansion is needed to assess the advantages of 
the adjoint sensitivity formalism over the forward sensitivity formalism. 

PACS numbers: 02.30.Sa 

I. INTRODUCTION 

Concepts of nonlinear functional analysis have been 
employed in an accompanying paperl to formulate a rigor
ous and comprehensive sensitivity theory for physical prob
lems characterized by systems of coupled nonlinear equa
tions. The formulation of this theory is centered on 
evaluating the Giteaux (G) differential of the system re
sponse (i.e., performance parameter) associated with the 
physical problem. This G differential is a general and funda
mental concept for defining the sensitivity of a response to 
variations in the system parameters. The nonlinear function-. 
al defining the response in Ref. I can be used as a general 
representation for any response that is solely characterized 
by a numerical value. Note that only this numerical value 
changes when varying the system parameters. 

However, responses which cannot be characterized 
solely by a numerical value are often encountered in prac
tice. In reactor safety and design, for example, responses of 
considerable interest are the maximum temperature in the 
cladding, the maximum power density, and the maximum 
normalized reactor power level (if point-kinetics equations 
are used in the transient reactor analysis code). Such re
sponses are characterized both by the numerical value at the 
maximum and by the position in phase-space where the 
maximum occurs. In this case, varying the system param
eters alters not only the value at this maximum but also alters 
the position of the maximum in phase-space. This is illustrat-

"IResearch sponsored by Electric Power Research Institute (RP 1441·11 
subcontract with Oak Ridge National Laboratory, operated by Union 
Carbide Corporation for the U.S. Department of Energy. 

ed in Sec. II, where sensitivity theory is extended to allow 
treatment of a general response comprising, as particular 
cases, the representation of maxima, minima, and saddle 
points. Important practical consequences arising from the 
conceptual differences between such a response and certain 
functionals considered as response in previous applications 
of sensitivity theory are underscored in Sec. lIe. by present
ing a comparative analysis of results obtained for a reactor 
thermal-hydraulics sample problem. 

To date, the responses considered in adjoint-operator 
based approaches to sensitivity analysis were functionals. 
However, in many problems of practical interest, the re
sponse can no longer be represented by a functional, but 
needs to be represented by a more general operator. Time
and/or space-dependent responses, for example, need to be 
represented by operators. A general representation of an op
erator-type response is considered in Sec. III. In this section, 
a general formulation of sensitivity theory that is capable of 
treating such operator-type responses is developed by using 
several of the concepts and results established in Ref. 1. Fi
nally, Sec. IV summarizes the theoretical advances which 
this work contributes to sensitivity theory. 

Although this work extends the theory formulated in 
Ref. I by considering more general classes of responses, the 
physical problem is the same as in Ref. 1. It is helpful to 
recall that this problem is represented, for the sake of gener
ality, by the following system of K coupled nonlinear equa
tions written in operator form as 

N[u(x),a(x)] = Q[a(x),x]. (1 ) 

The quantities appearing in Eq. (1) are defined as follows: 
1. x = (x I ,. •• ,x J) is the phase-space position vector; 
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xEfl C :JlIJ
, where .0 is subset of the J-dimensional real vector 

space :JlI J
, 

2. u(x) = [u,(x), ... ,uK(x)] is the state vector; u(x)EEu' 
where Eu is a normed linear space over the scalar field A of 
real numbers, 

3. a(x) = [a,(x), ... ,al(x)] is the vector of system param
eters; aEEa , where Ea is also a normed linear space, 

4. Q[a(x),x] = [Q,(a,x), .. ,QK(a,x) Vis a (column) vec
tor whose elements represent inhomogeneous source terms 
(the symbol T denoted "transposition"); QEEQ, where EQ is 
again a normed liner space. The components ofQ may be 
operators (rather than just functions) acting on a(x) and x, 

5. the components of the (column) vector 
N = [Ndu,a), ... ,NK(u,a)]T are nonlinear operators acting, 
in general, not only on the state vector u(x), but also on the 
vector of system parameters a(x). 

In view of these definition, N represents the mapping 
N:SCE-+EQ , whereS =Su XSa,Su CEu, Sa CEa, and 
E = Eu X Ea' Note that an arbitrary element eEE is of the 
form e = (u,a). If differential operators appear in Eq. (1), 
then a corresponding set of boundary conditions -which is 
essential to define the domain S of N-must also be given. 
This set can be represented as 

\ B(e) - A(a) lan = 0, (2) 

where A and B are operators and an is the boundary of .0; 
the operator A(a) represents all inhomogeneous boundary 
terms. 

The specifications introduced so far are sufficiently 
general to allow Eqs. (1) and (2) to include, as particular 
cases, the mathematical modeling of a wide range of prob
lems of practical interest in many diverse fields. Still remain
ing to be defined is the system response associated with the 
problem modeled by Eqs. (1) and (2). 

II. SYSTEM RESPONSE: A FUNCTIONAL DEFINED AT A 
CRITICAL POINT OF A FUNCTION OF THE SYSTEM'S 
STATE VECTOR AND PARAMETERS 

Consider the system response R to be a functional of 
e = (u,a) defined at a critical pointy(a) ofa functionF(u,x,a). 
Such a response can be represented as a functional of the 
form 

(3) 

The quantities appearing in the integrand of Eq. (3) are de
fined as follows: 

1. F is the nonlinear function under consideration, 

A. The "forward sensitivity formalism" 

2. o(x) is the customary "delta" functional, 
3. aE:JlI1

, i.e., the components au i = 1, ... , I, are restrict
ed throughout this section to be real numbers; 

4.y(a) = [y,(a)'''''YM(a)], M <J, is a critical point of F. 
This critical point is defined here in one of the following two 
ways: 

(a) If the G differential of Fvanishes aty(a), theny(a) is a 
critical point defined implicitly as the solution of the system 
of equations 

\aF lax; ly{a) = 0; i = 1,..·, J. (4) 

In this case, y(a) has J components (i.e., M = J), and 
nf~ M + ,l>(Xj - zj)=1 in the integrand ofEq. (3). Note that, 
in general, y(a) is a function of a. 

(b) Occasionally, it may happen that aF laxj takes on 
nonzero constant values (Le., values that do not depend on x) 
for some of the variables xj ' j = M + I, ... , J. Then, as a func
tion of these variable xj , F attains its extreme values at the 
points Xj = Zj' ZjEan. Evaluating F at Zj,j = M + 1, .. ·,J, 
yields a function G which depends on the remaining phase
space variables Xi' i = 1,. .. , M;G may then have a critical 
point at y(a) = [Yda)""'YM (al] defined implicitly as the so
lution of 

laG laxdY(a) = 0; i = 1"", M. (5) 

With the above specifications, the definition of R (e) giv
en in Eq. (3) is sufficiently general to include treatment of 
extrema (local, relative, or absolute), saddle, and inflexion 
points of the function Fofinterest. In practice, the base-case 
solution path, and therefore the specific nature and location 
of the critical point under consideration, are completely 
known prior to initiating the sensitivity studies. 

It is thus apparent that in the formulation of a complete 
sensitivity theory, the componentsy;(a), i = 1,. .. ,M, must be 
treated as responses in addition to R (e). Hence, the objective 
of this sensitivity theory is twofold: 

1. to determine the G differential VR (eO;h ) of R (e) atthe 
"base-case configuration point" eO = (UO, aO), which gives 
the sensitivity of R (e) to changes h = (h u ' hex) in the systems 
state functions and parameters, and 

2. to determine the (column) vector 
Vy(aO;ha) = (VYl"", VYM) whose components VYm (aO;ha) 
are the G differentials ofYm(a) at aO, for m = 1,"·,M. The 
vector Vy(aO;h a ) gives the sensitivity of the critical pointy(a) 
to changes h a . 

To achieve the objective mentioned above, the two al
ternative formalisms, the "forward sensitivity formalism" 
and the "adjoint sensitivity formalism", are developed along 
the same general lines as discussed in detail in Ref. 1. 

Applying the definition ofthe G differential to Eq. (3) shows that 

VR(eO;h) = L[F~(e())hu +F~(eO)ha]Jl/[X; -y;(a())]j~(t,l>(Xj -zj)dx 

+ mtJ -ha( d:; tJLF8'(Xm -ym);~[}(X; -y;) jJJ+,8(Xj -zJdx. (6) 

The last term on the right side of Eq. (6) vanishes, since 
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( F6'(x,., - y,.,) IT 6(x; - y;) IT 6(xj - Zj) dx = - ((aF lax,.,) IT 0 (x; - y;). IT o(Xj - Zj) dx = 0, 
In ;=.,;¥m J=M+. In 1=. J=M+. 

m=I,···.M, 

in view of the well-known definition of the 8' functional and in view of either Eq. (4) if M = J, or of Eq. (5) if M <J. 
Therefore, the expression of VR (eO;h ) simplifies to 

(7) 

(8) 

Thus, the sensitivity VR (eO;h ) of R (e) to specified changes h(¥. can in principle be evaluated once the vector hu is determined 
from the "forward sensitivity equations"·. i.e., 

VN(uO,aO;hu,h u ) - VQ(aO;h a ) = 0, } 

! VB(uO,aO;hu,ha ) - V A(aO;ha Jan = 0 
(9) 

As already mentioned. the sensitivity of the location in phase space of the critical point is given by the G differential 
Vy(aO;ha ) ofy(a) atao. In view of either Eq. (4) orEq. (5), each of the componentsy.(a)""'YM(a) ofy(a) isa real-valued function 
of the real variables a.,. .. ,a/. and may be viewed as a functional defined on a subset of f!iF. Therefore, each G differential 
Vy,., (aO;ha ) of Ym (a) at aO is given by 

(10) 

provided that ay,.,laa;,i = 1 ... ·,1, exist at aO for all m = 1, ... , M. 
The explicit expression of Vy(aO;ha ) is obtained as follows. First, it is observed that both Eq. (4) and Eq. (5) can be 

represented as 

L(aF lax,.,)J],.o[x; - y;(a) 1j Jt .O(xj -Zj) dx = 0; m = 1,. .. , M. (11 ) 

Taking the G differential of Eq. (11) at eO yields the following system of equations involving the components Vy,.,: 

m = I,. .. ,M. (12) 

The above system is algebraic and linear in the components VYs (aO;ha ); therefore, it can be represented in matrix form as 

if>Vy = r 
by defining if> = [<PmsJ to be the M xM matrix with elements 

and by defining r to be the M-component (column) vector 

r(f. +g.,. .. ,fM +gMf, 
where 

and 

Notice that the definition of the 8 ' functional has been used 
to recast the second integral in Eq. (12) into the equivalent 
expression given in Eq. (14). 

As this stage, the quantities <Pms and!m can be evaluated 
most efficiently by directly using Eqs. (14) and (16). It is of 
interest to observe here that if M = J, then if> is the Hessian 
of F evaluated at the critical point y(aO); alternatively, if 
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(13) 

for m,s = 1,. .. , M. (14) 

(15) 

m = I,. .. ,M, (16) 

m=I, .. ·.M. (17) 

M < J, then if> is the Hessian of the function G [considered 
in Eq. (5)] evaluated at the respective critical point. The 
quantitiesgm defined in Eq. (17) can also be evaluated, since 
hu will have already been determined to compute the sensi
tivity VR (eO;h )giveninEq. (8). Upon completing the compu
tation of the elements of if> and r. Eq. (13) can be solved by 
employing methods of linear algebra to obtain 
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(18) 

As underscored by the derivations presented so far, the 
availability of the solution hu of the "forward sensitivity 
equations" given in Eq. (9) is essential to evaluate both 
VR (eO;h ) and Vy(ao;h a ). This is a distinctive characteristic of 
the "forward sensitivity formalism" which, from an eco
nomical standpoint, makes this formalism ill-suited for sen
sitivity analysis of problems with large data bases (i.e., when 
a has many components). 

B. The "adjoint sensitivity formalism" 

Since most of the problems encountered in practice are 
characterized by large data bases, the development of this 
formalism is motivated by the need for a tool to perform 
sensitivity analyses of such problems economically. To this 
end, the development of this formalism is centered on elimi
nating the explicit appearance of the unknown values of the 
vector hu from Eqs. (8) and (18), and hence on circumventing 
the need to repeatedly solve Eq. (9). However, as detailed in 
Ref. 1, hu can be eliminated if and only if(iff) the following 
conditions are satisfied: 

(C. 1 ) the partial G derivatives at eO of R (e) with respect 
to u and a exist, 

(C.2) the partial G derivatives at eO ofthe operators N 
and B with respect to u and a exist, 

(C.3) the spaces Eu and EQ are real Hilbert spaces, de
noted by H u and H Q' respectively. For U \>u2EH u' the inner 
product in Hu will be denoted by [u"u 2), and is given by the 
integral S n U ,'U2 dx. The inner product inHQ will be denoted 
by (, ). 

An examination ofEq. (8) shows that VR (eO;h ) is linear 
in h. Hence, condition (C.I) is satisfied, and the Hu -depen
dent component of VR (eO;h ), i.e., the "indirect effect term," 
can be written in inner product form as 

i/~(eO)huJilo[x; -y;(aO)]j=U+IO(Xj -zj)dx 

= [VuR(eo),h u ], (19) 

where 
M J 

VuR (eO) = n ° [x; - y;(aO)] n S(Xj -Zj) 
;=1 )=M+I 

(20) 

The adjoint system is constructed by following the pro
cedure set forth in Ref. 1. (For brevity, details are omitted 
here.) Thus, condition (C.2) makes it possible to write the 
system of equations given in Eq. (9) as 

(21) 

and 

(22) 

Next, in view ofEq. (21) and condition (C.3), the following 
relationship holds for a vector vEH Q: 

<v,N~\eO)hu > = (L*(eO)v,h u] + {P [hu;v lla!J' (23) 

where L *(eO) is the operator formally adjoint to N: (eO), and 
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I P [h u ;v ) l an is the associated bilinear form evaluated on 
an. The domain ofL*(eo) is determined by selecting appro
priate adjoint boundary conditions, represented here in op
erator form as 

(24) 

These boundary conditions are obtained by requiring that 
1. they be independent of h u ,ha, and G derivatives with 

respect to a, and 
2. the substitution of Eqs. (22) and (24) into the expres

sion of (P [hu;v 11 aD must cause all terms containing un
known values of hu to vanish. 

This selection of the adjoint boundary conditions reduces 
I P [hu ~) I an to a quantity designated here by P(h" ,vi)), 
where P contains boundary terms involving only known val
ues of ha ,v, and (possibly) eO. In general, P does not automati
cally vanish as a result of these manipulations,1 although it 
may do so in particular instances. Hence, Eq. (23) can be 
written as 

[L *(eO)v, hu ) = (v, V Q(aO;ha ) - N~ (eO)h" > - P(h" ,v;eo), 
(25) 

where Eq. (21) was used to replace N~ (eO)h u. Comparing the 
left-hand side ofEq. (25) with the right-hand side ofEq. {19) 
shows that 

(26) 

Note that the uniqueness of the above relationship is ensured 
by the Riesz representation theorem.2 This completes the 
construction of the adjoint system. Furthermore, Eqs. (19), 
(25), and (26) can be used to express Eq. (8) as 

VR (eO;h) 

= IF~(eO)ha;tiI8[X; -y;(aO)]J=U+18(Xj -zj)dx 

+ (V Q(aO;h,,) - N~ (eO)h a ,v) - P (h" ,v;eO). (27) 

The desired elimination of the unknown values of hu from 
the expression giving the sensitivity VR (eO;h ) has thus been 
accomplished. 

Unknown values of hu can be eliminated from the ex
pression of Vy(aO;h a ) given in Eq. (18), only if they can be 
eliminated from appearing in Eq. (17). Examination of Eq. 
(17) reveals that each quantity g m is a functional that can be 
expressed in the equivalent form 

gm = LF~(eO)huS'(Xm - Ym) 

M J 

X n o(x; -y;) n 8(x) -zj)dx. (28) 
;=I'/"'m J=M+I 

by employing the definition of the S ' functional. In turn, the 
above expression can be written as the inner product 

gm = [Ym(eO),h u )' 

where 
M 

Ym(eO)=t5'[xm - Ym(aO)] n S(x; - y;) 
i= l,i¥m 
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The desired elimination of the unknown values of hu from 
Eq. (29) can now be accomplished by letting each of the func
tions r m (eO) play, in turn, the role previously played by 
V u R (eO) [cf. Eq. (20)], and by following the same procedure 
as that leading to Eq. (27). The end result is 

gm = (VQ(aO;ha) - N~(eO)ha,wm) - P(ha,wm;eO), 
(31) 

where each function Wm is the solution of the adjoint system 

L*(eO)wm = rm(eO) } 
(32) 

f B*(wm ;eO) - A *(eO) I all = 0 

for m = 1,.··,M. 
It is important to note that L*(eo),B*(eO), and A*(eO) ap

pearing in Eq. (32) are the same operators as those appearing 
in Eqs. (26) and (24). Only the source term r m (eO) in Eq. (32) 
differs from the corresponding source term V u R (eO) in Eq. 
(26). Therefore, the computer code employed to solve the 
adjoint system given in Eqs. (26) and (24) can be used, with 
relatively trivial modifications, to compute the functions Wm 

from Eq. (32). Comparing now the right sides ofEqs. (25) and 
(31) reveals that the quantity P(ha ,u;eO) is formally identical 
to the quantity P(ha,wm;eO), and that the function 
VQ(aO;ha) - N~(eO)ha appears in both the inner products 
denoted by ( , >. This indicates that the computer program 
employed to evaluate the second and third terms on the right 
side of Eq. (27) can also be used to evaluate the functionals 
gm' m = 1,.··, M, given in Eq. (31). Of course, the values ofv 
required to compute VR (eO;h ) are to be replaced by the re
spective values of Wm when computing the gm 'so 

In most practical problems, the total number of param
eters I greatly exceeds the number of phase-space variables J, 
and hence M, since M < J. Therefore, if the "adjoint sensi
tivity formalism" can be developed as described in this sec
tion, then a large amount of computing costs can be saved by 
employing this formalism rather than the "forward sensitiv
ity formalism." In the case, only M + 2 "large" computa
tions (one for the "base-case," one for the adjoint function v, 
and M for the adjoint functions wl,"',WM ) are needed to ob
tain the sensitivities VR (eO;h ) and Vy(aO;ha ) to changes in all 
of the parameters. By contrast I + 1 computations (one for 
the "base-case," and I to obtain the vector h u ) would be 
required if the "forward sensitivity formalism" were 
employed. 

C. Discussion 

Note that, as shown in Eqs. (6)-(8), the contributions to 
VR (eO;h) arising from the a dependence ofy(a) vanish only 
because y(a) is a critical point of F. An important conse
quence of this fact can be demonstrated by considering the 
point y not to be a function of a. The response would then 
take on the form 

In the above equation, the subscript 1 indicates that the 
mathematical characteristics of R lIe) differ from those of 
R (e), although both responses take on identical values at 
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° . e = e ,I.e., 

(34) 

Calculating the G differential VR l/eo;h ) of R I(e) at eO gives 

VR\(eO;h) = l[F~(e)hu +F~(eO)ha JJi/(Xi -Yi) 

J 

X II 8(xj - Zj) dx. 
J=M+ I 

Comparison of Eqs. (35) and (8) shows that 

and 

VR deo; h ) = VR (eO;h ). 

Consider now the total variations of R (e) and 
R I(e) at e = eO, i.e., 

R (eo + h ) - R (eO) = VR (eO;h ) + Ll (h), where 

limt--o [L!. (th)lt J = 0, 

R1(eo+h)-R1(eO)= VRI(eO;h)+Ll1(h), where 

Iim,--o [L!.t(th )It] = O. 

(35) 

(36) 

(37) 

(38) 

Substracting Eq. (38) from Eq. (37) and taking into account 
Eqs. (34) and (36), yields the relationship 

R (eo + h) - Rt(eO + h) = £(h), where 

(39) 

The result given in Eq. (39) can be readily be strength
ened if R is Frechet differentiable [i.e., if VR(eo;h) is continu
ous and linear in h at eO, and is continuous in e at eO]. In such a 
case, R I is also Frechet differentiable; hence, 
limt--o [Ll (th)lt] = OinEq. (37) andlim,_-o [Ll dth )It J = Din 
Eq. (38) hold uniformly with respect to h on the set 
{h:llh II = 1 J. Consequently, limt~O [£(th )It] = 0 in Eq. (39) 
also holds uniformly with respect to h on (h: Ilh II = II, and 
can be written in the equivalent form 
limh--o [11£(h )lI/l1h II] = O. Thus, the stronger result 

(40) 

holds if R is Frechet differentiable at e = eO. 

A simple illustration of the distinctions between R (e) 
and R de) is shown in Fig.!. There, the critical pointYI(a) of 
F(u,x,a) is a maximum occurring in the (one-dimensional) 
direction x I' Changes h = (hu ,ha) would cause the new 
maximum ofF to take on the valueR (eO + h )atYI(aO + hal. 
Thesensitivity VR (eO;h )ofR (e)ateOisgivenbyEq.(8)[orEq. 
(27)J, while the sensitivity VYI(aO;ha ) ofYI(a) at aO is given by 
Eq. (18). However, ifYI is considered not to bea function of a, 
then R I (eO + h ) would be the altered value of the functional 
R I(e). Nevertheless, the sensitivity VR I (eO;h ) of R de) at eO is 
the same as the sensitivity VR (eo;h ) of R (e) at eO, as shown in 
Eq. (36). This is only because YI(a) is a critical point of 
F(u,x,a). 

The foregoing discussion sheds additional light on the 
proper interpretation of the results presented in Refs. 3,4,5, 
and 6. On the one hand, responses designated as "peak fuel 
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Y)(o'l (phase-space variable) x] 

FIG. L Illustration of the distinction between R (e) and RI(e). 

temperature," "peak clad temperature," etc., were consid
ered for sensitivity studies in Refs. 3 and 4. In that context, 
the qualifier "peak" signified only that those responses were 
located at the position in phase-space where the maximum of 
the respective state function (in particular, the temperature) 
occured in the "base-case" calculation; the position itself 
was considered to remain unchanged regardless of variations 
h", in the system parameters a, . It is therefore apparent that 
the aforementioned responses are, in fact, particular forms 
of R I(e) [cf. Eq. (33)]. On the other hand, the "maximum 
cladding temperature" response considered in Refs. 5 and 6 
is a particular form of R (el (cf. Eq. (3)]. 

Further insight regarding the distinctions between R (e) 
and R l(e) is provided by a brief comparative analysis of se-

lected sensitivity analysis results reported in Refs. 4 and 5 for 
a thermal-hydraulics sample problem. It is recalled that this 
sample problem models a Clinch River Breeder Reactor fuel 
rod, SUbjected to a power transient, in a sodium-filled cool
ant channeL To facilitate this comparative analysis, sensitiv
ity results for the "maximum cladding temperature" re
sponse considered in Ref. 5 and for the "peak cladding 
temperature" response considered in Ref. 4 are reproduced 
below in Tables I and II, respectively. (For brevity, only re
sults corresponding to the most significant system param
eters are reproduced here.) 

Note that for both of these responses, the function F [cf. 
Eqs. (3) and (33)] is the space- and time-dependent temper
ture[i.e.,F(u,x,a) = u=T(r,z,t)). Identicalnumericalmeth
ods were employed in both Refs. 4 and 5 to solve the system 
of nonlinear partial differentia[ equations modeling this 
problem, to solve the adjoint system, and to evaluate the 
sensitivities VR (eO;h ) and VR I (eo;h ). Note also that in Tables 
I and II, for every value of the index i,h is still given by 
h = (hu ,ha)' but all the components of ha are zero except for 

ha" 
As expected from Eq. (36) and as confirmed by compar

ing the results given in Tables I and II under the heading 
"relative sensitivity," the sensitivities corresponding to a 
particular system parameter a, are identical. Also, the ex
pected identity between the corresponding results given in 
these tables under the heading "predicted perturbed re
sponse" is confirmed. However, the results shown in Table r 
under the heading "recalculated perturbed response" are 
not identical to the corresponding results shown in Table II. 

TABLE 1. Sensitivity results for maximum cladding temperature response. Unperturbed response R leO) = 568'C. 

Parameter Relative 

(a i ) sensitivity' 

fuel outer radius 4.4670 

2 gap outer radius - 4.4123 

3 inlet coolant 0.5239 
temperature 

4 coolant mass - 0.2602 
How rate 

5 gap width - 0.1426 
(at constant clad thickness) 

6 gap conductance 0.1421 

7 fllel heat sOllfce 0.0632 

\\ clad ollter 0.0568 
radius 

9 axial discretization -0.2170 
parameter 

a Relative sensitivity [VR le";h)lR (eo)] [a~Jlha,]. 

h Predicted perturbed response ~R le") + VR (e";h ). 
, Recalculated perturbed respcmse"",R 11"" + h ). 
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TABLE II. Sensitivity results for peak cladding temperature response. Unperturbed response R ,(eO) = 568 'C. 

Predicted Recalculated 
perturbed perturbed 

Parameter Relative response b response c 

(a,) sensi ti vi ty a 
ha, 

('q ('q 
a, 

fuel outer radius 4.4670 om 594 597 
-0.01 543 546 

2 gap outer radius - 4.4123 0.01 543 546 
-0.01 593 597 

3 inlet coolant 0.5239 0.10 598 598 
temperature 0.25 643 643 

4 coolant mass - 0.2602 -0.10 583 584 
flow rate 0.10 553 555 

5 gap width -0.1426 0.25 548 550 
(at constant clad thickness) -0.25 588 591 

6 gap conductance 0.1421 0.10 576 576 
-0.10 

7 fuel heat source 0.0632 0.10 
-0.10 

8 clad outer 0.0568 0.05 
radius -0.05 

9 axial discretization - 0.2170 
parameter 

a Relative sensitivity =[ VR,(eO;h IIR,(e°)J (a?lha,]. 

b Predicted perturbed response =R,(eo) + VR,(eO;h). 
< Recalculated perturbed response=R ,(eo + h). 

According to Eq. (40), the differences between the two recal
culated results for a particular parameter a i arise from the 
second- and higher-order effects caused by variations ha, 

around the "base--<:ase" value a? These second- and higher
order effects are very small for this particular sample prob
lem. Note that the theory developed in Secs. IIA and lIB was 
also successfully applied in Refs. 5 and 6 to determine the 
sensitivities of the location in phase-space of the "maximum 
cladding temperature." 

III. SYSTEM RESPONSES: OPERATORS 

To date, the system responses considered in adjoint
function based approaches to sensitivity analysis were func
tionals, i.e., particular types of operators mapping domains 
in E = Eu XEa into the underlying field of real scalars A. 
However, in many practical problems, the system response is 
a more general operator whose range is not in A but in some 
other normed linear space E R' Examples of such responses 
are time and/or space dependent mappings involving the 
system's state vector and parameters. Using the same nota
tion as introduced in Sec. I, a member of this class of re
sponses can generally by represented as 

R(e):DCE-..ER . (41) 

A. Sensitivity theory 

As before,) the sensitivity ofR(e) to "changes" ha in the 
system parameters a is defined as the Giteaux differential 
VR(eo;h ) of R{e) at eO with increment h = (hu ,ho.)' It is re
called that the definition of VR(eo;h ) is 

VR(eo;h) = lim [R{eo + th) - R{eO)]!t (42) 
1-.0 
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for tEA and hEE. 
In view of Eqs. (42) and (9), it becomes apparent that 

although the response is now an operator rather than just a 
functional, the necessary and sufficient conditions underly
ing the "forward sensitivity formalism" are not affected. 
(Recall) that these conditions require the existence of the G 
differentials at eO of the operators appearing in the definition 
of the problem, including the response.) Thus, for a specified 
vector of "changes" ha , VR(eO; h) can in principle beevaluat
ed once the vector hI< is determined from Eq. (9). 

As previously discussed, most of the computational ex
pense of using the forward sensitivity formalism arises from 
repeatedly solving Eq. (9) to determine hu for all possible 
vectors ha . Hence, for a given problem, the cost of comput
ing sensitivities for an operator response is essentially the 
same as that for a functional response, if the forward sensi
tivity formalism is used in both cases. 

As discussed in Ref. 1, the practical motivation under
lying the development of the alternative "adjoint sensitivity 
formalism" is to avoid the need to repeatedly solve Eq. (9). 
This required the elimination of all unknown values of hu 
from the expression of VR{eo; h ). In turn, this elimination 
intrinsically relied on VR(eo; h ) being a functional, enabling 
the construction of the appropriate adjoint system using in
ner products. However, the adjoint sensitivity formalism de
veloped in Ref. 1 is restricted to responses that are function
als; for this reason, it will henceforth be referred to as the 
"adjoint sensitivity formalism for functionals." 

Although VR(eO; h ) defined in Eq. (42) is an operator 
rather than just a functional, the analysis I of the necessary 
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and sufficient conditions underlying the validity of the ad
joint sensitivity formalism for functionals establishes guide
lines for a similar formalism for operator responses (hence
forth called the "adjoint sensitivity formalism for 
operators"). 

In this way, the following guidelines for developing 
the adjoint sensitivity formalism for operators emerge: 

(G.l) isolate the hu dependence of VR(eO;h) from the 
functional depen~ence of VR(eO;h ) on the remaining 
quantities, 

(G.2) express the quantity containing this hu depen
dence in the form of linear combinations of functionals that 
are themselves linear in h", 

(G.3) employ the adjoint sensitivity formalism for func
tionals to evaluate the functionals determined in item (G.2) 
above. 

The development of these guidelines into a rigorous for
malism will necessarily involve the use of adjoint operators. 
Since adjoint operators in Hilbert spaces are more conve
nient to deal with than adjoint operators in Banach spaces, 
subsequent development are facilitated by taking advantage 
of the simplifying geometrical properties of Hilbert spaces 
while still retaining sufficient generality for practical appli
cations. In this vein, the spaces Eu ,EQ , and ER are hence
forth considered Hilbert spaces and denoted as 
Hu(il), HQ(il) and HR(il R), respectively. The elements of 
Hu (il ) and H Q(il ) are, as before, vector functions defined on 
the open set ilC.o/?J with the smooth boundary ail. The 
elements of H R (il R ) are vector or scalar functions defined on 
the open set il R C 9r, I .;;; m .;;; J, with a smooth boundary 
an R' (Of course, if J = 1, then ail merely consists of two 
endpoints; similarly, ifm = 1, then ailR consists oftwoend
points only.) The inner products on Hu(il), HQ(il), and 
HR(ilR) are denoted by [,], < , ), and 
[ , I, respectively. . 

In view of the foregoing guidelines (G. 1) and (G.2), It 
becomes apparent that further progress is possible only if 
VR(eO;h ) is linear in h. Applying a theorem proved by Vain
berg? readily shows that VR(eO;h ) is linear in h if and only if 
(iff ) 

(a) R(e) satisfies a weak Lipschitz condition at eO, and} 

(b) R(eO + thl + th2) - R(eO + th l ) - R(eO + th z) (43) 

+ R(eO) = o(t); h"hzEilu XHa;tEA. 

In such a case, VR(eO;h ) is denoted by D R(eo;h ), and R(e) 
admits a total G derivative at eO = (uo,aO). It follows that the 
relationship 

(44) 

holds, where R~ (eO) and R~ (eO) are the partial G derivatives 
at eO ofR(e) with respect to u and a. 

With the derivation of Eq. (44), the task outlined in 
guideline (G.l) has been completed, and Eq. (43) gives the 
necessary and sufficient conditions underlying this comple
tion. Note also that R~ (eO) is linear operator form Hu into H R 

, i.e., R~ (eo)E2'{Hu(il ),HR{ilR)). By analogy to the particu
lar case when the response is a functional [cf. Eq. (19) et seq. 
in Ref. 1), it is still convenient to refer to the quantities 
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R~ (eO)h u and R~ (eO)h a appearing in Eq. (44) as the "indirect 
effect term" and the "direct effect term," respectively. 

The direct effect term can be evaluated efficiently at this 
stage. To proceed with the evaluation of the indirect effect 
term, consider that the orthonormal set [ifJk I kEK' where k 
runs through an index set K, is an orthonormal basis of 
H R (ilR)' Then, since R~(eO)huEil R (il R), it follows that 

R~(eO)hu = I (R:(eO)hu,ifJk lifJk' (45) 
kEK 

The notation !,kEK is used to signify that in the above sum 
only an at most countable number of elements are different 
from zero, and the series extended upon the nonzero ele
ments converges unconditionally. According to customary 
terminology, the functionals (R~ (eO)h" ,ifJ k I are called the 
Fourier coefficients (in this case, of R~ (eO)h u ) with respect to 
the basis [ifJk l. These functionals are linear in hu since R(e) 
was required to satisfy the conditions stated in Eq. (43). 
Thus, the derivation ofEq. (45) has completed the task out
lined in guideline (G.2). 

To accomplish the task oulined in guideline (G.3), it is 
first recalled I that the adjoint sensitivity formalism for fune
tionals required the indirect effect term to be represented as 
an inner product of hu with an appropriately defined vector 
inH [cf. Eq. (20) in Ref. 1]. This indicates that progress can 
be ~ade here only if each of the functionals in Eq. (45) is 
expressed as an inner product of hu with a uniquely defined 
vector in H u (il ) yet to be determined. 

The construction of the aforementioned inner products 
can readily be accomplished with the help of the operator 
adjoint to R~ (eO). Since R~ (eO)E2'(Hu (il ),H R (il R )), and 
since Hilbert spaces are self-dual, the adjoint of R~ (eO) is the 
operator M(eO)E2'(HR(il R ),Hu{il)) defined by means of 
relationship 

IR~(eO)hu,ifJkl = [hu,M(eO)ifJk]' kEK. (46) 

The operator M(eO) is unique iff R~ (eO) is densely defined. 
The adjoint sensitivity formalism for functionals can 

now be used to construct the adjoint system whose solution 
will subsequently enable the elimination of unknown values 
of hu from the expression of each functional 
(hu ,M(eO)ifJk 1,kEK. To construct this system, .the necessary 
and sufficient conditions I underlying the validIty ofEqs. (21) 
and (22) must be satisfied. Then, for every vector 
Zk EN Q ,kEK, the following relationship holds: 

<zk,N~(eO)hu> = [L*(eO)zk,h u ] + (P(huhlliJfl' kEK. (47) 

where L *(eo) is the operator formally adjoint to N~(eO), and 
'P (h ·z ) 1 l'S the associated bilinear form evaluated on ~ u,k at) 

ail. The adjoint boundary conditions which determine the 
domain of L*{eO) are obtained by requiring that they satisfy 
criteria analogous to the criteria satisfied by the adjoint 
boundary conditions given in Eq. (24). From this require
ment and from the fact that Eqs. (47) and (23) are formally 
indentical it follows that the desired adjoint boundary condi
tions are formally identical to the boundary conditions given 
in Eq. (24), and can be expressed as 

(B*(Zk ;eo) - A *(eO)! an = 0, kEK. (48) 
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As before [cf. Eq. (25)], selecting the adjoint boundary condi
tions given in Eq. (48) reduces the bilinear form 
! P(huh )jan appearing in Eq. (47) to P(ha,zk ;eO). In view of 
this and ofEq. (21), Eq. (47) becomes 

[L*(e°)zk,h u ] = (zk,VQ(aO;ha) - N~(eO)ha > 
- P(hah;eO), kEf(. (49) 

Comparing the left-hand side ofEq (49) with the right-hand 
side ofEq. (46) shows that 

U(e°)zk = M(eO)tPk' kEf(. (50) 

This relationship holds uniquely in view of the Riesz repre
sentation theorem. 2 

The construction of the desired adjoint system, consist
ing ofEq. (50) and the boundary conditions given in Eq. (48) 
has thus been completed. Furthermore, Eqs. (44), (45), (46), 
(49), and (50) can now be used to obtain the following expres
sion for the sensitivity D R(eO;h ) of R(e) at eO: 

DR(eO;h) = R~(eO)ha + L [(zk,VQ(aO;h a ) - N~(eO)h(J 
kEK 

A ° -P(hah;e )]tPk' (51) 

This accomplishes the desired elimination of all unknown 
values of hu from the expression giving the sensitivity ofR(e) 
at eO. Note that Eq. (51) includes the particular case offunc
tional-type responses. In such a case, the summation I.kEK 
would only contain a single term, and the derivations pre
sented in this section would reduce to those presented in Ref. 
1. 

To evaluate the sensitivity D R(eO;h} by means ofEq. 
(51), it is required to compute as many adjoint functions Zk 

from Eqs. (48) and (50) as there are nonzero terms in the 
representation of R~ (eO)h u given in Eq. (45). Although the 
linear combination of basis elements tPk given in Eq. (45) may 
in principle contain infinitely many terms, obviously only a 
finite number of the corresponding adjoint functions Zk can 
be calculated in practice. Therefore special attention is re
quired to select the Hilbert space H R (il R ), a basis! tP k l kEK' 
and a notion of convergence to best suit the problem at hand. 
This selection is guided by the need to represent the indirect 
effect term R~ (eO)h u as accurately as possible with the small
est number of basis elements; a related consideration is the 
viability of deriving bounds and/or asymptotic expressions 
for the remainder after truncating Eq. (45) to the first few 
terms. 

The theory developed in this section was successfully 
applied6 to compute time-dependent sensitivities of a time
dependent temperature response for a reactor thermal-hy
draulic sample problem. Modified Legendre polynomials of 
the time-variable were used as basis elements. Although the 
series expressing the indirect effect term [cf. Eq. (45)] con
tained infinitely many terms, the retention of only the first 
six terms, and consequently the computation of only six ad
joint functions, yielded sensitivities within an overall accura
cy of 2 % over the entire time interval (100 steps). 

IV. SUMMARY AND CONCLUSIONS 

Concepts of non liner functional analysis have been re
cently employed to develop a sensitivity theory I for physical 

2811 J. Math. Phys., Vol. 22, No. 12, December 1981 

problems described by systems of coupled nonlinear equa
tions, with nonlinear functionals as responses. This sensitiv
ity theory has been extended in the present work to include 
treatment of more complex responses. 

Responses that are functionals defined at a critical 
point of a function F(u,x,a) of the system's state vector and 
parameters have been considered first. In practice, this criti
cal point may represent any extremum, saddle, or inflexion 
point of F(u,x,a). It has been shown that changes in the sys
tem parameters affect both the numerical value of the re
sponse and the critical point itself. Expressions for the sensi
tivity of the numerical value of the response and for the 
sensitivity of the critical point have been obtained within the 
context of the forward sensitivity formalism by directly ap
plying the definition of the G differential. However, since it 
is expensive to use this formalism to answer all sensitivity 
questions that might arise in practice, the adjoint sensitivity 
formalism has been developed to yield alternative expres
sions for the desired sensitivities. This formalism requires 
the computation of as many adjoint functions as there are 
components of the critical point in phase-space, and of one 
additional adjoint function to evaluate the sensitivity of the 
numerical value of the response. Once these adjoint func
tions have been computed, the sensitivities to all possible 
changes in the system parameters can be obtained by simple 
quadratures. This makes the adjoint sensitivity formalism 
the most cost-efficient formalism to use whenever possible, 
although, as has been discussed, the necessary and sufficient 
conditions underlying its validity are more restrictive than 
those underlying the validity of the forward sensitivity 
formalism. 

Sensitivity theory has also been extended to include 
treatment of general operators as responses. It has been 
shown that here are essentially no conceptual and computa
tional differences between the treatment of operators and the 
treatment offunctionals as responses within the forward sen
sitivity formalism. However, there is a considerable differ
ence between the treatment of these two types of responses 
within the adjoint sensitivity formalism. This formalism can 
be developed only if the hu dependence of the G differential 
giving the sensitivity of the operator-type response is ex
pressible as a linear combination of linear functionals of hu. 
For this purpose, it has been necessary and sufficient to con
sider the response R (e) to be an element of the Hilbert space 
HR (ilR ), to introduce an orthonormal basis for HR (ilR), and 
to require the existence of the G derivative of R (e) at eO. The 
indirect effect term has then been expressed as a linear com
bination of basis elements, each of these elements being mul
tiplied by a linear functional of h u which contained the entire 
hu dependence of the response sensitivity. This hu depen
dence has in turn been eliminated from the expression of 
each of these functionals by using adjoint functions satisfy
ing appropriately constructed adjoint systems. 

When derived via the adjoint sensitivity formalism, the 
exact expression of the sensitivity of an operator-type re
sponse contains as many adjoint functions as these are non
zero terms in the linear combination of basis elements [viz., 
Eq. (45)]. This linear combination may, in principle, contain 
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infinitely many terms. To minimize the computation of ad
joint functions, it becomes important to select a basis and a 
notion of convergence to represent the indirect effect term as 
accurately as possible with the smallest number of basis ele
ments.1t is also desirable to derive, if possible, bounds 
and/or asymptotic expressions for the remainder after trun
cating the linear combination expressing the indirect effect 
term. 

It has already been established (in many works on sensi
tivity analysis) that the adjoint sensitivity formalism is the 
most economical to use, whenever possible, if the physical 
problem involves a large data base (or many alterations in the 
data) and comparatively few functional-type responses. As 
the results of this work indicate, this is still the case when the 
response is a functional defined at a critical point. For opera
tor-type responses, however, the specific needs of sensitivity 
analysis, the number of system parameters and responses 
and the characteristics of each response must be examined to 
determine whether computational costs warrant the use of 
the adjoint sensitivity formalism. 

The theoretical advances which this work contributes 
to sensitivity theory were made possible by the use of con
cepts of nonlinear functional analysis. Nonetheless, the po
tential of using such concepts to extend further the scope of 
sensitivity theory warrants more research. Present research 
is divided between developing sensitivity theory and apply
ing existing theory to new areas. The new areas of applica
tion include coupled neutronic/thermal-hydraulic problems 
in reactor safety analysis, problems involving phase changes, 
and climatic projections based on general circulation models 
of the atmosphere. An important but presently open ques
tion regarding the theory is the effect of the higher-order G 
differentials of the response. Even if expressions for the high
er-order G differentials could be derived, their computation 
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may be prohibitively expensive in practice. Thus, rather than 
attempt to compute succesively higher order G differentials, 
it is more useful to derive sharp bounds for their cummula
tive effect. The possibility of using concepts of nonlinear 
functional analysis to derive such bounds is currently being 
researched. The incorporation of these bounds into an un
certainty analysis formalism would result in a reliable and 
efficient tool for comprehensive sensitivity and uncertainty 
analyses of complex physical problems. 
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After a summary of the Jigged Hilbert space formulation of quantum mechanics and a brief 
statement of its advantages over von Neumann's formulation, a mathematically correct definition 
of Gamow's exponentially decaying vectors as generalized energy eigenvectors is suggested. It is 
shown that exponentially decaying vectors are obtained from the S-matrix poles in the lower half 
of the second sheet and exponentially growing vectors from the S-matrix poles in the upper half of 
the second sheet. Decaying "state" vectors are defined as functionals over half of the space of 
physical states and growing "state" vectors are defined as functionals over the other half. On 
functionals over these subs paces, the dynamical group of time development splits into two 
semigroups, one for t > 0 and the other for t < O. The generalized basis system connected with 
the spectrum of the Hamiltonian is transformed into a new basis system in which the 
exponentially decaying component of the density matrix is separated. 

PACS numbers: 03.65.Ca, 23.60. + e, 11.20. - e 

1. INTRODUCTION 

The description of decay phenomena with complex en
ergy eignenfunctions with eigenvalue E R - ir /2, r > 0, is 
almost as old as quantum mechanics. I But, like plane waves, 
these decaying wave functions were not considered respect
able objects. In the meantime "Dirac states" (kets) have be
come mathematically well defined objects2 and are invalu
able for the description of scattering states. 3 "Gamow 
states" for decaying objects are slightly more disreputable: 
Whereas plane waves-though not elements of Hilbert 
space-have at least a finite probability density at every 
point in space, the probability density for the complex ener
gy eigenfunctions diverges as r-oo. The origin of this "ex
ponential catastrophe" lies in the unphysical assumption 
that the complex energy eigenfunction describes the decay
ing state for all time. To eliminate this exponential catastro
phe one has to take into account that the decaying state was 
produced in a scattering process at or before a finite time, say 
t = O. The decaying state is, therefore, only to be considered 
for t > O. At earlier times t < 0, the system was in a growing 
state, described by a complex energy eigenfunction with ei
genvalue ER + ir /2. Thus, unlike planes waves, complex 
energy eigenfunctions have to be separated into two classes, 
those which are associated with physical states for earlier 
times and those that are associated with physical states for 
later times. 

For this rcason another description was suggested, in 
which decaying states are not eigenstates but non stationary 
states corresponding to the Cauchy problem of the Schro
dinger equation. 4 This restricted the description in a natural 
way to the later times t > O. But it also led to the shocking 
observation that these states cannot decay exponentially. 5 

An alternative approach started from the idea that de
caying states are almost bound states that come from the 
discrete eigenvalues in the continuous spectrum of the un
perturbed Hamiltonian H - V, where Vis the decay interac
tion. 6 This led to the Breit-Wigner energy distribution 7 and 

the Siegert pole8 for a resonance. A resonance was defined as 
a sharp structure in the cross section of an energy E R where 
the phase shift o,(E) increased rapidly by 1T. In the S-matrix 
theory, decaying states were proposed9 to be associated with 
poles in the fourth quadrant of the complex-momentum 
plane (below the real axis on the second sheet of the energy 
plane) and growing states with poles in the third quadrant 
(above the real axis on the second sheet of the energy plane). 
Due to the mathematical problems connected with the com
plex energy eigenfunctions, these singularities of the con
tinuation of the S matrix or, somehow related to it, of an 
appropriate family of matrix elements of the resolvent 
(ii - z) - I, are most frequently taken as the starting point for 
the mathematical treatment of resonances. 10 The Wigner
Weisskopf model6--R is then the approximation in which all 
branch cuts are ignored in the evaluation of the decay ampli
tude and only the pole singularity is retained and put on the 
first sheet. This approximation destroys the self-adjointness 
of the Hamiltonian and was thus the first of many assaults 
upon the self-adjointness, \ \ of which the dilatation analytic 
method is the most promiment. 12 It relates the poles of the 
resolvent to isolated eigenvalues of a suitable nonself-adjoint 
analytic continuation of the Hamiltonian. The complemen
tary approach keeps the Hamiltonian self-adjoint and uses 
analytically continued eigenvectors: Realizing that the poles 
of the resolvent can be considered as generalized eigenvalues 
of the Hamilitonian, 13 the corresponding generalized eigen
vectors in a suitably defined Rigged Hilbert space were cho
sen as "quasistationary state vectors." 14 

A third approach towards decaying state vectors start
ed from the definition of a quasistationary state as the inter
mediate state in a scattering experiment at an energy ER at 
which the time delay tVJI = 2 [do((E)/dE ] has a sharp 
maximum-indicating the formation of a projectile-target 
bound state. 3.15 As a consequence of causality this quasista
tionary state and the resonance can be shown to be one and 
the same phenomenon, which is characterized by two num-
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bers: ER and 

T= [_ 2( dol(E) / d'Od~)). J1I2. 
dE --; dE' t; ~ t:" 

Therefore, starting from the Breit-Wigner energy distribu
tion, a decaying state vector in the Wigner-Weisskopf ap
proximation was introduced3

•
lb as the generalized eigenvec

tor of the Hamiltonian with eigenvalue E R - iT /2 and an 
expontial time development. For small width (Born appro
mation) this "Gamow state" led to the Fermi Golden Rule. 
Combined with analytic continuation techniques this idea 
was used 17 to separate an exponentially decaying term from 
the background in the framework of the Friedrichs model.]() 

A resonance and therewith a quasistationary state is 
always associated with a pair of poles in the second sheet of 
the S matrix, one immediately below the positive real energy 
axis at ER - ir 12 and one immediately above the positive 
real axis at E R + ir /2. And one can even derive the one-to
one correspondence between the pair of poles and the quasi
stationary state.l if one excludes the unlikely case that the 
fourth and higher derivatives of the phase shift bl(E) are 
rapidly varying functions. 1M Therefore, "quasistationary 
state vectors" should also be obtainable from the complex 
poles of the S matrix. This "Gamow state vector" was the 
only missing link in the correspondence scheme: 

S-matrix Vector space 
description description 

Stationary Pole on the Eigenvector of H 
state negative real 

axis 
Scattering Cut along the Generalized eigen-
state spectrum of jj vector of H 

Dirac-ket 
Quasistationary Pole in the I Gamow vector 
state second sheet 

From the required separation into earlier and later 
times, which was mentioned at the beginning, we cannot 
expect that the "Gamow vectors" be like the Dirac ket func
tionals on the entire space of physical states. Gamow states 
must be considered separately on the subs paces of earlier and 
later physical states, the later being related to the Cauchy 
problem of the Fock-Krylov picture. 

The Gamow vectors will be obtained by a transforma
tion from the generalized eigenvector decomposition with 
respect to the continuous spectrum of H [Eqs. (2.1) or (4.1) 
below] into a pair of new generalized eigenvector decomposi
tions [Eqs. (3.14) and (3.14')], in which the contribution from 
the resonance pole is explicitly contained as one of the gener
alized basis vectors. This generalized eigenvector obtained 
from the resonance pole in the lower (upper) second sheet is 
the decaying (growing) Gamow state vector with exponential 
time development. It represents the resonance per se (charac
terized by two real parameters) and is independent of the 
preparation process. A physical decaying state is prepared in 
a scattering experiment and contains in addition to the rea
sonance term a background term which depends upon the 
particular process by which the decaying state was created. 
This background term is the remainder of the new general-
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ized eigenvector decomposition for a physical decaying 
state. It is this background term that gives rise to the devi
ation from the exponential decay law.5 The analogous obser
vation, that the decay law of an unstable particle depends 
upon the reaction in which it was created but that the expon
entially decreasing term is independent of the preparation, 
has already been made before in terms of the decay ampli
tude in the Fock-Krylov picture. 19 This settles the contro
versy about the memory effects of unstable particles: The 
geniuine resonance "state" (pole part) decays exponentially; 
memory effects are due to the background and come from 
the preparation. 

A transformation from the continuous energy represen
tations of the density matrix into a new representation in 
which the exponentially decaying part is separated has al
ready been suggested by the Brussels group21/ and was to be 
performed by a nonunitary operator. It cannot be obtained 
in the Hilbert space framework, as it is defined by a transfor
mation from one generalized basis system into another gen
eralized basis system. The Rigged Hilbert space2 with a suit
ably defined topology can accomplish it. 

Though the problems treated here could be as well dis
cussed in the conventional von Nuemann formulation of 
quantum mechanics, the more natural frame is the rigged 
Hilbert space (RHS) formulation of quantum mechanics. 

We will, therefore, first give a brief description of the 
RHS and the RHS formulation of quantum mechanics in 
Sec. 2. In Sec. 3 we will show that the second sheet poles 
below the real energy axis correspond to the exponentially 
decaying state vectors and the second sheet poles above the 
real energy axis correspond to the exponentially growing 
state vectors. In this section it is also shown that the space l/> 
of physical states for the scattering process in which a reso
nance occurs contains two subspaces (the sum of which may 
not be dense in l/> ); exponentially growing states are func
tionals on one and exponentially decaying states are func
tionals on the other. On the functionals over these subspaces, 
the dynamical group of time development splits into two 
semigroups, one for t < 0 and one for t > O. 

In Sec. 4 an additional assumption about the property 
of the space of physical states is introduced. Under this as
sumption the background term takes the form required for 
the transformation of Ref. 20 and the density matrix can be 
expressed in a new continuous energy representation with 
separate exponentially decaying parts. 

2. RIGGED HILBERT SPACE AND QUANTUM 
MECHANICS 
A. The rigged Hilbert space 

The rigged Hilbert space2 provides the mathematical 
tools for a rigorous formulation of the Dirac formalism. Ac
cording to Dirac,21 every vector </J representing a physical 
state is expanded with respect to a basis system of eigenvec
tors of observables: 

</J= ( _dE\E)(E\</J), 
JSPH 

(2.1) 

where as the observable we have chosen the Hamilton opera-
tor H: 
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HIE} =EIE} (2.2) 

and have ignored-as we will do throughout this paper
any possible degeneracy. tP (E) = (E ItP ) is the well-behaved 
wavefunction (in the energy representation) and SpH is the 
spectrum of H that was identified with the set of possible 
eigenvalues E in (2.2) which were believed to be real. Howev
er, (2.1) is not possible for every tP E Hilbert spae JZP, IE) are 
in general not elements of JZP, and (2.2) requires further 
specifications. These specifications can be chosen such that 
(2.2) is also valid for complex values of E. The mathematics 
that justifies (2.1) and specifies (2.2) is given by the rigged 
Hilber spaces. 

To obtain a RHS one takes a linear space 'Pwith a scalar 
product and completes22 it with respect to two topologies22 

7 k and 7 <p' The Hilbert space--or 7 k --convergence is de
fined by 

The 7~ convergence must fulfill certain conditions (nuclear
ity) and cannot be given by one norm or scalar product but 
may be given by a countable number of scalar products. It is 

T</> T,f' 

stronger than 71( , i.e., from tPv ----+<P follows tPv ----+<p, but in 

general not vice versa. Consequently, there are more 7 w -

limit points than 7 ¢ -limit points in the completions of 'P, so 
that <PC~ if <P denotes the linear scalar product space, 
which is the 7 ¢ -completion, and ~ the 7 k completion of 'P. 

The conjugate space JZPx and <P x are spaces of 7# - and 
7 <p -continuous antllinear functionals, respectively. A con
tinuous antilinear functional is a function, F, on a linear 
space, written F(tP) = (tP IF), that satisfies 

(1) (atP +13tPIF) =a(tP IF) +iJ(t/!IF) (antilinearity) 
for ¢,t/! E space; a,p E C = complex numbers. 

Tr; 

(2) From ¢v ----+<p follows (¢v IF)---.(¢ IF), where 7is the 

topology of the linear space (i.e.), either 7 <p or 7.1i' and 7", is 
the usual topology of the complex numbers. 

As condition (2) is more stringent for 7 k than for 7<f> (there 
are more 7 Ii' -limit points than 7 <f> -limit points), it follows 
that H x C <p x. Further, for every 7 Ii' -continuous functional 
(tP IFI :.1'1), there exists anf E JZP such that (tP IF) = (tP,j), 
where (¢,j) denotes the scalar product (Frechet-Riesz theo
rem). Therefore, one can identify JY'x with JY' by equating 
F Ii' = f E £" and obtain 

(2.3) 

This trinity of spaces is the RHS. The Dirac bracket (tP IF) is 
then the extension of the scalar product (tP,j) for those 
FE <p x which are not in JZP. <P is always reflexive, <P xx = <P, 

and the functional i> (F) on <P x is < F Ii» = <¢ IF). 
To the triplet of spaces (2.3) corresponds for every ob

servable a triplet of linear operators 

ACACAX. (2.4) 

For A we always choose continuous ( = bounded) operators 
in <P and the closure A of A is in general not a continuous 
Hilbert space operator. The conjugate operator A x in <P x, 
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which is continuous but in general not bounded is defined by 

(¢ IA x/F) = (AtP IF) tP E <P, FE <px. (2.5) 

Generalized eigenvectors Fw of A with eigenvalue OJ are de
fined by 

(¢ IA X IF", ) = (AtP /Fa,) = OJ(tP lFcu) for every 
tP E <P, (2.6) 

which is also written as 

A xIOJ) = OJIOJ) or simply A IOJ) = OJIOJ), (2.6') 

denoting the triplet (2.4) just by the one symbol A. Equation 
(2.6) gives a precise meaning to (2.2) if the RHS (2.3) has been 
completely specified. The set of possible values for OJ (the set 
of generalized eigenvalues) depends upon the choice of <P. 
Above we have only said that <P is a nuclear linear topologi
cal space (with the topology perhaps given by a countable, 
but not finite, number of scalar products) but have not com
pletely specified it. The particular choice of <P depends upon 
the particular physical system that one wants to describe.23 

For an essentially self-adjoint (esa) H, i.e., an operator 
whose Hilbert space adjoint Ht = ii, there exists always a 
sufficient set of generalized eigenvectors. i.e., there exists IE > 
such that every tP E <P (but not every h E In can be written in 
the fOfm (2.1). This is called the nuclear spectral theorem or 
the Dirac spectral theorem, because it justifies Dirac's hy
pothesis (2.1) and makes it precise. Though, according to this 
theorem, there is always a sufficient set of IE), the set of IE) 
that occurs in (2.1) does in general not exhaust24 the set of 
IE) which fulfills (2.2). And there are in general more gener
alized eigenvalues E of H than belong to SpH. In particular, 
for an essentially self-adjoint operator H for which SpH is 
real, there can exist complex generalized eigenvalues, and 
instead of the integral over SpH in (2.1) one may have an 
integral over a contour in the complex plane, as we shall 
discuss below. What set of generalized eigenvalues E in (2.2) 
are allowed depends on the particular choice of <P; converse
ly, one may specify <P by specifying the analyticity property 
ofthecomplexextensionofthewavefunction¢ (E) = (E ItP). 

B. The RHS formulation of quantum mechanics 

von Neumann's Hilbert space (H.S) formulation of 
quantum mechanics25,26 assumes the one-to-one correspon
dence between (pure) physical states and elements (rays) of 
the Hilbert space JZP and between physical observables and 
linear (Hermitian) operators of JY', This is a mathematical 
utopianization which cannot be justified by physical argu
ments,27-30 since up to an arbitrary small error of the mea
surements one can always approximate any element of JIt' by 
an element of a dense linear subspace. Instead of using the 
7 w -completion for the space of (pure) physical states one 
could also use the 7 <p -completion. This leads to the (RHS) 
formulation of quantum mechanics. It is again a mathemat
ical utopianization which, however, is mathematically more 
convenient and provides a much more natural description of 
the physical phenomena. 

Whereas in (the contemporary version of)26 the HS for
mulation of quantum mechanics each kind of micro system 
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(like, e.g., electrons or hydrogen atoms or CO molecules) has 
as the space of physical states a Hilbert space JY', in the RHS 
fromulation 31 ,32, ... ,35 the space of physical preparable states of 
one kind of systems is given by a nuclear space (/>, which is 
7 If -dense in ,W'. The choice of the nuclear topology is deter
mined by mathematical convenience and is different for dif
ferent kinds of microsystems (see Refs. 23 and 27). 

The scattering states (generalized eigenvectors of the 
continuous spectrum) and the decaying states (complex ener
gy eigenvectors) can already be made mathematically rigor
ous if one uses the RHS in von Neumann's formulation of 
quantum mechanics. But the full benefit of the RHS can only 
be realized in the RHS formulation of quantum mechanics. 

The RHS formulation has the following advantages 
over the conventional HS formulation. 

1. Some T)i' -limit elements, like states with infinite en
ergy (Hilbert space vectors which are not in the domain of 
the energy operator), are not T ¢> -limit elements. This ex
cludes the infinite energy states from the space of physical 
states (/> in the RHS formulation. 

2. The wavefunction ¢ (E) = (E I¢ ) is a well behaved 
continuous infinitely differentiable function (element of the 
Schwartz space) in the RHS formulation, whereas in the 
HS formulation the wave function h (E) of one particular 
state hE JY'is given by any element ofa set! h (E)l ofLebes
que square integrable functions which differ on a set of mea
sure zero. The modulus square of the wavefunction charac
terizes the appartus resolution of the experiment by which 
the state was prepared and a Schwartz space function gives a 
description much closer to the experimentally detectable sit
uation than a set of Lebesque square integrable functions. 

3. The algebra of observables sf' for perhaps all physical 
systems can be represented by an algebra of continuous oper
ators in (/>, whereas already the simplest algebra of observa
bles-the algebra generated by P,Q, 1 fulfilling 
[P,Q] = - ii-must be represented by unbounded opera
tors in ,W'. This avoids in the RHS formulation all problems 
with the domain of definition of an observable. 

4. Every Hermitian (esa) observable has a complete set 
of generalized eigenvectors in (/> x, and every physically pre
parable state ¢ E <P can be expanded with respect to this gen
eralized basis system according to (1). In the HS formalism 
this distinction between physically preparable states and ide
alized scattering states does not exist, as scattering states do 
not exist in cW'. Though such idealized monochromatic 
states cannot be physically prepared, their use simplifies the 
calculations and is always possible when the resolution ofthe 
apparatus is sharper than structures of the physical system. 36 

With advantages 3 and 4 one has recovered the Dirac 
formalism in a mathematically rigorous form and these 
points were the original motivation for the RHS formula
tion31

,32; the following advantages came as a bonus: 
5. Decaying and growing states, defined by pairs of 

complex poles of the S matrix (or resolvent of ii), can be 
described by generalized eigenvectors of H (i.e.,E<P X) with 
complex eigenvalues. 

Instead of (I), ¢E<P can be expanded with respect to a 
generalized basis system that contains the exponentially de-
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caying or growing "state" vector. It is this last point that we 
wish to discuss in the following section. 

3. DECAYING AND GROWING GAMOW STATE 
VECTORS AND THEIR ASSOCIATION TO THE 
RESONANCE POLES OF THE S MATRIX 
A. Deforming the contour of integration to separate the 
pole term 

We now want to derive the Gamow state vectors from 
the resonance poles of the S matrix. This can be done analo
gously to the extraction of the bound state vector from the 
bound state pole of the S matrix.37 We write the S-matrix 
element at any time t (it is independent of t ) as 

(l/IoUl(t),Sl/Iin(t)) = (n -I/Iout(t),{l +¢in(t)) = (1/I-(t),eI> +(t)) 

= ( __ dE'(I/I-IE'-)S(E')(+E'I¢ +). (3.1) JsP H 

The notation here is the conventional one.lx: 

IE±)=IE)+ 1 VIE)={l±IE), 
E-H±iO 

where 

(H- V)IE) =EIE) 
(Lippman-Schwinger equation), {l + and {l - are the Mq,ller 
wave operators, ¢ + (t ) represents the state that develops from 
the prepared in-state ¢ in; I/I-(t) represents the state that de
velops into the measured out-state I/IOUl. 

{ 
(+ E lei> +) = (E I¢ in)} 

( ) ( I > 
are the energy wave functions (3.2) 

-E 11/1- = E I/IOUl 

representing the energy distribution on the 

{
prepared state eI> in } 

measured state I/Iout ' 

I (E I¢ in) 12 is given by the incident beam resolution and 

I (E II/Iout) 12 is measured by the (ideal) detector. 

eI> + = ¢ +(t = 0), ¢ +(t) = e- iH'¢ +, el>in(t) = e- iIH - Vl'eI> in, 

1/1 = I/I-(t = 0), I/I-(t) = e - iH'I/I-, I/Iout(t) = e - i(H - VI't/l0ut 

(3.3) 

The integration in (3.1) is along the upper rim of the cut of the 

physical sheet for theSmatrixS (E ) (indicated by Sp ii). All 
extra quantum numbers besides the energy are ignored. 

As we are only interested in the principle that estab
lishes the connection between resonance poles and the Ga
mow state vectors and do not want to burden ourselves with 
irrelevant details, we will restrict ourselves to a rather un
complicated physical system. We assume that our model sys
tem is, among others, characterized by an S-matrix element 
(one particular partial wave and all other quantum numbers 
fixed and ignored) which has the property: 

The analytically continued S matrix S (w), where w is the 
complex energy variable, has no other singularity off the real 
axis but one pair of poles at w = ZR and w = z~ with 
ZR = ER - ir 12, r > O. The spectrum of iiis the positive 
realline.3

'! (3.4) 
We will also assume of our paradigm system that: 
The product of wavefunction and S matrix vanishes on 
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the lower and upper infinite semicircle on the 
second sheet. J9 (3.5) 
Whereas requirements (3.4) and (3.5) are no cause for 

worry, we have no proof yet that the following requirements 
are not too strong. Nevertheless we believe that for reason
able physical systems we can make the following 
requirements: 

The space of physical states <P is such that the analyti
cally continued wavefunctions40 

(w*l<,hin) = (+w*11b +) = (<,h +Iw+)* 

and 

(¢OU'lw) = (¢-Iw-) (3.6a) 

are analytic functions in the lower half second sheet. 

These analytic functions vanish sufficiently fast at the 
lower infinite semicircle of the second sheet. (3.6b) 

The precise formulation of the requirement (3.6b) will 
be given in the derivation below. 

With these requirements the analytically continued in
tegrant in (3.1) has as the only singularity in the lower half 
second sheet the pole at w = Z R = E R - iT /2. The path of 
integration of (3.1) can then be easily deformed from the 
upper rim along the cut into the lower half plane of the sec
ond sheet, and (3.1) can be written as 

(¢-(t),<,h +(t)) = L dw(¢-lw-)S,,(w)(+w*l<,h +) 

+ J dw(¢-Iw-) ~ew*l<,h +), 
;J w-zR 

(3.7) 
where.> -I is the residium of S (w) in the second sheet at ZR: 

SII (w) = ~ +'>0 + .JI(W - ZR) + ... (3.8) 
W -ZR 

and C(j _ is the path below the pole at Z Rand ;J is the circular 
path around ZR as shown in Fig. l(a). 

If(3.5) and (3.6b) are fulfilled, then the contour C(j _ can 
be deformed into a contour along the negative real axis and 
along the lower infinite semicircle and the integral along the 
latter is zero. The path ;J of the second integral in (3.7) can 
be deformed into the infinite semicircle (along which the in
tegral vanishes) and the real line from - 00 to + 00. Then 
(3.7) can be written 

(¢-,<,h +) = background 

+J+oO dE' (¢-IEi[ -iE) ,.J-:- 1 (+E;[ -iEI<,h+), 
- ""II Ell - IE - ZR 

(3.9) 

where we have denoted, for reasons that will become clear 
later; 

background 

= i-~oclldE'(¢-IEi[ -ic)S(Eir -iE) (+Ei1 -iEI<,h+). 

(3.10) 

The wavefunctions that occur in (3.9) and (3.10) for negative 
nonphysical values of E are obtained from the physical val
ues by suitable analytic continuation. The integrals in (3.9) 
and (3.10) run along the negative real axis41 in the second 
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(0) 
E (Iirst sheet) 

(b) 

0: 
Sp H 

FIG. I. Deformation of the path of integration into the second sheet of the 
energy plane. Part (a) is for the decaying state, (b) for the growing state. 

sheet and along the upper rim of the cut from 0 to 00 on the 
physical sheet (or on the lower rim of the cut form 0 to 00 on 
the second sheet). 

The complement of the requirement (3.6) is the follow
ing requirement: 

The space of physical states <,h is such that the analytical
ly continued wavefunctions 

(w*l¢out) = (-w*I¢-) = <¢-Iw-)* 

and 

(3.6a') 

are analytic functions in the upper half second sheet. 

These analytic functions vanish sufficiently fast at 
the upper infinite semicircle of the second sheet. (3.6b') 

We will now discuss the two cases in which we make use 
of(3.6) or (3.6') separately and label the corresponding equa
tions by unprimed or primed numbers, respectively. (Note 
that the same symbols ¢-,<,h + will have different meanings 
for the primed and unprimed equations which describe two 
entirely unrelated problems for the same S matrix.) 

With assumptions (3.4), (3.5) and (3.6) the analytically 
continued integrand in (3.1) has as the only singularity in the 
upper half second sheet the pole at w = z~ = E R + iT /2. In 
order to deform the path of integration into the upper half 
second sheet we have to take the complex conjugate of (3.1) 
and use the symmetry relation of the S matrix.42 

S*(E + iE) = S(E - iE). 

Then (1) is written 

(<,h+,¢-)= f _dE(<,h+IE+)S(E)(-EI¢-), (3.1') 
JSPH 

where the integration runs now along the lower rim of the 
cut in the physical sheet (indicated by spill. The path of 
integration can then easily be deformed into the upper half 
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second sheet and (3.1 ') can be written 

(tP +(t),!p-(t)) = L+dW(tP +lw+)Su(w) (-w*lttr-)· 

+ (dw(tP+lw+) s_, , (3.7') 
Jc. w - z~ (-w*lttr-) 

where s_, is the residium of S (w) in the second sheet at z~,: 

SlI(W) = ~+s() +s,(w -z~) + ... 
w -z~ 

(3.8') 

and C(f + is the path above the pole at z~ and C. is the circular 
path around z~ as shown in Fig. l(b). Again assuming suffi
ciently nice properties of (tP + Iw +), (-w*lttr-) andS (w) this 
can be written 

(tP +, ttr -) = background 

+f+oo dE(tP+IEll +iE+) s-:-' * (-Ell +iElttr-), 
- 0011 Ell + IE -ZR 

where (3.9') 

background 

= i-oolldE(tP+IEn +iE+)S(EJI +iE)(-En +iElttr-). 

(3.10') 

The integrals in (3.9') and (3.10') run along the negative real 
axis in the second sheet4

' and along the lower rim of the cut 
from 0 to 00 on the physical sheet (or on the upper rim of the 
cut from 0 to 00 on the second sheet). 

The second integral in (3.7) and (3.7') give, by the 
Cauchy integral formula, 

-2rriJ_,(ttr-lzR-) (+zRltP+) (3.11) 

and 

(3.11') 

respectively. For this only the properties (3.6a) and (3.6a') are 
required. 

Equations (3.11) and (3.11') are the expressions that we 
wish to obtain but we want to relate them to the second 
integral in (3.9) and (3.9'), as these have the characteristic 
Breit-Wigner denumerator. For this the requirements (3.6b) 
and (3.6b') are needed in the precise form 

(ttr-IE-)(+EltP+) EL P_(En) (3.6) 

and 

(3.6') 

where 1 <; p < 00, and where L ~ (E) denotes the space of 
.Ii' functions43 with respect to the upper ( + ) and lower ( - ) 
plane of the second sheet. The equalities of (3.11) and (3.11') 
(i.e., the second integrals of (3.7) and (3.7')] and the second 
integrals of (3.9) and (3.9') follow then from a general theo
rem 44 (generalization of the Titchmarsh theorem 45). 

We will make the weakest of the requirements (3.6) and 
(3.6')p = 1, because these hold if 

(ttr-IE-) EL2_ (En), (3.12) 

(3.12') 

As ttr-, tP + E t:P and not only EJY, and the operators Hq 
(q = 0,1,2, ... ) are 7 <t>-continuous, it follows that not only 
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(3.12) and (3.12') hold but also that 

Eq(ttr-IE -) E L 2_ (Eu), 

Eq(tP + IE +) EL 2+ (Eu ). 

Thus the wavefunctions 

and 

(3.12a) 

(3.12a') 

(E ItP in) = (+ E ItP +) = (tP + IE +) * E L 2_ (Ell) 
(3.13') 

are well behaved Hardy class functions with respect to the 
upper and lower half-plane of the physical sheet for the case 
(3.6) and (3.6'), respectively. This we write as 

ttr- E:7t" +, (3.13a) 

(3.13a') 

where:7t" + (eW' _) is the Hilbert space which is realized by the 
space of wave functions (-E Ittr-)( (+ E ItP +»). 

B. The vector with exponential time development 

It is now already obvious that the pole terms, i.e., the 
second integrals in (3.9) and (3.9'), will be the starting point 
for the definition of decaying and growing state vectors, re
spectively. We will now show that this is indeed the case and 
that we have for the second term in (3.9) an exponential time 
development, but only for t > O. For the second term in 
(3.9') we also have an exponential time development; this, 
however, is valid only for t < O. In the following Sec. 3C we 
will show that this separation into processes for t < 0 and 
t > 0 is completely natural and exactly as one expects from 
the intuitive requirements for a formation and decay pro
cess, respectively. 

We insert (3.11) and (3.10) into (3.9) and omit the arbi
trary ttr- E :7t" +nt:P, then we obtain the representation of tP +: 

tP+ = i-oolldEIE-)Sn(E)(+EltP+) 

+ IZR-)( - 2rriJ_,)(+ZR ItP +), 

where the vector Iz R- ) is defined by 

If+oo - 1 IZR) = - -. dElE )---
2m - 00 E -ZR 

(3.14) 

(3.15) 

(integrated along the lower rim of the real axis in the second 
sheet). (3.15) 
We emphasize tht (3.14) is only valid when considered as a 
functional over eW' +nt:P, and IZR ) of (3.15) is therefore only 
defined as a functional over c'7('+nt:P . 

Analogously we insert (3.11') and (3.10') into (3.9') and 
omit the arbitrary tP + E ,}Y' _nt:P, then we obtain the repre
sentation of ttr-: 

ttr- = i -~lIdEIE+)Su(E)(-Elttr) 
+ Izf> (2rris_tl (-z~lttr-), 

where the vector Iz~' ) is defined by 

Izf) = _1_ f -I- 00 dE IE +) 1 
2rri - 00 E - z~ 

(3.14') 

(3.15') 
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(integrated along the upper rim of the real axis in the second 

sheetl· 

Equation (3.14'1 is only valid when considered as a functional 
over K _net> and \z~ - > of (3.15'1 is only defined as a func
tional over:J"r' _n4>. 

Equation (3.15) is the generalized complex energy ei
genvector with Breit-Wigner energy distribution intro
duced before.3 •16 That the functionals (3.15) and (3.15') are 
indeed generalized eigenvectors of H, written formally as 46 

(3.16) 

and 

H \z~ + ) = z~ \z~ +), (3.16') 

follows from the fact that not only (1/I-IE -) E L 2_ (E) and 
(I/> + /E +) E L 2+ (E) but also (1/I-IE -)E EL 2_ (E) and 
<I/> + IE +)E E L 2+ (E), so that for these functions also the 
general theorem 44 can be applied, which led from (3.9) and 
(3.9') to (3.11) and (3.11 '). 

The functionals (3.15) and (3.15') are also generalized 
eigenvectors of e - iHI for t > 0 and t < 0, respectively. But 
(3.1 51 is not a generalized eigenvector of e - iHI for t < 0 and 
(3.15') is not a generalized eigenvector of e - iHI for t > O. 

This follows from the fact that with (3.12) one has also 

(t/J-IE-)e- ,EI EL 2_(E) fort> 0 (3.17) 

and with (3.12') one has also 

<I/> + jE +)e - it:1 E L '+ (E) for t < O. (3.17') 

Then one considers (3.15) as a functional over if- E:J"r' +rtP 
and obtains 

if- E J¥' + net>. 

Because of(3.17) one can apply to the right hand side of this 
equation for t > 0 only the general theorem 44 and obtain 

(if-je - iHljZR ) = e - iZRt <ii-jZR ). 

This is formally written as 46 

e - iHljZR ) = e - izR, jZR ) = e - iERle -lrl2)ljZR) 

for t > O. (3.18) 

in an analogous way one shows that46 

e - iHI Iz~ + ) = e - iz7:1 jz; + > = e - iERI e + iT /2)1 jz: + > 

for t < O. (3.18') 

Equations (3.17), (3.18) and (3.17'), (3.18') identify the 
jZR) and jzj'; +) as generalized eigenvectors of the energy 
operator describing exponentially decaying and exponen
tially growing "states", respectively. We will therefore call 
them Gamow vectors. For the decay, t must be larger than 
the (arbitrarily chosen) time t = 0, and for the growth, t must 
be smaller than zero. As already mentioned we will show 
below in Sec. 3C that this is connected to a natural intuitive 
requirement for decaying and growing states, respectively. 

How these Gamow vectors avoid the well-known path
ologies known as the deviations from the exponential decay 
laws.ls is also immediately seen; There is no deviation from 

2819 J. Math. Phys., Vol. 22, No. 12, December 1981 

the exponential law for large t because the integrals over the 
energy in (3.15) and (3.15') are not bounded from below. 
Equations (3.15) and (3.15') have ideal Breit-Wigner energy 
distributions extending from - 00 to + 00 but in the second 
sheet. And there is no deviation for small t because the Ga
mow vectors (3.15) and (3.15') are not in the domain of the 
Hilbert space operator H (the closure of the Hamiltonian). 
This, however, does not mean that there is no deviation from 
the exponential time development for a physical state. This 
deviation is due to the background, as we shall discuss in Sec. 
3D. 

That the decaying states lead in the Born approxima
tion to the Fermi Golden Rule has already been shown in 
Ref. 16. There it has also been shown that the generalized 
eigenvectors jZR -) are in a certain sense normaIizable, 
( -z: jZR -) = l/2trr. One may, therefore, define the nor
malized Gamow vectors 

I/> D = !ER - jr
2
- ) = ! E - jr

2
- ) (2trr )1/2 :.-1 ( - 1), 

-I 

(3.20) 

(3.20a) 

and 

I r+) I r+ \ s'" 
t/JG = ER + i-

2
- = E + i-

2
-{(2trr)1/2 s=:' 

(3.20') 

(3.20a') 

The time development of I/> D is only defined into the 
foward direction, t > 046

; 

I/> D(t) = e - iH11/> D = e -- iERle -lrl2)tl/> D t > 0 (3.21) 

and the time development of t/JG is only defined from the 
backward direction, t < 046

; 

t/JG(tj = e-iHtt/JG=e-iERle(F/211t/JG) t < O. (3.21') 

I/> D is considered as functional on ~ + and t/JG is 
considered as functional on ~ _. By the separation ofthe 
space of physical states into these two subspaces the dynami
cal group e - iHlhas been separated into two dynamical semi
groups, as indicated by Eqs. (3.21) and (3.21'). 

c. Separation of resonance scattering into decay and 
formation 

In Sec. 3A we have seen that in order to relate the sec
ond sheet pole of the S matrix below the real axis with the 
vector (3.15) of the Breit-Wigner energy distribution we had 
to require that (3.6), (3.12), (3.13), or (3.13a) be fulfilled for 
the out-states of the scattering process described by this S 
matrix. Then we saw in Sec. 3B that the exponential time 
development (3.18) could only be derived for (3.15) over 
these out-states 1/1- E ~ +ncfJ and only for t > O. Analo
gously we have seen in Sec. 3A that in order to relate the 
second sheet pole above the real axis with the vector (3.15') 
we had to require (3.6'), (3.12'), (3.13'), or (3.13a') for the in
states. And in Sec. 3B we saw that the exponential time de-
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velopment (3.18') could only be derived for (3.15') over these 
in-states ¢ + E JY _n4> and that this holds only for t < O. We 
will now show that this mathematical condition on the'" - in 
the form (3.12) is related to the intuitive conditions for the 
later part, t > 0, of a resonance scattering process. And we 
will also show that the mathematical condition on the ¢ + in 
the form (3.12') is related to the intuitive condition for the 
earlier part, t < 0, of a resonance scattering process. This 
means that it is quite natural for intuitive physical reasons 
that (3.18) holds only for t > 0 and (3.18') holds only for 
t < O. 

Equation (3.1) gives the probability amplitude for find
ing the state ",-(t), which will be observed in the distant 
future, t-+ + 00, after the interaction has ceased to be effec
tive, as 1/;0U\ if the state of the system is ¢ + (t ), which was 
prepared in the remote past, t-+ - 00, before the interaction 
becam~ effective as ¢ in. If this (for simplicity, two-body) 
scattenng process happens with time delay, i.e., resonance 
formation,. then it is depicted by Fig. 2(a) and (3.1) describes 
the scattenng from an in-state through resonanCe formation 

. and subsequent decay into an out-state. It leads to the same 
value at any time - 00 < t < + 00. 

In contrast to this whole scattering process, Jet us now 
consider a decay process. The decay process is only the "lat
er" half of a resonance scattering process, for which one 
ignores the formation process; i.e., one does not wish to de
scribe how the resonance developed from ¢ in at t-+ - 00 but 
pays attention only to that part of the full scattering process 
in which the resonance starts decaying at a given time, say 
t = O. Thus, one starts the description not with the state ¢ in 

but with the state ¢ + (t = 0) and such a process would, there
fore, be depicted by Fig. 2(b) instead of Fig. 2(a). In such a 
process one observes the decay product ",out(t) only after the 
time t = O. 

Let us now see how this is related to the mathematical 
conditions (3.12) or (3.13), which was required for the con
necting of the pole below the real axis with the decaying 
Gamow vector (3.15). From the Paley-Wiener theorem 47 

follows that (3.13) is fulfilled if and only if 

t-oo~,"dEe-iEI(-E+i€I"'-) =0 fort < O. (3.22) 

With (3.3) and (3.2) one obtains40 

f dE (-E le- iHII"'-) = f dE (E I",out(t) = 0 

for t < O. (3.23) 

This mean that the integral over the probability amplitUde of 
the decay product for all energies vanishes at times t < 0, 
which may be taken as the mathematical expression for ob
serving the decay product only after t = O. Thus, the math
ematical condition for the later half of the resonance scatter
ing process is given by (3.12) or (3.13). 

On the other hand, the formation process is the "earli
er" half of a resonance scattering process. One ignores the 
decay process and does not wish to describe how the reso
nance will develop into ",out at t--+ 00, but describes only that 
part of the full scattering process in which the resonance has 
stopped forming at a given time, t = O. In this way one stops 
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FIG. 2. Separation of resonance scattering (a) into a later (b) 
and an earlier (c) part. The later part is connected with decay, the 
earlier part with formation. 

the description not with the state ",out but with the state "'
(t = 0), that arose in the transition from ¢ + (t ), the state that 
was prepared as ¢ in at t-+ - 00. 

This earlier part of the full resonance scattering process will 
then be depicted by Fig.2(c). In such a process one prepares 
the state ¢ mIt ) only before the time t = O. 

Let us now see how this is related to the mathematical 
condition of (3.12') or (3.13'), which was required for con
necting the pole above the real axis with the growing Gamow 
vector (3.15'). From the Paley-Wiener theorem47 follows 
that (3.13') is fulfilled if and only if 

J+ oo~,dE e - iEI (+ E - i€l¢ + > = 0 for t > O. (3.22') 

With (3.3) and (3.2) one obtains40 

fdE(+Ele-iHll¢+) = fdE(EI¢in(t) =0 

for t > O. (3.23') 

This means that the integral over the probability amplitude 
of the prepared in-state for all energies vanishes at times 
t > 0, which may be taken as the mathematical expression 
for preparing the intial state only before t = O. Thus, the 
mathematical condition for the earlier half of the resonance 
scattering process is given by (3.12') or (3.13'). 

D. New spectral representations for physical states 

Equation (2.1) is the well-known energy spectral resolu
tion of a physical state which has been proposed by Dirac 
and has been proven by the Nuclear Spectral Theorem (if H 
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also has bound states at En then, in addition to the integral, 
there will be a discrete sum over the En). The representations 
(3.14) and (3.14') are new energy resolutions of physical 
states. The form (3.14) represents the physical state ¢ + as the 
sum of a decaying "state" with a Breit-Wigner energy distri
bution plus some background. And the form (3.14') repre
sents the physical state 1/;- as the sum of a growing state with 
Breit-Wigner energy distribution plus some background. 
One can rewrite this pair of new generalized eigenvector de
composition (3.14) and(3.14') into a more suggestive form if 
one eliminates S (E). In order to achieve this, we extend the 
usual relation 

IE +> = IE -> S(E), 

IE-) = IE+)S*(E) 

(3.24) 

(3.24') 

to values of E on the negative axis of the second sheet:also 

IE It) = Ell )SII (E) E < 0 lower rim (3.25) 

and 

(3.25') 

using the symmetry relation of the S matrix,42 S *(E + if) 
= S (E - i€). With this, the normalized Gamow vectors 

(3.20), (3.20'), (3.20a), and (3.20a') and with 

J _ I = s*- I = - iT, 

one can write (3.14) and (3.14') as 

and 

¢ + = 1- 00 "dE IE~) (+ En I¢ +) + IZi )(+ZR I¢ +) 

on dY +ntP (3.14a) 

1/;- = i-oo"dEIEil)(-ElIll/;-> + Iz~+)(-z~II/;-) 

on 7r'ntP. (3.14a') 
These new representations of a physical state look very 

similar to the Dirac spectral representation, only now the 
quasistationary states appear in the same place as the bound 
states in the original spectral representation [it is easily seen 
that for n pairs of poles one obtains in (3.14a) and (3.14a') a 
discrete sum over the n Gamow vectors). We will call these 
representation again spectal representations though the inte
gration and summation runs over values of energy that have 
nothing to do with the spectrum of H in the Hilbert space 
sense. These different spectral resolutions provide different 
realizations of the RHS by spaces of functions. 

According to the RHS formulation of quantum me
chanics the physically preparable state should be an element 
of <1>, therefore the Gamow vectors (3.15) and (3.15') cannot 
represent physically preparable states. A physically prepara
ble decaying state ¢ + or growing state 1/;- always contains 
some background given by the background integral in (3.14) 
and (3.14'). The decaying "state" vector (Gamow vec-
tor) Iz i ), that originates from the resonance pole of the S 
matrix below the real axis, is an idealization like the monoen
ergetic state IE> (Dirac ket), but unlike these it is not even 
defined as a functional over the whole space of physical 
states but only over rougly half of all physical states, tPn7r' +. 

The exponentially growing state vector Iz~ + ) that origi-
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nates from the resonance pole of the S matrix above the real 
axis is also an idealization and is defined only as a functional 
over the subspace <Pn!It" _. In this way the RHS formulation 
of quantum mechanics settles the controversy concerning 
the deviation from the exponential decay law.s The reso
nance per se is described by an idealized state vector that 
develops exponentially in time, but the physically preparable 
state contains a background term which causes the 
deviations. 

E. Summary of Section 3 

We have separated the full resonance scattering process 
(one pair of poles of the S matrix) into two parts. The growing 
part (pole in the upper half-plane) is terminated at t = 0 by 
the requirements (3.23') or (3.12'). The state that has arisen 
through transitions at t < 0 from ¢ +(t) is given at t = 0 by 
11/;-) of(3.14') and by 

¢-(t) =e-'Htll/;-) fort < O. (3.26') 

Its main contribution is the exponentially growing state 
Iz~ +), which develops accordings (3.18'). 

The decaying part (pole in the lower half-plane) is start
ed to be observed at t = 0 by the requirment (3.23) or (3.12). 
The state that decays by transitions at t > 0 into I/;-(t) is 
given at t = 0 by I¢ +) of(3.14) and by 

(3.26) 

Its main contribution is the exponentially decaying state 
IZi), which develops according to (3.18). 

The space of physical states for the growing part of the 
scattering process is contained in 7r' _. For the growing part 
of the process, t < 0, I/;-(t )EtPn7r' _ and the growing state 
Iz~ + ) is defined as a functional over ! ¢ + J C 7r' _. This 
growing part of the process is described by the primed equa
tions. 

The space of physical states for decaying part of the 
scattering process is contained in 7r' +. For the decaying part 
of the process, t > 0, ¢ +(t )EtPn7r' + and the decaying state 
IZi) is defined as functional over I I/;-j c7r' _. This decay
ing part of the process is described by the unprimed equa
tions. [Note that the same symbols 1/;-, ¢ + have different 
meanings in the growing part (primed equations) and the 
decaying part (unprimed equations).] 

4. SEPARATING THE EXPONENTIALLY DECAYING 
COMPONENT OF THE DENSITY MATRIX 

In this final short section we want to show how the 
considerations of the preceding section may be related to 
attempts of the Brussel group20 to find transformations from 
the old representation of the density matrix into a new repre
sentation in which the exponentially decaying part is sepa
rated. This relation can be uncovered if one compares the 
original generalized basis vector expansion of the vector ¢ +: 
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ifJ + = 100 

dE IE +)(+E lifJ +) 

= f"dE IE -)S(E)(+ E lifJ +) 

(4.1) 

[integrated along the upper rim, (E + iE), of the cut in the 
physical sheet] with the new generalized basis vector expan
sion (3.14). Equation (3.14a) is a generalized eigenvector ex
pansion of the physical state ifJ + in which the idealized de
caying state vector ifJ D is an element of the generalized basis 
system. It is, therefore, the most suitable choice for an eigen
vector expansion of a physical state dominated by a decaying 
state. The smaller the background term; 
ISlI( - E)(+ - Ell lifJ +),dE I as compared to 
I 21Ti.; _ 1 ( + Z R I ifJ +) I, the closeris ifJ + to an idealized (expon
entially) decaying state. 

We assume now that the values of the analytically con
tinued wavefunctions (IP- IE It) and (+ En lifJ + I fulfill the 
relation 

(¢-IElI +)= -(¢-I-EII+)' 

(+ Ell It,b +) = (+ - Elllt,b +). (4.2) 

The physical values of the wavefunctions are (E + It,b +) for 
o .;;; E < 00 on the physical sheet (upper rim) and whether 
the analytic continuation can be done such that (4.2) is ful
filled depends upon the particular properties of the space of 
physical states (/). This space already has to fulfill many oth
er conditions specified in Sec. 3 and it may well be that (4.2) is 
in conflict with these conditions.48 But if one uses (4.2) then 
(3.14a) becomes 

ifJ + = 100 

dB IEII +) (+ Ell lifJ +) + IZi )(+ZR lifJ +). (4.3) 

From this form one sees, in an obvious way, what is of course 
also contained in (3.14), namely that the original compo
nents (energy wave function) of ifJ + have been transformed 
into new components: 

(4.4) 

in which the exponentially decaying part has been separated. 
If the wavefunction is transformed by (4.4) then the density 
matrix of the statistical operator I ifJ +) (ifJ + I is transformed 
according to 

(+E'lifJ +)(ifJ +IE+) =PE'E-+P';;'E 

=(+ZRlifJ+)<ifJ+IZ~+) (+E'lifJ+)(t,b+IZ~») 
(+zRlifJ +)(t,b +IE+) (+E'lifJ +)(ifJ +IE+) 

In more realistic physical situations the state is not described 
by a projection operator I ifJ +) (ifJ + I but by a more general 
statistical operator (in (/) ) W +. As every W can be given by 

W + = I,vy lifJ i+ ) (ifJ / I with ifJ / ,ifJ / E(/), 
i,j 

the transformation (4.4) has just to be repeated for every i,j 
in order to accomplish the transformation from the original 
density matrix (+ E' I W + IE +) into the density matrix in 
which the exponentially decaying component is separated, 
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From the following calculations, 

( + E I W + Iz~) ) 
(+E'IW+IE+) . 

(4.6) 

(-ZR I W+(t)lz~ - +) = (+ZR leiHtW+e+iHt Iz~ +) t> 0 

= e - iZRtei* (+ZR I W+ Iz~ +) (4.7) 

= e- rr (+ZR I W+lz~+), 
one can see that the exponentially decaying part has been 
separated, as was demanded in the program of the Brussels 
group.20 

ACKNOWLEDGMENTS 

This paper was started while visiting the Solvay Insti
tute, and the author would like to express his gratitude to I. 
Prigonine for the hospitality extended at him at Brussels. He 
would like to thank him and his colleagues, in particular A. 
Grecos, C. George, M. de Haan, and F. Mayne, for many 
valueable discussions which led to the presentation in Sec. 4. 
For discussion of the mathematical problems that arise in 
this work, he would like to express his gratitude to I. M. 
Gelfand, J. E. Gilbert, S. G. Guindikin, A. A. Kirillov, K. 
Napiorkowski, and M. Gadella. Problems of Sec. 2(b), in 
particular the nonderivability of the Hilbert space, were dis
cussed with G. Ludwig, O. Melsheimer, and H. Neumann, 
and the author is grateful for their opinions concerning this 
point, which were included in Ref. 27. Part of this work was 
done while at Wiirzburg University and the author would 
like to express his gratitude to K. Kraus, who has read sever
al versions and made many suggestions. The author would 
also like to express his gratitude to M. K. Polivanov and his 
group at the Steklov Institute and, in particular, to L. A. 
Khalfin for his suggestions for the final version of this paper. 
Support from the USDOE (contract No.ERO-3992) and the 
Alexander von Humboldt Foundation is gratefully 
acknowledged. 

'G. Gamow, Z. Phys. 51, 204 (1928); 52, 510 (1928). The use of complex 
eigenfrequencies goes back even much further; J. J. Thomson, Proc, Lon
don Math, Soc, 15,197 (1884), applied them for the description oftran
sient modes of an electromagentic field, 

21. M. Gel'fand and G. P. Shilov, Generalized Functions, Vol. 4 (Academic, 
New York, 1964); K. Maurin, General Eigenfunction Expansions and Uni
tary Representations of Topological Groups (Polish Scientific Publishers, 
Warszawa, 1968); A. Bohm, "The Rigged Hilbert Space and Quantum 
Mechanics," in Springer Lecture Notes in Physics, Vol. 78 (Springer, New 
York,1978). 

3A. Bohm, Quantum Mechanics (Springer, New York, 1979). 
'v, Fock and N. Krylov, J. ofPhys. USSR 1,112 (1947); Zh. Eksp. Teor. 
Fiz. 17, 93 (1947). 

5L. A. Khalfin, Zh. Eksp. Theor. Fiz. 33,1371 (1958) [Sov. Phys. JETP, 
1053 (1958)]; Ook!. Akad. Nauk SSR 115,277 (1957); 132,1051 (1960); 
141, S99 (1961) [Sov. Phys, Ookl. 2, 340 (1958); 5 SIS (1960); 6,1010 
(1961)]; Pis'ma Zh. Eksp. Theor. Fiz. 8,106 (1968) [JETP Lett. 8, 65 
(1968)]. 

"V. F, Weisskopfand E. P. Wigner, Z. Phys. 63, 54 (1930) 65,18 (1930). 
7G. Breit and E. P. Wigner, Phys. Rev. 49, 519 (1936). 
"A. F. J. Siegert, Phys. Rev. 56, 750 (1939). 
'c. M611er, Kg. Dan Vidensk Selsk Mat. Fys. Medd. 22. (1946); W. Heider 
and N. Hu., Nature 159, 776 (1947). 

10K. O. Friedrichs, Commun, Pure Appl. Math. 1, 361 (1948); J. S. How
land, Am, J. Math. 91,1106 (1969); J. Math. Anal. Appl. 50,415 (1975); B. 

A.Bohm 2822 



                                                                                                                                    

Simon, Int. 1. Quantum Chem. XIV, 520 (1978); M. Reed and B. Simon, 
Methods of Modern Mathematical Physics, Vol. IV (Academic, New York, 
1978), and reference quoted therein. 

"c. L. Dolph, Bull. Am. Math. Soc. 67, 1 (1961). See, also, W. Krolikowski 
and 1. Rzewuski, Nuovo Cimento, 3, 260 (1956); 4, 1212 (1956); 258, 739 
(1975). C. George, F. Henin, F. Mayne, and I. Prigogine, Hadron 1.1, 
(1978); A. P. Grecosand I. Prigogine, Proc. Natl. Acad. Sci. USA 69, 1629 
(1972). 

121. M. Combes et al., Commun. Math. Phys. 22, 269, 280 (1971); B. Simon, 
Ann. Math. 97, 247 (1973). 

"A. Grossmann, 1. Math. Phys. 5, 1025 (1964); T. Berggren, Phys. Lett. B 
38,61 (1972). 

14H. Baumgartel. Math. Nachr. 75, 133 (1976). 
"F. T. Smith, Phys. Rev. 118, 349 (1960). 
If'A. Bohm, Proceedings of the 1978 International Collquium on Group 

Theoretical Methods in Physics, Springer Lecture Notes in Physics, Vol. 94 
(Springer, New York, 1979), p. 245. 

"V. Gorini and G. Parravicini, Proceedings of the 1978 International Colo
quium on Group Theoretical Methods in Physics, Springer Lecture Notes 
in Physics, Vol. 94 (Springer, New York, 1979) p. 219; G. Parravicini, V. 
Gorini, and E. C. G. Sudarshan, 1. Math. Phys. 21, 2208 (1980). 

"G. Calucci, L. Fonda, and G. C. Chirardi, Phys. Rev. 166,1719 (1968); G. 
Calucci and G. C. Chirardi, Phys. Rev. 169, 1339 (1968); 08, 3346 (1972); 
L. Fonda, G. C. Ghirardi, andA. Rimini, Rep. Prog. Phys. 41,587 (1978). 

'"L. A. Khalfin, Dok!. Akad. Nauk SSSR 162, \034 (1965); 165, 541 (1965); 
181,584 (1968) [Sov. Phys. Dokl. 10, 541 (1965); 10, \091 (1965); 13, 699 
(1969)]; Pis'ma Zh. Eksp. Theor. Fiz. 7, 341 (1968) [IETP Lett. 7, 267 
(19681]. 

2('1. Prigogine, F. Mayne, C. George, and M. de Haan, Proc. Natl. Acad. Sci. 
USA 74, 4152 1977, and references therein; I. Prigogine and A. Grecos, in 
Problems in the Foundation of Physics, edited by G. Toraldo di Francia 
(North-Holland, Amsterdam, 1979); A. Grecos et al. Physica A 80, 421 
(1975); Acta Phys. Pol. 4SD, 749 (1976). 

2IP.A.M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 
19581· 

22To complete a space means to adjoin to it the limit elements of Cauchy 
sequences in a similar manner as one completes the set of rational numbers 
to obtain the set of real numbers. Topology here is given by specifying the 
meaning of convergence of infinite sequences (however the topology of <I> x 

cannot be defined in this way). 
2-'Eariier (see Ref. 32 below) it had been suggested that the topology of <I> be 

defined by the countable number of scalar products 
(¢>,li')" = (¢,(.1 + II"w), n = 0,1,2,3, ... , where.1 = ~X7 is essentially self

adjoint and X, are the essentially self-adjoint generators of the associative 

algebra of observables .w. If.w is an enveloping algebra of a semisimple 
group (spectrum-generating, dynamical, or symmetry group) then <I> can 
be proven to be nuclear [Appendix B of A. Bohm, 1. Math. Phys. 8,1551 
(1967)]. However, a <I> defined by this topology may be already too large 
for our present purpose. 

24G. Lindblad and B. Nagel, Ann. Inst. Henri Poincare XIII, 27 (1970); K. 
Napiorkwski, Bull. Polish Acad. Sci. 22,1215 (1974); 23, 251 (1975). 

2'J. von Neumann, Mathematical Foundations of Quantum Mechanics 
(Springer, New York, 19321; G. Ludwig, Grundlagen der Quantenme
chanik (Springer, Berlin, 1954). 

2''K. Kraus, "Operations and Effects in the Hilbert Space Formulation of 
Quantum Theory," in Lecture Notes in PhYSics, Vol. 29 (Springer, New 
York, 1974), p. 206. G. Ludwig, Einfiihrung in die Grundlagen der Theor
etischen Physik, Vol. 3, Quantentheory Vieweg. 1976. 

"I t has often been said that the Hilbert space formulation of quantum me
chanics can be derived from more physically motivated axioms (Refs. 28-
30) Since the topology determines the convergence of infinite sequences, 
whereas one can only perform a finite number of experiments, this is an 
entirely unacceptable statement. It is also a misrepresentation ofthe work 
in Ref. 28 and 29. How to topologize the set ofobservables or the set of 
states cannot be determined from physical arguments alone but should be 
chosen for mathematical convenience. Only if one chooses for the com
plete set of states K (see p. 203 of Ref. 29) the norm-closed convex set 
generated by the set of physical states ,r (see p. 200 of Ref. 29), does one 
obtain the Hilbert space:F. But instead of choosing the norm-closed K, 
one may as well choose any subset of K which is obtained from % by 
completion with respect to a stronger topology. This one can do in such a 
way that one is led for the space of (pure) physical states to a subspace <I> of 
:.f 

2823 J. Math. Phys., Vol. 22, No. 12, December 1981 

2"G. Ludwig, "Axiomatische Grundlegung der HiIbertraumstruktur der 
Quantenmechanik," Springer Lecture Notes in Physics, Vol. 4 (Springer, 
Berlin, 1970); and "Foundations of Quantum Mechanics and Ordered 
Linear Spaces," Springer Lecture Notes in Physics, Vol. 29, edited by A. 
Hartkiimper and H. Neumann (Springer, New York, 1973), and reference 

therein. 
29G. Ludwig, in The Uncertainty Principle and Foundations of Quantum 

Mechanics, edited by W. C. Price and S. S. Chissick (Wiley, New York, 
1977), p. 189. 

"'c. Piron, Foundations of Quantum Physics (Benjamin, New York, 1976). 
311. E. Roberts, 1. Math. Phys. 7,1097 (1966); Commun. Math. Phys. 3, 98 

(1966). 
·'2A. Bohm, in Boulder Lectures in Theoretical Physics, 1966, Vol. 9A (Gor

don and Breach, New York, 1967), p. 2SS and "The Rigged Hilbert Space 
and Quantum Mechanics," University of Texas publication ORO-3992-
161CPT205 (1973). 

.HI. P. Antoine, 1. Math. Phys. 10, S3 (1969); 10, 2276 (1968). 
'40. Melsheimer, J. Math. Phys. 15, 902 (1971). 
J~G. Lassner, Wiss. Z. Karl Marx Univ., Leipzig Math. Naturwiss. R. 22 

(1973). 
-'"Section XIV.S of Ref. 3. 
"E. g., Sec. XVII. 5 of Ref. 3, or K. Gottfried, Quantum Mechanics (Benja

min, New York, 1966), Sec. 14.4. 
'"Chapter IV of Ref. 3. These well-known facts of scattering theory are in 

every good book on scattering theory, of which R. G. Newton, Scattering 
Theory of Waves and Particles (McGraw-Hili, New York, 1966), is par
ticularly recommendable for the things needed here. 

-'"These assumptions are not crucial, as one will see when one goes through 
the arguments below. If there are N pairs of poles (complex poles oftheS 
matrix always come in pairs), one will obtain N instead of one Gamow 
vectors. If there are complex cuts, one obtains a different background 
term, but our arguments concerning the Gamow vectors are unaffected. 
However, then one will not obtain the representation of Ref. 20. The 
assumptions (4) and (5) are also not very restrictive: Ifthe S matrix comes 
form a potential, then for Yukawa-type potentials and for cutoff poten
tials these conditions will be fulfiled. 

"'The physically accessible quantities are the wavefunctions 
I(E Ilbi">1 = I<' E" - i€lr>1 = 1(+ E, + i£l~ +>1, I(E Iwou'>1 
= I C- E, - i€lw->1 = W'En + i€lw-> I for 0 <:; E < 00 only. They 

have to be suitably continued if one needs their values for negative or 
complex energies. Into which domain of the energy plane they can be 
continued, and which value they take there, depends upon the properties 
of the space of physical states <I> which in turn depends, like the S matrix 
S (Ul), upon the property of the physical system under consideration. It is 
unlikely that a <I> fulfilling (6) does not exist, but the investigation of the 
mathematical properties of such <I> 's and their reflection upon the physical 
states remains the principal problem to be solved. 

41 If there are poles and/or cuts along the negative real axis of the second 
sheet (e.g., in case ofYukawa-type potentials) then the integrals in (3.9) 
and (3.101 have to be taken along the lower rim of the negative real axis and 
the integrals in (3.9) and (3.10') have to be taken along the upper rim of the 
negative real axis. 

42E. g., H. M. Nusssenzveig, Causality and Dispersion Relations (Academic, 
New York, 1972), Eqs. (2.8.15). 

4-'G (E) E L Per (E) [,\y-function or H P-c1ass functions; for p = 2 they are 

called of the Hardy class] iff it is the limit .,,->0 of a function G (Ul), 
Ul = E + i.", that is analytic in the half-plane." ~O, such that I G (E + i.,,)i P 

is integrable for each .,,<i!.0 and for which (JIG (E + i."WdE )'/p is bounded 
for 0 < ." < 00 and 0 > 11 > - 00, respectively. For p = 2,L \ IE) is 
the space of Hardy class functions and the space of square integrable 
functions on the real line L '(£) is the direct sum 
L2(E)=L~ (E)$L 2

_ (E). 

"P. L. Duren, Theory of H P-Spaces (Academic, New York, 1970), Theorem 
11.8. 

"E. g., Ref. 3, p. 492. 
46Note that according to Sec. 2 Eq. (2.6') our simplified notation 

H IZR ) = ZR IZR-) and e - jH/1zR- > = Ii ~ j"'IZR-) actually means 

(lfIHxlzi.. ) = ZR (lflzi ),(lflejW' IZi > = e - j,., (lflz,,- > for every lfe+n<l>. 
47E. g., Ref. 44, Theorem 11.9. 
4"This question is under investigation: M. Gadella (to appear). 
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Perturbed Hamiltonian systems a) 
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It is shown that when a completely integrable Hamiltonian system is perturbed about a particular 
solution the resulting equations to all orders are completely integrable Hamiltonian systems. 
Numerous examples are worked out and some new constants for the original system are obtained. 

PACS numbers: 03.20. + i, 02.30.Hq 

I. INTRODUCTION 

In recent years there has been considerable interest in 
nonlinear evolution equations which can be written in Ha
miltonian form. Physically, they are interesting in that they 
describe relevant phenomena. Mathematically, the interest 
is in the fact that many of these systems are completely 
integrable. 

Given a particular solution of such an equation (for ex
ample, a soliton), it is natural to ask for the behavior of near
by solutions. For example, one might be interested in the 
stability of the given solution. Here we present a theorem 
which essentially says that if the original system is complete
ly integrable, then to any order in perturbation theory the 
resulting equations form a completely integrable Hamilton
ian system. Explicit prescriptions for the Hamiltonians, 
Poisson brackets, and the constants of motion are given. The 
theorem applies to almost all known completely integrable 
nonlinear evolution equations. In Sec. IV, we give numerous 
examples. 

II. BASIC THEOREM 

Suppose that a nonlinear evolution equation 

Ut =K(u) (I) 

can be written in Hamiltonian form, u, = [u,JY], where the 
Poisson bracket is antisymmetric and satisfies the Jacobi 
identity. We look for a solution close to a given solution ulO

) 

of Eq. (1) in the form 

u = ulO) +.:lu (2) 

where.:l u = ~~ ~ 1 E'u('). 

(1) Then the equations for u(n) (assuming U(i) O.;;J < n 
known) form a Hamiltonian system. The Poisson bracket 
has the same form as the original one, but with u(x) replaced 
by u:~:. The nth Hamiltonian is the coefficient of E2n in the 
expansion of JY[u]. 

(2) If the original system is completely integrable, then 
the equations for Ulnl are completely integrable. Indeed, if 1m 
is a constant for Eq. (1), then the coefficient of En in the ex
pansion of 1m is a constant for the equations for u(n l. 

Proof We prove these results for a dynamical system 
specified by a Hamiltonian which is a functional of a single 
function u(x,t ). The generalization to a functional of an arbi
trary number offield variables will be obvious. There is no 

"'This work was supported in part by the National Science Foundation 
under Grand MCS80-1778I. 

restriction on the dimension of the domain of the field al
though we consider one space dimension for notational 
simplicity. 

Thus, we have a Hamiltonian JY[u], and the equation 
of motion is 

u, = [u,JY] (3) 

with the Lie bracket defined by 

[Fj;~] = f'" dy 8F1 O(a) 8F2 ; 

- 00 8u(y) 8u(y) 
(4) 

O(ay ) is an symplectic, possibly integrodifferential operator 
which is not field dependent. We wish to determine a bracket 
[ , ]n and a Hamiltonian JYn such that in substituting (2) 
into Eq. (3) we can write to each order in E 

u(nl = [u 1n) JY ] 
t 'n n' 

(5) 

The following notation for a functional Taylor expan
sion is introduced. 

H[uIO)+.:lu] = fIN( [.:lU]N onH[U
IO
)]), (6) 

N~O N! DuN 

where 

( 
o2H) f'" f'" 12 [.:lu]2 --2 = dX 1 dx2.:lu(X1).:lU(X2) 
ou - '" - 00 

82H 
X , etc. 

8u(x 1)oU(X2) 

On substituting (2) into (6), we find that the coefficient of En in 
the expansion of some functional H [u] is 

Hlnl = i i IN ( [u(1)]m'[uI2)]mJ ... [uIN)]mv oNH [~Io)]), 
m,~ON=1 m,!m2! .. ·mN! 8u 

N=m 1+m2 + .. ·+mN, 

n = m, + 2(m2) + ... + n(mn)· (7) 

Define the nth bracket by 

f
e< 8£ 8£ 

FF - d --' Oa _1-
[ i' j]n - Y I: In) (y) I: In)' 

- 00 uU(y) uU(y) 

(8) 

and let H n be H 12n ), the coefficient of en in the expansion of 
H. Then, we have Eq. (5) if we can show that 

(oH 18u)ln) = oHl2nl/oulnl . (9) 

To prove (9), consider H12n) as a function of Ulnl . There 
are two cases: mn = I,m n = 2. 
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(A) Whenm n = 2, all theotherm;'sarezeroandN = 2. 

Thus, 

{jH 12nl f"" (j2H [UIO)] 
--- = dx, u1nl(x d . 
(ju(n)(x) _ 00 (ju(xd{ju(x) 

In the particular case that ({jH / (ju)" is an explicit function of u(nl(x), it is equal to (11). 
(B) When mn = 1, 

n '+n ( [I\)]m, [ (n-,)]mn_, (jNH[UIO)]) 
H(2n)= 2: IIN u(nl U .;. U, N' n=m l +2m2+···+(n-l)mn_ l , 

m,=ON=2 ml.· .. mn _ l · {ju 

N=I+ml+···+mn _ 1 

, (I"" [u(1)]m,· .. [u 1n -l)rn-' (jNH[u(O)] ) 
= m",n_~o N~n2/N-' ____ dX I u(nl(x l ) ~---''-----''---~---~---''- , n = m l + ... + (n - l)mn_I' 

£... ~ -_ m,! .. ·mn_,! (juN-'OU(X I) 

N=I+m,+ .. ·+mn_,· 

Thus, 

f>H(2n l n I+n N-'(l"" [u(l)]n' .. ·[u(n-'I]mn , oNH[u(0)] ), 
--= 2: 2: 1 dx,o(x,-x) n=m , +· .. +(n-l)mn_\, 
(ju(n)(x) m,=ON=2 -00 ml!· .. mn _ l ! OUN-IOU(xtl 

N=I+m,+ .. ·+mn_" 

m~o Nt/N eu(l)~:;:.[.::~ \,)~mnl (jNO+U~U[(::O)] ). n = m\ + ... + (n - l)mn_" 

N=m, + .. ·+mn_,. 

Notice that this expression is (oH /ou(x))(n) in all cases that that's not a functional of u(n). We have shown (9). 

(10) 

(11) 

(12) 

(13) 

One can readily see that these results also apply when the Hamiltonian system is given in terms of canonical variables 
(discrete or continuous). For example, in discrete canonical coordinates, the nth Poisson bracket is 

k (aF aF aF aF) 
[Fi,f}]n= I a 1:1 a (~) - a I~) a (:) . 

n= \ qn 'Pn qn 'Pn 
(14) 

The nth Hamiltonian is given by the following expression. 

2n 211 {[q\IJr: ... [ql,2n)rln ... [q~lr~ ... [q~n)r~n[P\\)]/: ... [p~nl]/~n} aNH 

Hn = m:.t= 0 N~ 1m: ! ... m~n ! ... m7 ! ... m~n!l: !· .. I ~n! . aq( .. aqfapf ' ... apt(' 

2n=m: +2mi + ... +2nm~n +m~ + ... +2n/~n' ai=m; +m~ + ... +m~n' 
f3 i =l; +/~ + ... +I~n,N=a'+· .. +ak+f3\+ ... f3k. (15) 

While the perturbation equations are all linear, the existence of the constants is not immediately obvious. In most of the 
cases we have in mind the equations are inhomogeneous partial differential equations with coefficients which are time and 
space dependent. Among other things, the Hn are time dependent. 

III. THE FIRST-ORDER EQUATIONS 

These are clearly the most important and so deserve 
some special remarks. 

(A) As observed elsewhere, I the generating function for 
the conserved densities for many completely integrable non
linear evolution equations (such as Korteweg--de Vries) obey 
the first-order perturbation equations. Thus, this generating 
function itself is the solution of a completely integrable Ha
miltonian system. Further, since this function is usually a 
quadratic function of the eigenfunctions which occur in the 
inverse scattering method of solution, we obtain from our 
first-order constants new constants for our original system. 
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(B) In a sense the above theorem is complementary to a 
previous theorem. 2 It was shown that if 1m is a constant of 
our nonlinear system then 

ql = [qIO),Im], p(l) = [pIO),Im] (16) 

is a solution of the first-order equations. For such solution 
(since they are known explicitly), we have no need of con
stants of motion. However, it is interesting to see what the 
constants are for such solutions. 

Theorem: If 

[In,lm] = 0, (17) 

i.e., the two constants are in involution, then 

K. M. Case and A. M. Roos 2825 



                                                                                                                                    

I~)(q(l),p(l)) = o. 
Proof 

Ill) = " aIm q(l) + aIm pill 
m L- a (0) I a (0) I' 

I ql 'PI 

but from Eq. (16) 

(18) 

(19) 

(I) aIn II) - aIn 
q, = a (0)' PI = -a (01 (20) 

'PI ql 

. Ill) = " {aIm aIn _ aIm aIn} = [I I = 0 
.. m L- a (01 a (0) a (0) a (0) m' n] . 

I ql 'PI 'PI ql 
(21) 

In particular the two obvious solutions of the equations 
obtained by linearizing around a solution UIOI of an originally 
not explicitly time and space dependent evolution equation, 
u~O) and u~) are such that the constants I ~I for these solutions 
are all zero. [The solutions are generated from Eq. (16) using 
the energy and momentum.] 

IV. EXAMPLES 

For the first example we consider the Korteweg-de 
Vries equation. 

A. The KdV equation 

Take this in the form 

u, = -ax lu2 +2uxx l. 
It is 

u, = [u,JY'), 

where 

f'" 8F 8F 
[F F] = -' ( - a ) _1 dx 

" 1 _ '" 8u x 8u 

and 

(22) 

(23) 

(24) 

(25) 

As is well known, there are an infinite number of polynomial 
constants. The first few are 

The equation of motion is 
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First-order equations: Write 

(26) 

Inserting in JY' and identifying c2 terms yields 

Now with [Fi>.fj] = f~ 00 8F;l8u l l)( - ax )8.fj18u l 11 dx we 
obtain the (correct) linearized equation 

First-order constants: Insert Eq. (26) in In and find the 
coefficient of c. We obtain as constants [for Eq. (28)] 

1111 = f'" 8In ull) dx. 
n _~ 00 8u 

(29) 

Thus, 

1\11 = f~ 00 U
lll dx, Iill = f~ 00 UIOlU

lli dx, (30) 

13= f:00{[UI0l]2+2u~}tPldX (31) 

1(11 = foc ! 4u(O) + WUIOIUIOI + lQ(uI01)2 + lQ[UIOI ]3) 
4 xxxx 3 xx 3 x 9 

- 00 

X Ull) dx. (32) 

Now if t/1 is the function in the scattering problem for the 
inverse scattering method, i.e., 

(a~ + uI6)t/1 = (A 14)t/1, (33) 

then we know 1 tJI = ax t/12 satisfies Eq. (28). The Eqs. (29)-(32) 
become the constants 

1\1) = 0, Iill = roo 00 - U~)t/12 dx, 

I~ll = f~ 00 - ax [(u I01)2 + 2u~l )t/12 dx, 

1111 = f'" - a ! 4ul01 + WUIOIUIO) 4 x xxxx 3 xx 
- 00 

+ 1f(u~lf + ~(uIOI)31 t/12 dx. 

Second-order equations: 

(34) 

(35) 

K. M. Case and A. M. Roos 2826 



                                                                                                                                    

Second-order constants: 

f '" 8I [uIOI ] 
I~I[u] = dx UI21 __ n 

__ 

~ '" 8u(x) 

f
'" f'" ull)(X)U(lI(y) 82In [UIOI ] 

+ dx dy-~-.::....!... 
~ 00 ~ '" 21 8u(x)8u(y) 

(36) 

Thus, 

1\21= f:",u (2 )dx, I~21= f:",(u,Olu'21+ [U~f)dX (37) 

Ij2) = f: 00 {[U'Olf + 2u~nu121 + u'OI[u(l)f - [u~)r dx 

(38) 

I~' = f: 00 \ [ u~lxx + .Ifl[u~lr + Zfu'O)u~l + W[UI01 ]3] U
(2

) 

+ 2[u~~ r + Hu(0)]2[U(lI]2 

+ 1fuIO)([u~lr + 2u(l)uxx lj dx. (39) 

B. The KdV hierarchy 

It is well known that the polynomial constants for the 
KdV equation are all in involution. Accordingly, any of 
them can be used as a Hamiltonian and the constants are all 
constants of the new equation of motion. In the formulation 
of Ref. 1 this can be put so: 

Let !/ be the operator such that 

!/(¢J) = a~¢J + tu¢J - 1<1;- l(ux¢J ). (40) 

The general equation associated with the hierarchy of KdV 
equations can be written 

u, = - aJ(2')u, (41) 

where/is an arbitrary entire function. (The connection with 
the formulation in Ref. 3 is given in Appendix A.) 

In particular if we take/(2') = 2'2, we getthe equation 
with 14 as Hamiltonian. The equation of motion is (using the 
same Poisson bracket) 

u, = - ax \ 4uxxxx + .!iU3 + 1f(ux )2 + -fuuxx I. (42) 

First-order equations: Giving only those terms which 
involve u(l), we have 

diY = foo \ 2(u(1I)2 _ lQuI01(ulll)2 _ ZlluIOlu(l)ull) 
1 xx 3 x x 3 x x 

~ '" 
+ i(U'Olf(u(lI)21 dx (43) 

from the which the first-order equation is 

u(11 = - a \ 4UI'1 + lQ(U I01)2UII) + ZllUIO)U(11 
t x xxxx 3 T x x 

+ zpu,olu~l + zpu(llu~ll . (44) 

The first-order constants are, of course, exactly those 
for the KdV equations. 

c. The Toda lattice 

This is of interest in that we use explicitly canonical 
coordinates and momenta. The connection with the classical 
literature4 becomes apparent. 

Here 

(45) 
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with the equations of motion 

4i=P;, Pi= -{e~(qj+,~qjl-e~lqj~qj ,} (46) 

The first three constants are 

m 

I3=~{[e~lqm~qm "-l](Pm~' +Pm]+ p;}. 

The first-order Hamiltonian is 

diYI = ~ {e ~ Iq~' ~ q~l,) (q~' - ~~I ~ If + (P;')2}. (47) 

The equations 

4\11 = a~l)lap\ll, Pi = - adiYlaq\'1 (48) 

are indeed 

,jIl'=p\ll, 

p~11 = fe ~ Iq\O: ,- q\OI)(q\lll _ q\ll) _ e - Iq\O) - q\OI "(q\11 _ q\l,-- I)} 

(49) 

The constants for Eqs. (49) are the first-order integral 
invariants4

: 

1111 = "'{ aIn III + aIn III} 
n £... ~ 101 ql a (0) PI . 

I uq 'P 

The simplest of these are 

and 

1111 = "'pilI 
, ~ m' 

m 

m m 

Ij') = I(P~lfp~1 - (P~) + p~l_ I) + e - Iq~'- q~1 ,) 
m 

(50) 

(51) 

X {(p~1 _ I + p~l) - (q~1 - q~) _ I )(P~I _ I + p~I)}. (53) 

The Toda lattice is also a member of a hierarchy and 
thus we have an analogous set of results when any of the 
constants In are used as Hamiltonian. 

D. The Benjamin-ono equation 

This we take in the form 

u, = -ax !u2 +H[ux ]J, 
where the Hilbert transform His 

H [</>] = + !...f'" ~(x') dx'. 
1T -",x-x 

This system is Hamiltonian with 

J¥' = J'" (u
3 
+ uH [ux ] ) dx 

- '" 3 2 
and Poisson bracket as given by Eq. (24). 

The first four constants are 

II = u dx, 12 = !!....dx, 13 = diY, J'" f'" 2 

~oo -00 2 

K. M. Case and A. M. Roos 

(54) 

(55) 

(56) 
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We obtain, on keeping only terms proportional to U\ll, 

foo { U(l)HU(II} 
dY'1 = _ 00 U(OI(U(l))2 + -2-"':"'- dx, (57) 

and then 

U~II = - ax {2U(OIU(l1 + H [u~I]}. 

First-order constants (among others) are 

1\11 = f~ 00 u(ll dx, 

Iill = f~ 00 u(OIU(l1 dx, 

I~II = f~ 00 {[U(OI]2U(l1 + u(l)H [u~l]}dx, 

I~I) = f~ 00 [ [u(OIpu(1) + ~u(O)u(l)H [U~I] 

+ HU(OlfH [u~l] + u~lu~ll dx. 

(58) 

(59) 

In second order, again retaining only those terms involving 
u(2), we have 

from which follows 

U~21 = - ax {2U(OIU(21 + [U(J)]2 + H [u~I]}. (61) 

Some second-order constants are 

1\21 = f~ 00 U(21 dx, 

foo { [U(lI]2} 
I~I = _ 00 U(OIU(21 + --2- dx, 

I~21 = f~ 00 {[U(OI]2U(21 + U(OI[U(lI]2 + u(2)H [u~l]}dx, 

I~I = f~ 00 [ [U(OlPU(21 + HU(O)]2[U(l)f 

+ HU(OI]2H [u~l] 

+ ~u(Olu(I)H [U~I] + ~u(Olu(2)H [u~l] 
+ HU(I)]2H [u~l] + u~IU~1 + [u~I)2/21 dx. (62) 

Again the BO equation is a member of hierarchy of 
equations. Any of the constants can be chosen as Hamilton
ian. The constants for the perturbation equations are all the 
same. 

V. THE HARRY-DYM EQUATION 

We consider this since the Poisson bracket is slightly 
different. The equation is 

u, = (a
x

)3u -I/2. (63) 

Some constants are 

II = f~ 00 u dx, 12 = 2 f~ 00 U
I
/
2 

dx, 

f
oo U-S/2(ux)2 

13 = dx. 
- - 00 8 

(64) 

This is Hamiltonian with dY' = 12 and 
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[ fOC> aFj 3 8F] 
Fj>F] ] = -(ax) - dx. 

- 00 8u 8u 
The first-order Hamiltonian is 

JY'J) = - kf~ 00 [U(lI]2[U(OI] -3/2 dx, 

giving rise to the equation 

u~11 = -;\J~ [[u(OI] -3/2U(lI]. 

The simplest three first-order constants are 

1\11 = f~ 00 U(ll dx, Jill = f~ 00 [U(OI] -1/2U(1) dx, 

and 

(65) 

(66) 

(67) 

00 { (Ol[ (01] -5/2 } 
1111 = f Ux U u(ll- i[u(OI] -7/2[U(OI]2U(J) dx. 

3 _ 00 4 x 16 x 

(68) 

In second order we obtain 

dY'2 = f~ 00 { - (U:
I
)2 (U(0I)-3/2 + ~(U(J))2(U(0I)-S/2U(2)} dx, 

U~21 = a~[ _ ~U(2)(u(OI)-3/2 + ~(u(lI)2(u(01)-S/21' 

1\21 = f~ 00 U(21 dx, 

Ih21 = f~ 00 [2U(2I(U(01)-1/2 - !(u(1l)2(u(OI)-3/21 dx, 

I~21 = kf~ 00 {(U(OI)-5/2(U~1j2 - 5[u(01] -7/2 

X I [u~I]2/2U(21 + U(lIU~lu~IJ 
+ ¥[U(OI] -9/2[u(lI]2[u~I]21 dx, (69) 

where again for the Hamiltonian we gave only those terms 
involving U(21. 

We note that Eq. (63) is a member ofa hierarchy. The 
next simplest member is obtained by taking 13 as the 
Hamiltonian. 

It may also be mentioned I that there is an inverse scat
tering problem associated with Eq. (63). The eigenvalue 
problem is a; 1/1 = A.uI21/1. Since If! = a! 1/12 satisfies Eq. (67), 
we conclude that the I~I with u(1) replaced by a! 1/12 gives a 
new set of constants for Eq. (63). 

VI. THE AKNS EQUATIONS 

In Ref. (3) is what appears to be a very large class of 
completely integrable systems. It will be seen in Appendix A 
that the only equations included there have not been dis
cussed are 

(i) The hierarchy of modified KdV equations, 
(ii) The hierarchy of nonlinear Schrodinger equations, 
(iii) The sine-Gordon and the sinh-Gordon equation in 

light cone coordinates. 
There are really two modified KdV hierarchies-de

pending on the sign of the nonlinear term. The sine-Gordon 
equation is associated with one of these I and the sinh-Gor
don with the other. 
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A. Modified KdV equation 

The equation is taken in the form 

u, = - a!u - (axu)3/2. 

This is Hamiltonian with 

J¥' = 12 = f'" {- (U xx )2 + (uS} dx 
_ '" 2 8 

and 

f'" 8F; -I 8Fj 
[F;,Fj] = -(ax )-dx. 

- '" 8u 8u 
Some constants in addition to 12 are 

f'" (U"Y 
11 = --dx, 

-'" 2 

I = f'" {u~xx + 3(u."l _ ~ 2 2} d 
3 4U xx Ux x. 

- '" 2 48 

(70) 

(71) 

(72) 

(73) 

It has been shown I that Eq. (70) has the same constants as the 
sine-Gordon equation. Therefore, another constant is 

l = f~ '" [I - cos u] dx. 

To first-order we have 

and 

and 

B. Sine-Gordon equation 

Take in the form 

(74) 

(75) 

(77) 

(78) 

(79) 

which is Hamiltonian with J¥' = land P. B. as in Eq. (72). 
The constants are just as for the modified KdV equation. 

The inverse scattering method can be applied to the Eq. 
(79). The eigenvalue problem can be used in the form 

Vlx + !(A )1/2VI = - !iuxv2, 

V2x - !(A )1/2V2 = Fuxv i • (80) 

Then ax- I tf/ = ax- I [(vd2 - (V2)2] is a solution of the linear
ized form of Eq. (79), 

(81) 
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Thus putting tf/ in Eqs. (77) and (78), yields new constants for 
Eq. (79). 

C. Nonlinear SchrOdinger equation 

We take this in the form 

u, = i! Uxx + 2ou2uJ 

,u=±l. 

u, = - i! uxx + 2uu2u J 

This is Hamiltonian with 

and 

f'" {8P 8P 8£ 8P} [P,P] =i _' _1 __ ' _1 dx. 
'1 _ '" 8u 8u 8u 8u 

(82) 

(83) 

(84) 

To first order keeping only terms proportional of u(l), we 
obtain 

J¥'I = f: '" {(ax u'1))(ax u(l)) - 4aU'°)u(O)u'l)u(1) 

_l7{u'0))2(U(I))2 _l7{U(O))2(u'2))2} dx. (85) 

From this the perturbed equations are 

u~1) = i! a~ u(l) + 4l7{u'°))2U(1) + 2l7{u(O)j2u'1) J (86) 

and the complex conjugate equation. The constants are 

J'" I J'" II = UU dx, 12 = -:- (uaxu) dx, 
-00 I -00 

13 = f~ '" (uxux -l7{uuf) dx. 

First-order constants are then 

1\1) = f~ 00 !u'°)u(1) + u(O)u'I)J dx, 

I~I) = ~Joo !u'°)axu(1) + u'l)a
x

u(O)J dx, 
I - 00 

I~I) = f: '" {(ax u'°))(ax u(l)) + (ax u(O))(ax u'l)) 

- 2l7{U(O))2u'0)u'1) - 2l7{u'°))2U(O)U(I)} dx. (87) 
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APPENDIX A: RELATION TO AKNS3 EQUATIONS 

In Ref. 4 two general classes of equations are presented: 
(I) Those which have the Schrodinger equation as ei

genvalue problem, i.e., 

vxx + (p2 + u(x,t )/6)v = o. 
The form given was 

q, + C(4L +)qx = 0, 

where 

K. M. Case and A. M. Roos 

(AI) 

(A2) 

(A3) 
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and C is an arbitrary entire function. 
However, in Ref. I it is shown from the existence ofa 

dual Hamiltonian formalism that the equation using the nth 
polynomial constant as Hamiltonian is 

(A4) 

where the conserved densities are connected by an operator 
51' such that 

(AS) 

Clearly, a general equation constructed from the hierarchy is 

u, = - ax f(5I')u. (A6) 

Now what is the connection with Eq. (B2). Note that if L s+ is 
given by Eq. (B3) then 

4L= -a~-4q+2ax~lqx' 

We readily check that 

4L +ax = ax4L. 

Hence Eq. (B2) is 

q, = - axC(4L)q 

which is just Eq. (B6) 
We conclude that 

(A7) 

(AS) 

(A9) 

(i) All equations of this class are completely integrable 
Hamiltonian systems. 

(ii) The perturbation equations are, to all orders, com
plete integrable Hamiltonian systems. 

(iii) The constants are just those for the KdV equation. 
(2) The second general class given in Ref. S are equa

tions associated with the Zakharov-Shabat eigenvalue prob
lem. It is 

with 

The interesting cases seem to be 

r = aij 

or 

(AlO) 

(All) 

(A12) 

r = aq (A13) 

where a = ± 1. 
Now we maintain that the case Eq. (AI2) is just the 

general equation of the nonlinear Schrodinger hierarchy and 
the case of Eq. (A 13) is the modified KdV hierarchy. 

In Ref. 5 it was shown that the equations using the nth 
polynomial constant for the nonlinear Schrodinger equation 
as Hamiltonian is 

u, = - iQn' 

where 

Qn+ I = 51'Qn 

and 51'(ifJ ) = - i! ifJx + 2auax~ l(uifJ - utP)j. But identify
ing r = au, q = u in Eq. (I I) just gives u, = - iJ(5I')u and 
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the complex conjugate. 
The case ofEq. (AI3) is more amusing. Since the cases 

a = ± I are so similar, for definiteness we consider 
a= + 1. 

In Ref. I we have ssen that the nth member of the modi
fied KdV hierarchy could be written in Hamiltonian form 
with 

faD ~F ~F 
[Fj,Fj] = -' (- ax) -' dx. 

~ 00 ~u ~u 

The nth equation was 

where 

Qn + 1 = .2"Qn 

and 

51' = a~ - 4uax~ luax' 

Now consider the term in (AlO) corresponding to any 
power of L in Eq. (lO). Since now 

(
ax - 2uax~ lU 

L -
+ - 2uax~ lU 

we have 

and 

(L+)( w )_(axw - 4uax-
1

uw). 
- w axw - 4uax~ lUW 

Combining we see 

(L+)2 (v) = (a~v - 4ua~ :uaxv)=(5I'V). 
v axv - 4uax uaxv 51'v 

For any even power of L + we get two incompatible equa
tions for u. If Ao contains only odd powers, the equation 
(B lO) is just 

u, = - ax J(5I')u 

(i.e., the general member of the modified KdV hierarchy). 
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'M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. 
Llll, 249-336 (1974). 
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On the covariant differential of spin direction in the Finslerian deformation 
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In the Finslerian deformation theory offerromagnetic substances, each point (x) is endowed with 
the unit vector (y) called the spin and the line-element (x,y) is taken as the independent variable. 
The length of y is normalized at each point, so that the direction of y alone is noticed. This is the so
called spin direction. In the case of the magnetization state, each vector y rotates to become 
parallel, in a Euclidean sense (not a Finslerian sense), to the direction of an applied magnetic field 
and the magnetostriction occurs there. Within the framework of Finsler geometry, this Euclidean 
"parallelism" ofy cannot be grasped by the ordinary covariant differential ofy (i.e., Dy), so that a 
new one (i.e., 8y) must be introduced, which is nothing but the covariant differential of spin 
direction. Up to now, however, the geometrical meaning of 8y and the relation between 8y and Dy 
have not yet been clarified, so that these problems will be considered in this paper. 

PACS numbers: 03.40. - t; 03.S0.Kk 

1. INTRODUCTION 

In the (three-dimensional) continuum mechanics offer
romagnetic substances,l each point x ( = X i; i = 1,2,3) is en
dowed, at some macroscopic stage, with the vector y ( = yj; 
j = 1,2,3) called the magnetization vector or the spin, which 
embodies the magnetic moment per unit mass. From the 
standpoint of applied geometry,2.3 if the pair (x,y) or the line
element (x,y) is chosen as the independent variable, instead of 
the point (x) alone, then there arises the Finslerian deforma
tion theory of ferromagnetic substances, where some inter
esting physical features depending on y, such as magneto
striction, etc., are considered in terms of Finsler geometry 
(cf. Refs. 2 and 3). Usually, the length of the vector y, that is, 
the magnitude of spin is considered constant at each point 
and is prescribed as 8ij/yj = 1 (8ij is the Kronecker delta) by 
adopting proper units, so that only the direction of y is no
ticed. This is the so-called spin direction. In this paper, the 
words "vector y" and "spin direction" will be used equiv
alently for the sake of convenience. The vector y rotates 
around a point x and changes its direction continuously with 
position. These descriptions, therefore, are accepted for 
magnetically saturated media at temperatures significantly 
lower than the Curie temperature. 1.4 

Now, when an external magnetic field is applied to 
magnetize the ferromagnetic substance, each vector y rotates 
to become parallel to the direction of the applied field and 
neighboring vectors [y 1 become parallel to each other in a 
Euclidean sense, not a Finslerian sense (cf. Ref. 4). There
fore, in this magnetization state, the "parallelism" of y is 
Euclidean, not Finslerian. Since the Finslerian parallelism of 
y is, of course, represented by the ordinary Finslerian covar
iant differential of y, i.e., Dy [see (2.2)], the above-mentioned 
Euclidean parallelism of y cannot be grasped by Dy. There
fore, in order to consider this Euclidean "parallelism" in the 
framework ofFinsler geometry, it is necessary to introduce a 
new covariant differential of y (i.e., 8y) different from the 
ordinary one (i.e., Dy). This 8y [see (2.3)] is nothing else than 

the covariant differential of spin direction.2 In Amari's the
ory,2 8y is stipulated as D/ = D/ + ai, where a is a scalar, 
but this form has no significant geometrical meaning, due to 
the term ay i, as will be explained in Sec. 4. 

Moreover, in the magnetization state, since the parallel
ism of y is Euclidean, the Euclidean length of y (i.e., 
8ij/yj = 1) is preserved invariant at each point under the 
"parallelism" 8y, that is, the metric conditions 8 Dij = 0 [see 
(2.4)] hold good under the parallel displacement 8y = O. In 
other words, it may be said that the covariant differential or 
the connection 8 is caused to be metrical for the metric ten
sor Dij' Here, let the ordinary (or the originally introduced) 
Finslerian metric tensor be denoted by gij(x,y) (=f8ij)' This 
Finslerian metric tensor gij is supposed, from the standpoint 
of the Finslerian deformation theory of ferromagnetic sub
stances,2.3 to be introduced from the beginning in order to 
govern the whole deformation field, although the spin direc
tion (y) itselfin the magnetization state is treated as a Euclid
ean quantity obeying the Euclidean parallelism 8. Then, the 
Finslerian length of y is given by (gijy'Y j )1!2, which is pre
served invariant under the parallelism Dy, that is, the metric 
conditions Dgij = 0 [see (2.5)] hold good under the parallel 
displacement Dy = O. In short, it may be said that in the 
magnetization state, there exist two different kinds ofmetri
cal connections 8 and D for the two different kinds of metric 
tensors 8ij' and gij respectively. Therefore, D8ij =f0 even if 
88ij = 0 (resp., 8gij =f0 even if Dgij = 0). These relations will 
be used to determine the relation between 8y and Dy in Sec. 
4. 

It seems to the author that the introduction of 8y (=fDy) 
is inevitable whenever the deformation theory of the so
called oriented media is treated by means of Finsler geome
try. However, the geometrical meaning of 8y and the relation 
between 8y and Dy have not yet been clarified, so far as the 
author knows (cf. Refs. 2 and 3). So these problems will be 
considered in this paper. 

2831 J. Math. Phys. 22 (12), December 1981 0022-2488/81/122831-04$01.00 © 1981 American I nstitute of Physics 2831 



                                                                                                                                    

2. ON THE COVARIANT DIFFERENTIAL OF SPIN 
DIRECTION-I 

Now, in general, the independent variable of the Fins
lerian field becomes the line-element (x,y), instead of the 
point (x), where the vector y ( = Y i;j = 1,2,3) denotes the 
tangent vector at each point x( = x '; i = 1,2,3) and repre
sents physically the internal variable, such as the spin, asso
ciated with each point. 2

•
3

•
5

•
6 As the internal variable, the vec

tor y shows its own intrinsic behavior, which geometrically 
appears above the surface as the intrinsic transformation or 
parallelism (i.e., parallel displacement) such as the above
mentioned Dy different from the ordinary covariant differen
tial ofy (i.e., Dy). As is understood from the discussion in Sec. 
1, this new parallelism Dy (#Dy), i.e., the covariant differen
tial of spin direction must be introduced in order to preserve 
the Euclidean length ofy (i.e., oij/yj = 1) invariant under the 
parallelism Dy, that is, in order that the metric conditions 
DDij = 0 be satisfied under the parallel displacement Dy = O. 
These situations will be explained in more detail in this 
section. 

Now, the ordinary (or the originally introduced) covar
iant differential of an arbitrary vector, say X ( = X'), is ex
pressed by, as usual,7-9 

DX' = dX' + r~jXkdxi + e~jXkdyj, (2.1) 

where rand e denote the ordinary Finslerian coefficients of 
connection, which are, of course, functions of (x,y). These 
quantities rand e are combined with the Finslerian metric 
tensor gij(x,y) by the metric conditions Dgij = 0 [Eqs. (2.5)]. 
From the standpoint of applied geometry, 2.3 the deformation 
process itself is represented by the coordinate transforma
tion, so that gij' r, and e are all determined by the deforma
tion under some convenient conditions, because they are 
prescribed by their own coordinate transformations. When 
we put X = y in (2.1), we can obtain 

Di = dy' + r ~iykdxj + e ~jykdyj 
(= A jdyl + B jdxi ), (2.2) 

iii k j _ i k 
where we have put A j = Dj + e kjY and B j - r kjY , but we 
have not assumed, in contrast to the Cartan's theory of 
Finsler spaces,7 such homogeneity conditions as e ~jyk = 0 
from a general viewpoint. Thus (2.2) represents the ordinary 
Finslerian parallelism of y. 

In the Cartan's theory of Finsler Spaces/ the metric 
tensor gij (x,y) is introduced through the so-called fundamen
tal function L (x,y), which is assumed to be positively homo
geneous of degree 1 with respect to y, as follows: 
gij = ~a2L 2/a/ay(or L 2 = gijiyj), which becomes positive
ly homogeneous of degree 0 iny. In the case offerromagne
tism,2-4 gij becomes an even function of y and represents the 
strain including the magnetostriction. Further, the relation 
e ~j = elk is assumed in the Cartan's theory, so that from 
the metric conditions (2.5), elk is determined by 
ejk = !gi/(agljlayk) = i g i/(a3L 2Ia/ay jay k), which be
comes positively homogeneous of degree - 1 in y and as a 
result, such homogeneity conditions as C jkyj = e jkyk = 0 
hold good. In our case, however, these homogeneity condi
tions are not assumed from a general viewpoint [see (2.2) and 
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(2.3)]. Of course, it is needless to say that the introduction of 
Dy (#Dy) itself is very different from the Cartan's theory. 

From our standpoint, mentioned in Sec. 1, the covar
iant differential of spin direction (i.e., Dy) cannot be obtained 
by Dy [see (2.2)], but requires such a newly-introduced for
mula as 

Dyi = dyi + .1 ~jykdxj + E ~lykdyj 

( = P jdyi + Q jdxi), (2.3) 

where the new Finslerian coefficients of connection.1 and E 
are assumed to be different from rand e, respectively, and 
we have put P; = 0; + E ~i/and Q; =.1 ~}yk. (The rela
tions between Dy and Dy, and also (.1,E) and (F,e) will be 
obtained in Sec. 4.) Corresponding to (2.2), such homogene
ity conditions as E ~iyk = 0 are also not assumed, because 
there exists no physical reason to assume them from a gener
al viewpoint (cf. Ref. 2). 

In this case, there exist two different parallelisms or 
connections (Dy#Dy), so that, inevitably, Dy#O even if 
Dy = 0, (resp., Dy#O even if Dy = 0). As for the parallelism 
or the connection 0, since the Euclidean length of y (i.e., 
Dij/yj = 1) must be preserved under the parallelism Dy, the 
metric conditions DDij = 0 are required to hold good under 
the parallel displacement oy = 0 [see (2.3)], i.e., 

D Dij = d Dij -.1 ~kDljdxk -.1 jkD"dxk 

-E~kOljdyk_EjkOi/dyk=O. (2.4) 

On the other hand, the ordinary (or the originally-intro
duced) Finslerian metric tensor gij must satisfy the following 
metric conditions [see (2.1)] to preserve the Finslerian length 
of y (i.e., gijy'yi) invariant under the parallel displacement 
Dy=O: 

Dg'j = dgij - r ~kgljdxK - r jkgi/dx" 

- e~kgljdyk - ejkgi/dyk = O. (2.5) 

Then, there exist two different metrical connections D and D 
for two different metric tensors oij and gij' respectively. 
Therefore, it is also true that D Dij #0 even if D Dij = 0 (resp., 
D gij #0 even if D gij = 0), as has already been postulated. 
These relations will be used to determine the relation be
tween Dy and Dy in Sec. 4. 

Now, when the intrinsic parallelism of y, i.e., Dy given 
by (2.3) is taken into account, the originally-introduced spa
tial structure of the field represented by (2.1) must be 
changed as follows: 

DX i = dX' + e ~iX kdxi + F~iX koy!, (2.6) 

where e ~j = r~j - Nje~"F~j = (P -I);e~, and 
N j = Q;n(p - I)~. Equation (2.6) is obtained as follows: 
First, from (2.3), dy is obtained by 
dyj = (P - I ~ (Dy' - Q ~ dxk ) under the assumption that P is 
nonsingular. Second, substituting this dy into (2.1), we can 
obtain (2.6). From (2.6), the following two kinds of covariant 
derivatives are defined7-9

: 

DX i = (X'li)dx
j + (X'iJjDyj; 

i oX' &'Ii Xk 
Xli= --, +O'kj , 

Dxl 
(2.7) 
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where 8!0~ = ala~ - Njala/and alayj = (P -I)jala/. 
From (2.7), three kinds of curvature tensors and five kinds of 
torsion tensors can be introduced through the so-called 
Ricci identities, but they are omitted here for the sake of 
simplicity [cf. (3.2) and Ref. 9]. Of course, the metric condi
tions gijlk = 0 and gij I k = 0 hold good because Dgij = O. It 
should be noted here that the covariant derivatives ofy deter
mined by (2.7) are given by / li = - N; + e ~jyk "10 and 
yil j = 0;. The fact thatyili "10 is caused by the prescription 
oy¥Dy, which is also different from the Cartan's theory.7 

Thus, it is found that the covariant differential of spin 
direction oy is given by (2.3) and the whole spatial structure 
of the field itself is represented by (2.6) and (2.7). It should 
also be remarked that these considerations are generally ap
plicable to any Finslerian field theory, where the vector y 
plays physically a role of internal variable associated with 
each point and oy means the inherent law ofy.5,6,10 

3. ON THE COVARIANT DIFFERENTIAL OF SPIN 
DIRECTION-I! 

The covariant differential of spin direction obtained 
above, i.e., oy,may be regarded geometrically as the intrinsic 
parallelism of y. In our case, when the condition oy = 0 
holds good, the vector y is displaced parallel to itself under 
the Euclidean parallelism 0, and the metric conditions 
o oij = 0 hold good. On the other hand, oy may physically be 
compared, in a certain sense, to the inherent law of y, so that 
the state in which oy = 0 holds good may be likened to an 
"exciting" state where the inherent law of y is satisfied. In 

Therefore, in our case, this state corresponds to the magneti
zation state of the magnetically-saturated medium, 1,4 be
cause each vector y rotates to become parallel to the direc
tion of an applied magnetic field and neighboring vectors 
[ y I become parallel to each other in a Euclidean sense (i.e., 
oy = 0), and the Euclidean length ofy (i.e., oijy'yj = 0) is kept 
constant, that is, the metric conditions 0 oij = 0 hold good. 

Now, when the condition oy = 0 holds good, (2.6) and 
(2.7) are reduced to 

DX i = dX i + e~jXkdxj = (Xili)d~, (3.1) 

from which the curvature tensor (R ) and the torsion tensors 
(T,S) are introduced through the following Ricci identity:9 

X i
lilk _Xilkli =R;jkX'- TjkXil,-Sj';;P~Xil/; 

. {oe~ . } 
R 'ok = ~rj. ox. + e;"kelj + C;mSj';;, 

(3.2) 

i { oN; } 
Sjk = ~rjk OXk ' 

where the symbol 2fjk means interchange ofindicesj,k and 
subtraction. 9 These tensors appear owing to the condition 
Dy¥O (i.e., /u "10 andyilj "10), so that they, especially the 
curvature tensor R, reflect truly the difference between oy 
and Dy (see also below). 

Furthermore, as is usually assumed in most physical 
cases, if y is given by a function of x from the condition 
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oy = 0, then the equation a/la~ = - N; derived from (2.3) 
becomes completely integrable and as the result, one kind of 
torsion S of (3.2) disappears. 9 Therefore, in this magnetiza
tion state, the torsion tensor T and the curvature tensor R 
survive, the former being regarded as the magnetostriction 
caused by the rotation of y (cf. Ref. 2), while the latter is 
related, for example, to such a second-order effect as the 
change of elastic coefficient due to the magnetostriction.4 In 
Amari's theory, 2 the Finslerian coefficients of connection r 
and C are uniquely determined by the deformation under the 
assumption that the deformation is separated into thex- and 
y-dependent parts (i.e., under the crystallographic deforma
tion), so that the teleparallelism condition, i.e., R = 0, is fur
ther assumed and consequently, only the torsion tensor T 
survives. 

By the way, when the condition Dy = 0 holds good (but 
oy¥O), each vector y takes its intrinsic direction at each 
point and neighboring vectors [ y J become parallel to each 
other in a Finslerian sense (not a Euclidean sense). There
fore, this state may be compared, to some extent, to the spon
taneous magnetization state,4 whose spatial structure is gov
erned by the following formulas, corresponding to (3.1): 

DX i = dX i + G~jXkdxj = (Xilli)d~, 

(3.3) 

Xi.=(~-M/~)xi GiX k 

lli a~ J a/ + kJ ' 

where G~j = r~j - MjCk/and Mj = B7(A -I)~. Equa
tion (3.3) is obtained as follows: First, from (2.2) and Dy = 0, 
dy is obtained by dyj = - M ~ dx k under the assumption 
that A is nonsingular. Second, substituting this dy into (2.1), 
we can get (3.3). In this case, by taking account of the Ricci 
identity derived from (3.3) corresponding to (3.2) and then 
putting X = y, it is found that the curvature tensor corre
sponding to R of(3.2) vanishes, ify is given by a function ofx 
through the condition Dy = 0, but the torsion tensor corre
sponding to Tappears in general, which means, for this state, 
the spontaneous magnetostriction. 4 

Thus, it is understood from the above that in the magne
tization state in which the condition oy = 0 holds good, the 
spatial structure is governed by (3.1) and there appear the 
tensors introduced by (3.2). 

4. ON THE RELATION BETWEEN 8y AND Dy 

As has already been mentioned in Sees. 1 and 2, in the 
Finslerian deformation theory of ferromagnetic sub
stances. 2

•
3 two different kinds of metrical connections 0 and 

D are inevitably introduced for two different kinds of metric 
tensors 8ij and gij' respectively [see Eqs. (2.4) and (2.5)], in 
order to take the Euclidean parallelism 8y in the framework 
of Finsler geometry and reflect it in the whole spatial struc
ture of the deformation field itself. But the relation between 
8y and Dy has not yet been clarified, so that this problem will 
be considered in this section. 

First, we recall the following fact: The newly intro
duced parallelism, or connection 8, is caused to be metrical 
(under by = 0) for the metric tensor oij' i.e., 0 oij = 0 [Eq. 
(2.4)], while the ordinary (or the originally-introduced) con-
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nectionDis metrical (under Dy = 0) for the metric tensor gij' 
i.e., D gij = 0 [Eq. (2.5)]. As a result 15 gij #0 even if 15 15ij = 0 
(resp., DOij #0 even if Dgij = 0), and also DOij #0 even if 
o oij = 0, (resp., 8 gij #0 even if D gij = 0). 

This last relation is very useful for our purpose, because 
if we take account of the Kawaguchi's theorem, II then we 
can obtain one relation between oy and Dy from it. Kawagu
chi's theorem 11 supplies a general method to make a nonme
trical connection metrical. From the standpoint of this theo
rem, the relation that 0 oij = 0 but D oij #0 (resp., D gij = 0 
but 6gij #0) may be reconsidered as follows: The connection 
o may be regarded as a metrical connection for 6ij , i.e., 
o oij = 0, derived from the nonmetrical one D, i.e., DOij #0 
(resp., the connection D may be regarded as a metrical con
nection for gij' i.e., D gij = 0, derived from the nonmetrical 
one 0, i.e., 0 gij #0). Therefore, applying Kawaguchi's theo
rem to our case, we can obtain the following relation, ne
glecting arbitrariness II: 

H i -ll:ilDI: k - '2u ulk' (4.1) 

where D01k is given by use of (2.5) (with d0 1k = 0) [resp., 

D/=o/+K~/; K~ =~iloglk' (4.2) 

where {)gIk is obtained by use of (2.4)]. Then, the following 
relations can be obtained by inserting (2.2) and (2.3) into (4.1) 
[resp., (4.2)1: 

.1 i -ri +I{)il( rmo rml:) kj - kj :2 - Ij mk - kjUlm' 

(4.3) 
Ei -C i + 10il( Cmo Cmo) kj - kj '2 - lj mk - kj 1m • 

Respectively, 

r i. =.1 i. + I il( aglk .1 .1 m ) 
k} k} ~ axj - ljgmk - kjglm' 

i _ i I il( dglk m m) C kj - E kj + ~ --. - E ljgmk - E kjglm . (4.4) 
ay' 

With the aid of (4.3) or (4.4), if rand C are determined first 
by the deformation under consideration, then .1 and E are 
determined, and vice versa (cf. Ref. 2). From (4.3), such 
quantities as P and Q of (2.3) and then e and F of (2.6) and 
(2.7) can also be written in terms of rand C, respectively. 
[From (4.4), such quantities asA and B of(2.2) and then G of 
(3.3) can also be written in terms of.1 and E.] But they be
come very complicated due to the term P - I or A - I, so that 
they are omitted here for simplicity's sake. 

Thus, the relation between oy and Dy has been clarified. 
And it is clearly understood that the relation (4.1) or (4.2) 
embodies faithfully the fact that Dy#O even if oy = 0, and 
vice versa. 

In Amari's theory,] the covariant differential of spin 
direction, i.e., by is introduced in the form byi = Dyi + ay'. 
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In comparison with (4.1), the scalar a is, in our terms, for
mally determined as a = 0 imym H ~yk by virtue of the rela
tion oijiyj = l. But Amari's operator {) itself cannot be ap
plied to any tensor such as 6ij because of the termay i, so that 
geometrical considerations like ours cannot be developed; in 
particular Kawaguchi's theorem cannot be used. Therefore, 
it seems to the author that Amari's definition of oy does not 
have any significant geometrical meaning. 

5. CONCLUSIONS 

Some physico-geometrical remarks have been made on 
the covariant differential of spin direction (i.e., oy) within the 
Finslerian deformation theory of ferromagnetic sub
stances:2

•
3 First, by itself is given by (2.3), which is premised 

to be different from the ordinary covariant differential of y 
(i.e., Dy) given by (2.2); when oy is taken into account, the 
whole spatial structure of the Finslerian field is represented 
by (2.6) and (2.7); in the magnetization state in which the 
condition oy = 0 holds good, the spatial structure is gov
erned by (3.1); one relation between DY and Dy is given by 
(4.1) or (4.2); etc. 

It seems to the author that the introduction of oy (#Dy) 
and the relation between by and Dy have not been considered 
seriously, even in the theory of fields in Finsler spaces. 5

•
6

•
IO 

This is a motivation for this paper. Finally, the author would 
like to insist again that this kind of theory would become 
effective whenever the deformation theory of the so-called 
oriented media was treated by means of Finsler geometry. 
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A theory of nonlinear electrodynamics in an arbitrary curved space-time is developed from the 
fundamental action functional for a charged perfect fluid. The equations for small perturbations 
on a fixed nonlinear background are then the initial point for a comprehensive study of the 
characteristic surfaces. The essential distinctions between linear and nonlinear electrodynamic 
interactions under the influence of gravitation are exhibited. Discontinuities in the first 
derivatives of small perturbations are encountered (1) which may be of general algebraic types for 
both. the electrodynamic and gravitational fields and (2) which may have spacelike propagation. A 
speCific set of constraints which would permit the propagation of these extraordinary radiative 
fronts is presented. If the physical organization of a particular problem is presumed to be 
sufficiently sensitive to the nonlinear nature of the dynamical interactions, then the application of 
traditional causal concepts may be unreliable when intuition derived from Maxwellian 
electrodynamics with non interacting photons is anticipated to provide event horizons. 

PACS numbers: 03.50.Kk, 04.20.Fy 

1. INTRODUCTION 

This paper has two basic objectives. The first is to pre
sent a compact covariant exposition of nonlinear electrody
namics (NLE) in a curved space-time (i.e., the dynamics of 
the Einstein-Born-Infeld equations with a general structure 
function), investigating the algebraic aspects of the theory by 
spinorial techniques. The second is to offer a comprehensive 
study of the characteristic surfaces of such a system, demon
strating the essential distinctions between the linear and 
nonlinear electrodynamic cases. 

The actual content of the work is a generalization of 
Ref. 1. drawing extensively from the calculations presented 
in Ref. 2. The paper continues the sequential study of NLE 
with its vast literature3

- 'J initiated by Born and Infeld. Be
cause of the similarities between Refs. 1 and 13, the results 
may also be thought of as an extension of those of Boillant. 
Recently these ideas ofNLE have been found ofinterest even 
in supersymmetric theories. 14 

There are two physical approaches to the theory. The 
first is to seek, via nonlinearity, a structurally self-consistent 
classical electrodynamics with a finite point charge inertia 
which is free of the conceptual difficulties related to the di
vergences which plague the linear theory. Within this ap
proach, with a sensible structure function of invariants, 
NLE is capable of fulfilling all common sense requirements 
(like, e.g., the correct transformation properties for finite 
conserved quantities of a point charge) in contrast to other 
variants, including those with extended sources, higher de
rivatives, form factors, etc., each of which retains some in
compatibility. Unfortunately, the shape of the structure 
func~ion remains remarkably arbitrary, which handicaps 
speCific physical predictions from the theory. This is the 
main reason for the limited interest in these matters in gener
al theoretical physics. The second approach regards NLE as 
a variety of phenomenological quantum electrodynamics 
(QED) in the limit of high occupation numbers. The struc
ture function is selected such that the QED predictions con-

"On leave of absence from the University of Warsaw. Warsaw. Poland. 

cerning the scattering oflight by light are reproduced classi
cally by the NLE. Of particular interest is the structure 
function of Schwinger, 15 which accounts for an infinite lad
der of quantum processes. Our motivations are closer to the 
second of these options. 

If electromagnetic fields in curved space-times are 
critical to the early evolution of the universe or for the dyna
mics of collapsing objects near singularity limits, then it is 
natural to expect the corresponding QED dependent pro
cesses will affect the physics. Hence, NLE provides a simple 
tool for evaluating possible implications closer to physical 
reality. It is rather naive to anticipate that classical Maxwel
lian electrodynamics with non interacting photons can reli
ably represent such extremal conditions. Consequently, it is 
interesting to study the nature of causal signals within Ein
stein-Born-Infeld dynamics. The original Einstein con
struction of causal cones is related to light or, more specifi
cally, to the surfaces along which discontinuities of the first 
derivatives of the electromagnetic field (characteristic sur
faces) of linear electrodynamics are propagated. Light rays 
are then understood as bicharacteristic lines. This identifica
tion forms the foundation of special relativity, and without 
alteration it is extrapolated into the realm of general relativ
ity. In fact, in general relativity, when a linear Maxwellian 
field is present, its characteristics do coincide with the Ein
steinian gl"v cone. This, however. will not be the case when 
NLE governs electromagnetic phenomena. This result per
mits the reinterpretation of the standard characteristic of 
general relativity, the eiconal equationg"VS S , = 0 which • .J..l ,1 , 

IS a major objective of this paper. It is not unreasonable to 
assume that the introduction of other forms of nonlinear 
interactions (e.g., fluid dynamic or Yang-Mills fields) would 
produce analogous results. 

Formally, the paper is organized such that Sec. 2 con
tains the generation of the dynamic equations for a perfect 
charged fluid. containing a nonlinear electrodynamic inter
action within a curved space-time, by variations of the fun
damental action. The structure equations which contain the 
distinction between the linear and nonlinear electrodynamic 
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cases are introduced. Section 3 provides the conversion of 
the equations into their spinor counterparts and reviews the 
algebraic properties of the electromagnetic field tensors 
critical to the evaluation of the characteristic surfaces. There 
is also a brief discussion of how the NLE presented can be 
interpreted as analogous to more conventional electrody
namics within a medium. The entire self-consistent system is 
linearized by standard first perturbation techniques and the 
"jump" expressions satisfied by the discontinuities in the 
first derivatives of the field variables are given in Sec. 4. Sec
tion 5 demonstrates how the system reduces identically to 
the standard results in the linear electrodynamic limits. In 
particular, the algebraic investigation indicates that in the 
linear limit only null characteristic surfaces permit the exis
tence of nontrivial jumps. Section 6 classifies in detail the 
necessary conditions for the jump expressions for the many 
possible characteristics determined by the structure function 
in the NLE case. Dependent upon the nonlinearity, the re
sults indicate that the discontinuities of both the gravitation
al and electromagnetic fields may be of algebraically general 
types with respect of the Einsteinian metric. The Einsteinian 
local null cone is physically identified only with the propaga
tion of pure gravitational radiative fronts, and there exist 
nonlinearly interacting massless fields (including the elctro
dynamic) whose propagation may be associated with causal 
cones both interior and exterior to the Einsteinian null cone. 
Assuming there exist physically reasonable nonlinear struc
ture functions, satisfying a rather simple set of conditions, 
these different cones which allow causal influence certainly 
do no coincide. The distinguished rate of propagation of dis
continuities in conformal curvature alters the local measure
ment of time and thereby changes our traditional view of the 
propagation of linear electrodynamic fronts as the only pro
vider of a causal horizon for an event. The metric properties 
for each form of characteristic surface are then cataloged in 
Sec. 7, and finally Sec. 8 concludes by displaying the algebra
ic types of jumps in tabular form. 

2. THE DYNAMIC EQUATIONS 

The relevant dynamic equations are evaluated by vari
ations of the action functional 

.r/: = { d 4x (_g)1/2(2YF + ~ E + ~I + ~ G)' (2.1) In 
where the infinitesimal four-volume element d 4X( - g) 112 is 
invariant under nonsingular coordinate transformations 
within a Riemannian background space-time V4 represent
ed by the metric gill' with signature (+ + + -) and deter
minant g. The associated Lagrangians correspond to the flu
id ~!', the nonlinear electrodynamic field ,Y E, the 
interaction between the fluid and field ,Y I' and the back
ground gravitational field 2' G' respectively. The line inte
grals are understood to be taken along the world line of fluid 
particles between the points of intersection with two space
like three-surfaces bounding the domain n of variation. 

Assuming there exists a known equation of state such 
that the energy density is given by e = e(n,s), where n denotes 
the particle density and S the entropy density of a fluid point, 
the fluid flow may be characterized by (I) an Eulerian veloc
ity ul'(x") defined for every event P (XV) situated on its world 
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trajectory, (2) the specific volume V = lin, and (3) the phen
omenologic temperature T and pressure p encountered. 
These hydrodynamic variables are measured with respect to 
a local rest frame. The velocity is normalized such that 
UI'U ll = - 1. Since the fluid is isotropic and frictionless, en
tropy is conserved. Therefore, 

a) u"s." = 0 

and 

b) (nu");" = 0, 

The first and second laws of thermodynamics, 

de = nTds + [(e + p)/n ]dn, 

(2.2) 

(2.3) 

are postulated, Associated with such a fluid is the Lagran
gian density 

2' F = - e(n,s). (2.4) 

The nonlinear electrodynamic field is represented by 
two skew field tensors!"v and P,,,,, which are interrelated 
through a single relation designated as the "structure" equa
tion. The existence of a potential A satisfying the Faraday 
field equation 

(2.5) 

is assumed, yielding the electrodynamic Lagrangian 

(2.6) 

The "structure function" H = H (P,Q), whose arguments 16 

(2.7) 

are invariant (scalar) and pseudoinvariant,I7 respectively, is 
a real Hamiltonian whose functional form is intentionally 
left unspecified. For linear electrodynamics H = P, but for 
nonlinear electrodynamics H must only conform to a cou.Ble 
of general conditions. One expects for the weak field (P,Q 
small) limit that nonlinear effects will become negligible: 

correspondence-+H (P,Q) = P + 0 (P 2 ,Q 2) 

=>Hp(O,O) = 1. (2.8) 

If parity is conserved, then under coordinate transforma
tions with negative Jacobian, where Q transforms into - Q, 
H must remain invariant 

parity conservation-+H (P,Q) = H (P, - Q), (2.9) 

which is equivalent to H = H (P,Q 2). Condition (2,9) is less 
essential than (2.8), since one could consider systems with 
parity violating weak interactions in a quantized theory. 
However, in this work, both restrictions (2.8) and (2.9) are 
presumed satisfied. Additionally, the conservation of charge 
density p, 

(2.10) 

is required. 
The interaction between the fluid and the nonlinear 

electrodynamic field is provided by the minimal coupling 
Lagrangian density 

(2.11 ) 

where]l' = pu" denotes the electric current density. Notice 
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that the expressions determining the inertia of the fluid (2.4) 
and the coupling with the electromagnetic field (2.11) are 
identical to those of linear electrodynamics. 

The gravitation field equations are deduced from the 
conventional Lagrangian density of Einsteinian gravity, 

X' G = (l/161T)(R + U), (2.12) 

written in gravitational units (G = gravitational constant 
= 1 = velocity of light = c), with scalar curvature Rand 

cosmological constant A. IR Restricting this work to special 
relativity (in general coordinates) by submitting the metric 
gill' to the condition of vanishing Riemann tensor 
(R "flyt; = 0) yields the results previously given in Ref. 1. 

The dynamic equations are derived from the overall ac
tion.if of(2.1) accounting for (2.4), (2.6), (2.11), and (2.12) by 
executing the variations and extremalizing with respect to (1) 
the Lagrangian trajectories (DXJL ), (2) the potential (DA JL ), (3) 
the field P"" regarded as Lagrange multiplier (DP"v), (4) the 
metric (DgIIV )' and (5) the connections TJLv). considered as 
independent of the metric (DTllv).) (according to the princi
ple of Pal at in i). The process must be consistent with the sub
sidiary conservation conditions (2.2) and (2.10), and con
strained by null variations on the boundary an of the region 
n. Performing the extremalizations, the following equations 
of evolution of the perfect fluid system with nonlinear elec
trodynamic and gravitational fields are evaluated. The de
tails are found in Ref. 2. 

Dd IDT"lll' = o-/JL";a - D"a/JLf3;fl = O+-+gJL,';a = 0, 
(2.13) 

where fill': = ( - g) 1I2g"v' Consequently, the appropriate 
connection for the metric is that of Levi-Civita 
({a fly} = r a 

{3Y)' The equations of motion (Lorentz equa
tions) for the charged fluid are 

(2.14) 

where8x" = :8X"1 + u"8x lI with8x v
1u v = Oand the energy

momentum tensor is defined by T"V: = pgl'V + (f" + p)UIIUV, 
The electromagnetic field (Maxwell's) equations are 

(2.15) 

These equations are complemented by the Faraday equa
tions (the existence of the potential), which express the neces
sary and sufficient conditions that.!;,v be a curl, 

i'''y = O+-+.IIlll';). ) = O+-+fJLv = AJL.v - Av.,,· (2.16) 

The structure equations (material equations) 

8.01 IDPlll' = o-f"" = 2aH laplIV = HpP'''' + HfjPI'" 
(2.17) 

are the counterparts of the Lorentz material equations in the 
classical electrodynamics of polarized media. Equations 
(2.15)-(2.17) give the physical interpretation and the evolu
tion of the nonlinear electrodynamic field whose energy-mo
mentum tensor is defined by 

41TEI"': = - fJL)'p v
). + gI'vL with L: = - 41TX' E' 

(2.18) 

For a linear field, H = P-f/iv = P/iv' Varying the metric, 
one obtains the gravitation equations (Einstein equations) 
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8.2/ IDgJLv = o-GJLv = 81T(TJLV + EJLV) + AgIi", (2.19) 

where G JLV: = R /iV - Jyt"R is the Einstein tensor. The ex
pression (2.19) and the geometric structure equations (Bian
chi identities) 

R afl1y8;..l ) = 0 

and 

(2.20a) 

(2.20b) 

govern the evolution of space-time and the motion of materi
al contained within it. This essentially completes the system 
of dynamical equations. The conservation constraints (2.2) 
and (2.10) have been inherently imposed. When this system 
is restricted to special relativity, where the Riemann tensor 
vanishes, the total energy-momentum tensor is still diver
genceless as (2.20b) implies, but now as the result of the 
translational invariance of the action. 

Since the essential distinction between linear and non
linear electrodynamics resides in the electromagnetic struc
ture equations (2.17), it is informative from the outset to in
quire about their inversion. When these equations can be 
inverted one may algebraically express PI'v through.!;,,,, its 
dual, and the invariants 

-v v 

F: = Uwr" and G: = U/i"r", (2.21) 

by the expression 

P"v = 2 aL larv 
= LFJ;,V + Ld;,V' (2.22) 

HenceL = L (F,G) is understood as a funstion off/iv depend
ing on it throught the arguments F and G. The relations 
among invariants can be represented by a complex equation 
in either of the forms 

F + G = (Hp + Hfjf(p + Q) (2.23a) 

or 

(2.23b) 

Thus, if(2.23a)canbeinverted [i.e.,a IF,G )la(p,Q ) =r" 0] deter-
v v"V ~ 

mining P = P (F,G ) and Q = Q (F,G ), then 

L(F,G) = 2PHp +2QHfj -H. (2.24) 

Moreover, (2.22) substituted into the definition of L [(2.6) and 
(2.18)] implies 

H(P,Q) = 2FLF + 2GLa -L. (2.25) 

The self-consistency of the theory is demonstrated by 
showing that the divergence of the total energy-momentum 
tensor, indicated in the special Bianchi identity (2.20b), van
ishes. Sequentially, this is accomplished by applying the 
equations of Lorentz, Maxwell, and Faraday, the definition 
of the dual, the electromagnetic structure relation, the anti
symmetry property of pJLV, and finally the definition of E Ill'. 

3. SPINOR FORM OF THE EQUATIONS 

Since the classification of the characteristic surfaces is 
conveniently done in spinor formalism, the spinorial coun
terparts of the dynamic equations are now presented. Using 
the Hermitian Pauli matrices gIi AD' the self-dual spin tensor 
S /i"AD ,and its anti-self-dual complex conjugateS I"'AD,19 

the spino rial images of all relevant objects may be defined in 
( 
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the usual manner. The spinor covariant derivative operator 
is V A8: = g!" AR V!" . For the symbols corresponding identical
ly to those used previously. the equations of motion (2.14). 
Maxwell (2.15). and Faraday (2.16). respectively. become 

uAA ussV ssP + ~V AA (~ + p) + (~ + p)USSV s.~uAA 
= 2fASJSA + 2fAsJ/5• (3.1) 

VSAp B
S + VBSpAS = 41TJ BA, (3.2) 

VSAfBS - VBsfAs =O+->-fAB = - VAsA BS - VBsA AS ' 
(3.3) 

complemented by the conservation of charge (2.10) 
VAR JAB = O. The electromagnetic structure (material) equa
tions (2.17) and their inverses (2.22) are most conveniently 
written in their equivalent spino rial relations after the intro
duction of 

Z: = P + 0 = 4pABPAB and 
v AB 

W: =F+ G=4f 'fAB (3.4) 

and the respective complex conjugates as the independent 
invariants. We obtain 

and 

PAB = 2LwfAB' 

which are equivalent to 

fAB = (Hp + HiJ )PAB 

and 

PAB = (LF + L(,j)/AB' 

Moreover. (3.6) implies 

(Hp + HiJ)(L F +Lc) = 1. 

(3.5a) 

(3.Sb) 

(3.6a) 

(3.6b) 

(3.7) 

For the symmetric tensors, the trace is extracted before con
tracting each index independently with! of the general Pauli 
matrices. The traceless energy-momentum tensor of the flu
id is pl"v: = pLV - ~'TJ.. J..' Hence it has a spinorial image 
denoted by 

FABe'D = !g1'ACFILVgvBD~' 
and therefore, 

(3.8) 

FABCD = (~+ P)(UACU BD - ~CABCCD)' (3.9) 

Similarly. the traceless nonlinear electromagnetic field ener
gy-momentum becomes 

rrEABcD = -HpPABPcD = -LdAJCD' (3.10) 

The image of the traceless Einstein tensor 
C I"': = G I'" + !«LvR reduces the Einstein equations to the 
following relations: 

CABCD = 8rr(FABCD + EABcD ) 
= 8rr(c + P)(UACU BD - ~CABCCD) - 8HI'PARPcD' 

(3.l1a) 

-1R = A, + 2rr(3p -~) + 2(PHp + OHi) - H). 
(3.11b) 

Denoting the conventional conformal curvature by the total
ly symmetric and complex object 

(3.12) 

2838 J. Math. Phys., Vol. 22, No. 12, December 1981 

the Bianchi identifies (2.20) yield 

VD DCABCD + VIA ACBC)DA = 0, 

V BDC "+ I" 'R - 0 ABCD SV AC - . 

(3.13a) 

(3.l3b) 

Particle conservation (2.2b) and velocity normalization take 
the forms V AB (nu AR ) = 0 and uARuAB = 2. 

The original tensors are recovered from the spinorial 
images by applying the inversion relations originating from 
the duality properties of the spin tensor and its complex con
jugate and the normalization of the Pauli matrices 

(8 1
", = - ~ ARgv AB ) given by 

!Sall ABS y6 AB = {jail yo + (i! ~ - g)ca/3 yo 

and its complex conjugate. 

(3.14) 

We next recall briefly some algebraic properties of the 
electromagnetic field tensors which are necessary for deter
mining characteristic surfaces. A discussion of greater depth 
from both the mathematical and physical points of view may 
be found in Ref.l or 20. Considerations of gauge freedom can 
also be found there. The electromagnetic field tensor.!;", is a 
real skew symmetric second rank tensor which is called sim
ple if (] = O. null if F + G = 0, and algebraically general if 
F + (] :f0. Iff!"v is simple, then (and only then) there exist 
real afL and b" such thatf!"" = afLb v - aVblL • The spino rial 
imagefAB = i;AB) always has complex factorization 

(3.15) 

where a A, {3A are the principal spinors. Moreover, since 
a A{3A and F + (] vanish simultaneously. for the null case 

(3.16) 

where the, in general complex,jhas dimensions of.!;,,, and k A 

is a dimensionless spinor. WhenffLv is algebraically general, 
then (3.15) implies 

F+(]=4fAJAB = -2(aA{3Af:f0. (3.17) 

ConsequentlY'!AB can always be written as 

fAB = - ~{~ + i.q;)k(A1BI' (3.18) 

with 14 a second dimensionless spinor linearly independent 
of kA and normalized according to kAlA = 1 and ~ ;;>0. Us
ing (3.18) in (3.17) 

v 2 2 
v v {F= l(d/ - 1,' ) 

F+G= -~(~ +i/~f-+ v 2'. :', . 
- G=-lW,cg 

(3.19) 

Here .'J] is a pseudoinvariant and without losing generality a 
coordinate frame can be selected such that i(];;>O. where both 
'1:;;>0 and ,''fj ;;>0. Inverting yields 

?,y = (IF + G I - F) 1/2 and .~ = (IF + G I + F) 112, 

(3.201 
All these arguments may be repea3ed for PI"" Assuming 

an algebraically general P
liV 

(i.e., P + Q :f0), its spinorial im
age becomes 

PAR = - !(9; + iJltlk(A I B I' (3.21) 

where the non-negative (in an ape,ropriately oriented coordi
nate system) invariants!J; and ,;if are 

,Cl = (IP + Q I - P ) \/2 and ,J( = (IF + 0 I + P ) \/2, 

(3.22) 

and there exists an expression equivalent to (3.19) for P + Q. 
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From (3.6), (3.18), and (3.22), 

g:' + ig; = (Hp + iHij)(§J + ik) (3.23) 
v v v 

and i!..is natural to pass from (F, G ) to ('if? ,g;) and from (P,Q ) to 
(§J ,dV'j as the pairs of independent invariants. Assuming 
temporatily that the condition for inversions with respect to 
g; and JY', 

a ('if?,fiJ)la(9,7tl =H~/.Cit· -H:I'yHlrJ ¥O, (3.24) 

is satisfied, it is not difficult to show simultaneously the im
plications 

and 

'if? + iiPJ 
(3.25a) 

{w = - H./, ,f;J = H Cit }+-+{9 = - Lt,. ,7t' = L;j}. 
(3.25b) 

Also, a direct calculation of the energy density implies that it 
remains assuredly non-negative if and only if 
g:'!iJ + ;;;; ,W'';>O; but the equality requires H p = 0, which 
contradicts the correspondence limit, hence 

v v 

15~ ,q; + .W JY' > 0, 

which from (3.25) may be equivalently expressed as 

Hp >0 or Lp >0. 

(3.26) 

(3.27) 

Similarly, a positive trace for the energy-momentum tensor 

1TE a a = ~( - 'if?!:I) + f%J k) - H>O (3.28) 

(a requirement of the vi rial theorem) is equivalent to 
v v 

PHp + QHQ - H>O or L - FLFGLa>O. (3.29) 

We will consistently accept P"v as the fundamental and.t;,v 
as the secondary object. Consequently, if there are values of 
(P,Q) which violate the first of either (3.27) or (3.29), they 
must be rejected as physically inadmissable. These condi
tions can be interpreted in two ways:( 1) as restricting the 
family of admissible structure functions, (2) as restricting the 
physically admissible values of (P,Q). Occasionally these 
conditions hold for every (P,Q) as in the case of the linear 
theory where H = P. When PltV is null, the correspondence 
principle implies 

Hp = I, HQ = 0, and Hpij = ° (3.30) 

for zero values of the invariants. Therefore, 

P"" =i;",+-+PAB =/48 = JfkAkB (3.31) 

and it follows that the inequality conditions are automatical
ly met. The inequalities (3.27) and (3.29) are important in the 
further development of the characteristic surface theory. 

The dynamic equations of nonlinear electrodynamics 
presented in Sec. 2 and 3 obtain a most plausible interpreta
tion when the concepts of the electric and magnetic field 
vectors and the electric and magnetic induction vectors are 
introduced. 21 The content of these sections then corresponds 
closely to the Lorentz theory of electrons, where the struc
ture relations 

D" =£E" and 
B"=JlH" (3.32) 
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are postulated. Due to the properties of the medium € and Jl 
may be different from unity. In our case the circumstances 
are comparable, but the inductions are more general linear 
combinations of the intensities, 

Da = _l_E" _ jHij jja and 
Hp l!p 

v 1 v La 
Ea = -H" + i_Ea. (3.33) 

LF Lp 

Also, D a can be ¥E ", B" can be ¥H a due only to the basic 
nonlinearity (which does not require the presence of any me
dium). When however, for example, H Q = 0, La = 0 then 
1/ H p plays the role of £ and 1/ L F of Jl; or when the field is of 
null type, then automatically D a = E (l and B" = jj" due to 
the properties of the structure function. In addition, when 
the field is algebraically general, there exists a distinguished 
orientation determined by the energy current for which the 
relations among the inductions and intensities take the sim
ple form (3.32), where 

£=YJ/W= -2 aL/a('if?2) and 

Jl = .~ / %' = 2 aH /a(3y2). p.34) 

Consequently, there is some justification for denoting the 
ratios € and Jl as the electric permittivity and the magnetic 
permeability. Moreover, in the appropriate limits these 
equations are formally identical to the conventional equa
tions of electrodynamics in macroscopic media with point
like sources. The complete supporting details of this inter
pretation of nonlinear electrodynamics are found in Refs. 1 
and 20. 

4. SMALL PERTURBATIONS AND CHARACTERISTIC 
CSURFACES 

In this section, the equations determining the charac
teristic surfaces for nonlinear electrodynamics in a gravita
tional field corresponding to the system's set of dynamic 
equations are developed. The resulting complementary par
tial differential equations for perturbations of various field 
gradients are linear with variable coefficients determined by 
the background fields. Therefore, in principle, they can be 
solved with standard techniques. The equations are manipu
lated in spinorial form, because the application of the nota
tion simplifies further algebraic calculation considerably. 
Our agruments are local (at a fixed point), but have analytic 
implications. In the theory of small perturbations, the struc
ture equations are considered as central. Conveniently, these 
particular relations are algebraic, enabling their thorough 
investigation which eventually results in the theorems on the 
propagation of discontinuities in the background. The basic 
problem of characteristic surfaces consists of deriving the 
necessary conditions, from the perturbed dynamic equa
tions, which permit the existence of nontrivial discontinui
ties of the first derivatives of the field variables. 

A surface S (x) = const (corresponding to a particular 
P,tv) is said to be characteristic of the object F (x), if the de
rivatives of its small perturbations of of,, can posses nontri
vial discontinuities on S. All quantities denoted by 8 (---) are 
proportional to some parameter of smallness. The discontin-
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uous jump of F(x) at x on the surface S is defined by 

\[F]\:= lim [F(x+l-F(x_)], 
x± -... x 

(4.1) 

where x + and x _ are points located on opposite sides of S 
along the normal at the point x. The positive side is selected 
by the direction of the gradient S;a . Outside of the surface, 
the background object F and its first derivatives are continu
ous in the entire region n for which it is defined. The jump in 
the gradient F;a normal to S is 

(4.2) 

Infinitesimally perturbing both conditions at the 
boundary of n and each of the various currents for a particu
lar complete solution gives, by hypothesis, a new solution 
differing from the original only by small perturbations of all 
physically relevant variables. Application of this assumption 
in the usual manner to the dynamic equations provides lin
ear equations for the small perturbations given by 

Maxwell V SA13p B
S + V BSfjpAS = 41TJ AB, (4.3a) 

Faraday VSAfjfBs - VBsfjfA S = 0, (4.3b) 

structure 
fjfAB = 2Hz fjPAB + 16(HzzpcDfjPcD + HzzpCDfjPCD)PAB' 

(4.3c) 

Bianchi VDAc5CABCD + VIA DfjCBC)D A = 0, (4.3d) 

special VADfjCABCD + kV BcR = 0, 

Einstein 

c5CABCD = - 8Hpfj(PABPCD) - 8c5HpPABPCD 

+ 81T(E + P)c5(U AB UCD ) + 8m5(E + p)uABucD . 
(4.3e) 

Assuming that the perturbative jumps are continuous, 
but their derivatives are not (e.g., I [fjPp." ] I = 0 but 
I [fjPp.,,;J- ] I = ,1PI'"S;J-)' defining the spinor image of the sur
face gradient by 

S . - nilS ----..SASS . - c5A S;p.s Ali' - <5 AB ;1' BS - - B ;1" (4.4) 

and utilizing the set (4.3), the spinor form of the discontinu
ity equations on the surface can be written in the basic block: 

from Maxwell SSA,1p B
s + SBs,1p A

s = 0, (4.5a) 

from Faraday SSA,1fBs - SBs,1fA 5 = 0, (4.5b) 

from structure ,1fAB = 2Hz ,1PAB 
+ 16PAB(HzzPCD,1PcD + Hzt;PCD,1PcD)' 

(4.5c) 

from Bianchi S DA,1CABcD + S(A D ,1CBc)l/ = 0, (4.5d) 

special SAD ,1 C ABCD + A S Bc,1R = 0, 

from Einstein 

,1CABcD = - 8Hp,1 (PABPCD - MHpPABPCD 

-If1R = ,1 (HzZ + HzZ - H). 
(4.5e) 

The remainder of this work is effectively devoted to the 
evaluation of the properties of the solutions of these relations 
for the discontinuities in the derivatives of the various field 
variables on the characteristic surfaces. Specifically, the nec-
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essary conditions permitting the existence of ,1PAB #0 are 
derived for ba.skground fields which are null v 

(PI''' #O,P + Q = 0) and algebraically general (P + Q #0). 
The case of a trivial background field (PI''' = 0) is omitted, 
since for weak fields the theory coincides identically with the 
linear electrodynamic case by construction. It must be un
derlined that we assume ,1PAB #0, but whether ,1fAB' etc., 
vanish or not remains questionable. The possible character
istic surfaces are repeatedly divided into two classes: (1) the 
null characteristic surfaces (NeS), where S;p. S ;1' = 0 and (2) 
the general characteristic surfaces (GCS), where S,,' S ;1' # O. 
The symbol ~ is used to denote the product S'" S ;1'. 

5. CHARACTERISTIC SURFACES OF LINEAR 
ELECTRODYNAMICS WITH GRAVITATION 

Reducing the basic characteristic surface equations 
(4.5) for PI''' = fl'''' which corresponds to the linear electro
dynamic case, Eqs. (3.30) are encountered with H zz and 
Hzz real and in general nonvanishing. Moreover, 
CABcD = - 8fAsfcD with R = O. The subcases ,1fAB zero or 
nonzero are evaluated separately. 

A . .1fA8 ~O on the characteristic surface 

Substituting PAB = fAB into (4.5a,b) and noting (4.4), 
one has necessarily 

detS Ali = ~SAliSAli = ()....+~: = S;I'S;li = 0 

(5.1) 

where SA is a specific spinor which is not difficult to calcu
late. Select {SA ,SA} with SASA = 1 as a spin or basis for de
composing ,1fAn such that 

LlfAB = :,1f SASB + LlftSASB + Llf2S(ASn)' (5.2) 

Contracting this with S B account for (4.5a,b) Llft = 0 = ,1f2; 
thus for ,1f a complex function, 

LlfAB=LlfSASn' (5.3) 

Substituting CAncD from the introductory paragraph above 
and (5.1) into the Bianchi identity (4. 5d) yields 

SDLlCABCD + Mf( fABSASli)SASnSc = O. (5.4) 

For jumps in the totally symmetric conformal curvature, the 
most general form is 

LlCABCD = :.1C,SASnScSD + 4LlC2S(A SBSCSD) 

+ MC)S(ASBSCSDI + 4LlC4S(ASOSCSD I 

+ ,1C5SASBSCSD' (5.5) 

Comparing (5.5), therefore, LlCtEC and arbitrary, 

LlC2 = 8LlfUAliSA§B), AC3 = .dC4 = .1Cs = O. (5.6) 

WhenfAB is either algebraically general or null but of the 
formfAB = U'(SA - SA )(SB - Sn), since.1C2 #0, the result 
is 

(5.7) 

which is of type III:[3-1). If and only iffAB is null and such 
thatfABSASB = 0, then SI" is an eigenvector of the back
ground null field. When this circumstance occurs LlCz van
ishes directly and Ll C ABCD is given by the first term of (5.7), 
which is of type N:[4). 
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B. I1fAB = 0 on the characteristic surface 

The jump relation from the first Bianchi identity (4.Sd) 
for this subcase requires 

. {I1CABCD = 0 if ~ #0 
S DA 11 C ABCD = 0---+ . 

I1CABCD IS of type N: [4] if ~ = o. 
(S.S) 

Summarizing this straightforward special case, the 
characteristic surfaces of linear electrodynamics are neces
sarily null (~= 0) if there exists a nontrivial jump. Specifi
cally, the discontinuities in the derivatives of small perturba
tions in both the electrodynamic and gravitational fields 
propagate at "the speed oflight, "and the only discontinuous 
jumps in the perturbations of conformal curvature permitted 
are of the types 111:[3-1] and N:[4]. 

6. CHARACTERISTIC SURFACES OF NONLINEAR 
ELECTRODYNAMICS WITH GRAVITATION 

Regarding PAB as the fundamental object providing a 
nonlinear electrodynamic solution completing the Einstein 
equations, 

CABCD = - SHpPABPCD' 

- !R = ). + 2(ZH z + ZH z - H), 

(6.1a) 

(6.1b) 

and selecting 11 P AB as the generator of the remaining discon
tinuities' the set of equations (4.S) describe the physical sys
tem. Introduce the notation 

(6.2) 

and the traceless energy-momentum tensor oflinear electro
dynamics, 

r'LV[P]: = _ pl'ApVA + ~Vpp(IPp(I 
= 4PABPCDSACSBD. (6.3) 

Then after recognizing that 

SAASAB = (S;I'S;/L)8A
B = :~8AB' (6.4) 

and after substituting (4.Sc) into (4.Sb) using (4.Sa), you de
duce that successively multiplying by SA A and - 2p A B gives 

[OHp + ZHzz)~ + Hzzr'"vS;/LS;V ]I1Z 

+ [ZHzi~ + Hzzr'"vS;/LS;V ]I1Z = O. (6.5) 

This expression and its complex conjugate form a system of 
linear homogeneous equations for I1Z and .:1Z, whose deter
minant is 

4: = I (!Hp + ZHzz)~ + Hzzr'"vS;/LS;v 12 

- IZHzz~ + H zz r'"
vS;1' S;v 1

2
, (6.6) 

which must vanish whenever I1Z #0 as a direct algebraic 
consequence of the discontinuity relations. In general, we 
claim 

(6.7) 

This implication is conveniently proved by contradiction; 
hence assume that simultaneously .:1PAB #0 and 4#0. 
From (6.S), I1Z = 0 and then Hp~.:1PAB = 0, or for Hp > 0 
we infer a NCS withSABS AB = O,SAB has the algebraic form 
SAB = SASB which, when introduced into (4.Saand b), yields 
the expressions 
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.:1PABS B = i.:1PSA and I1fABS B = .:1fSA' (6.8) 

where.:1P and .:1fare both real numbers. Using the reduced 
form of the structure relation (4.Sc) in the second of these 
equations necessitates 

(6.9) 

because the real part of 2Hz is H p > 0 by hypothesis. Conse
quently, there exist nonvanishing complexes.:1P' and.:1f' 
such that 

.:1PAB =.:1F' SIASB) and I1fAB = .:1f'S(ASB) with 

.:1f' = 2Hz l1F', (6,10) 

which due to.:1Z = 8p ABI1PAB = 0, implies 

(6.11) 

Independent of whether the background is trivial (PAB = 0) 
or nontrivial (PAB = PIASB) #0), we encounter 

~ = 0 and r'"vS;/LS;V = 0, (6.12) 

requiring that 4 = 0, a contradiction. Thus the implication 
has been established. It remains to demonstrate the existence 
of nontrivial.:1PAB (and I1fAB) when 4 = 0, which will be 
done by explicit calculation in what follows. 

A. The class of NCS (.2' = 0) 

Proceeding as in the proof above, Eqs. (4. Sa)-(4.Sc) lead 
to (6.8) with 

.:1f = 2iHz .:1P - 2.:1HzPABSASB' SASA = 1, (6.13) 

where 

11Hz : = Hzzl1Z + Hzzl1Z 

= 8(HzzpAB.:1PAB + HzipAB.:1PAB)' (6.14) 

The determinant reduces to 

4 = IHzz 2 - HzzHzt 1.Ir'"vS;/,S".1 2 

= IIHpQ 2 
- HppHQQ 1·12p ABSAS B 14 = O. (6.1S) 

1. Equation (6.15) and Hp02 - HppHoo = O-+PABSASB~O 

This can hold locally for specific values of P and Q or 
globally for all admissible values, from the structure of H. 
Consider F: = F (H p,H Q I whose differential is given ~ 
(HppF.Hr + HpQF.Hv)dP + (HpQF,H" + H QQ F. II()dQ. Ob
serve that it is possible to encounter a nontrivial Fwith van
ishing differential, because the linear homogeneous system 
of equations 

HppF.H,. + HpQF.HJ = 0, HpQF. H ,. + H QQ F.lIv = 0 
(6.16) 

has vanishing determinant. This subcase may globally yield 
the existence of a F (H p ,H Q) = const, which constrains the 
possible structure functions. The linear theory (H = P) is an 
important, and trivial, subclass belonging to the case 
discussed. 

Satisfying (6.13) with 11Hz = 0 implies in a manner 
identical to the proof of (6.7) that I1P = 0 = 11j, leading 
again to (6.10). When PABSASB:;i:O also 
H zz 2 - H zzH zz = 0 if there exists a nontrivial solution, 
suggesting a further separation into two subcases. If .:1 Hz of 
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(6.14) vanishes due to Hzz = Hzi = 0, then I1P' remains 
arbitrary andl1PAB contains two arbitrary constants. Or, for 
the alternative subcase, if jH zz j = jH zi j ~O, you encounter 

I1P' Hzi PABSAS B 

I1P' = - Hzz PABSASB' (6.17) 

indicating the phase ofthejumpl1P' is determined when the 
structure function and field are known. Only jl1P' j remains 
arbitrary and I1PAB depends on one arbitrary constant. 

SUbstituting the jump expression from the Einstein 
equations (4.5e) into that of the first Bianchi identity (4.5d) 
and again using the content of (6.10), you obtain 

I1CABCD = S(ASBSc!I1CISD) - 32HpI1P'PABSASBSDI)' 

(6.18) 
where I1CI is complex and arbitrary. Consequently, the 
jump in conformal curvature on the characteristic surface is 
of type 111:[3-1], except when the background nonlinear 
electrodynamic field is null where the gradient S;I' is the 
same vector resultant from a jump of type N:[4]. 

2. Equation (6. 15) and 
Hp02 - HppHoo~O-PAB~SS = O-PAB = P(ASB)' 

When the background is trivial the implication is auto
matically fulfilled; but if PAB ~O, S;I' is an eigenvector of Pill" 
i.e., the relation above may be translated to the equivalent 
tensorial image 

PI/S;p = AS;IL-rwS;I'S;l' =0, (6.19) 

where for algebraically general PAB = KqJ + i~klA I B)' 
kAlA = 1_ there exists real nonvanishing A = + Ali), de
pending upon whether S;I' = kl' or I/" , and where for null 
PAB = !PkAkB-A = 0 with c"v)'Pkl';vk),;p = O. 

Satisfying (6.13) when 11Hz ~ 0, one concludes immedi
ately from the structure relation (4.5c) that 

(6.20) 

The background field acquires the form P AB = PIA S B) , 
where (6.19) holds with 

(6.21) 

and 

11Hz = 8iI1P(HzzP ASA - HziPASA )~O, (6.22) 

which implies I1P ~O. Hence the structure function must be 
nonlinear so that at least one of H zz or H zi is different from 
zero; and the complex invariant of the field Z = 4p ABPAB 
= - 2(P ASA )2~0, hence the field is algsbraically general. 

Transforming to the invariants 9J and ff' defined by 
Z: = P + Q = - ~(g; + i~2 and noting that, since I1fand 
I1P ~O are real, the structure function is constrained by the 
condition H;r J- = 0, we have 

(6.23) 

Also 

I1PABS B=I1P'SA +iI1PSAandl1fABSB=I1j'SA + I1.tSA , 
(6.24) 

with 11j' = 2Hz 11 P " where 11j' and I1P' are in general com
plex. Therefore, the general forms for the jumps are 

I1PAB = 2I1P'SASB + 2iI1P!J;ASB), 

I1fAB = 211j'SASB + 211.tStASBI· 

(6.25a) 

(6.25b) 

Here I1PAB depends on three arbitrary constants due to the 
complex I1P' and the real I1P. The background field is given 
by 

(6.26) 

The determinant condition (A = 0) is automatically satisfied 
and 

11Hz = (il1P /4p ASA )[Hp - i(H'T,:;' + iHQ)). (6.27) 

Regarding the relevance of these last electrodynamic 
jumps, observe that the constraint H..J'J- = 0 contradicts the 
corresponden«7 assumption H ~ !(Jrl - g; 2) for small val
ues of g; and ,}Y'. Therefore, probably the only cases of phys
ical interest are those possessing constant valued invariants 
for some set of points. From (6.25), I1PflV cannot be a null 
bivector; yet if additionally H u J- = 0, then I1f = 0 and ilJ;,V 
is a null bivector (or even trivial if I1P' = o-l1f' = 0). If this 
pathologic situation occurs, then x(1&' ,.%» does not exist for 
the corresponding values of g; and c~. 

Examining the first Bianchi identity (4.5d) for this sub
case and multiplying independently by SA and SA gives 

SDI1CABCD 
= 4Hp [(,9,0 - iPtII1P'SASBSc + 2i9JI1PS1A SBSC)] (6.28) 

and 

But 

[Z [(11Hz + 11Hz ) = o-ReJ1Hz = O. (6.29) 

11Hz = 4iJ1P [(g; + i7r1Hzz - (9 - i~Hzi]; 
(6.30) 

hence, setting the real part to zero places an additional re
striction on the structure function, 

/frHp + 9J(H u J- + iHQ) = O. (6.31) 

The most general form of the curvature jump becomes 

CABCD + S(A SB (I1CI Sc + aSC)(SD) + bSD)), (6.32) 

where a + MC I = 16Hp(9 - iml1P' and 
a·b = 16iHpIiJI1P. That is, I1CABCD is to type D:[2-1-l] in 
this subcase. 

B. The class of GCS (I =f 0) 

Multiplying by SA A the result of substituting (4.5c) into 
(4.5b) and using (4.5a) gives 

Hp~l1pBA + (Hzil1Z +Hizl1i)~PBA - (HzzI1Z + HziI1Z)SAASBBpAB = O. (6.33) 

Under the basic assumption of the class, solving this for the electrodynamic jump I1PAB yields 

I1PAB =~PABI1W + SA ASBBPASl1w, 
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where 
. -1 

..1w = - (Hzz..1Z + H z:t..1Z )(Hp.I) . 

Substituting (6.34) into (6.2) and the result into (6.35), we obtain 

p..1w + a..1w = 0, 

where 

p: = (Hp + 2ZHzz ).I + 2Hz:trf'vS;J1S;V' 

a: = 2ZHz:t.I + 2Hzzr,vS;J1S;v' 

(6.35) 

(6.36) 

(6.37) 

Equation (6.36) and its complex conjugate form a linear homogeneous set of equations whose determinant is precisely A. When 
..1w#O, necessarily 

A = Ipl2 - lal2 = 0, (6.38) 

which coincides with (6.6). Since..1PAB ,=0, GCS can exist only when (1) the background field is nontrivial (PAB ,=0, (2) the 
jump..1 w #0 (which occurs only when..1Z #0), and (3) the situation is genuinely nonlinear (at least one of H zz or H z:t must be 
nonzero). We acknowledge that from the structure of (6.34), ..1PJ1 vs;v = O. The same was true for NCS. 

Before proceeding with the consideration of null and algebraically general background fields, it is profitable to analyze 
some algebraic consequences of the Bianchi identities. Multiplying both Bianchi identities (4.5d) by SAD and taking the 
symmetric and antisymmetric parts result in 

.I..1CABCD = S(A ASB B.dCCD~B' 

S(A A..1CB)cABSCB = 0, 

SAASBB..1CABAB + l..1R.I = O. 

(6.39a) 

(6.39b) 

(6.39c) 

For GCS, using the expression for ..1PAB (6.34) and the Einstein equation (6.1), 

.dCABcD = - 8Hp(SAASBBP4.BPCV.dW +ScCSVDPABPCD..1W, (6.40a) 

(6.40b) - A.o1R =..1 (HpP + HQQ - H) = ..1Hz + ..1H:t. 

Using ..1Hz = - Hp.I..1w, ..1Hp = - Hp(..1w + ..1w).I, and ..1HQ = - HQ(..1w - ..1w).I, these imply 

SBv..1CABcD = - Hp.I (Z..1w + Z..1W)SAC' (6.4la) 

(6.41b) fIlR = Hp.I (Z..1w + Z..1w). 

Substituting (6.40a) into (6.39a) provides 

1. Null background electrodynamic field (PAS = lPk A k B) 

P #0 is in general complex. Due to correspondence for 
the partial evaluated at Z = 0; H p = I, H Q = H PQ = 0 such 
that 4Hzz = Hpp + H(j(j, 4Hzt = Hpp - H(j(j. The ex
pressions for p and a become 

and 

There exist two alternatives, either characteristic type 

Ijp + a =.I + Hppr,vS;J1S;V = 0 or 
Q:p - a =.I - HQQr"S;f'S;V = 0, 

with r"S",S" ;f0. 

When Z = 0, in the exceptional case where 

H pp + H QQ = 0 with p = 0 = a, 

2843 J. Math. Phys., Vol. 22, No. 12, December 1981 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.42) 

I 
the two characteristics coincide and there exists a single 
characteristic equation 

.I = HQijr"S;I'S;v #0, (6.47) 

where the inequality is valid when the single surface is GCS. 
Equation (6.36) is automatically satisfied with arbitrary 
complex..1w;fO, and hence the solution for ..1PAB (6.34) con
tains two real arbitrary constants. Calculating the product 
4..1PAB..1p AB demonstrates that ..1P/1V is algebraically gener
al, although it is a simple bivector. If S;,,-Ak/1' then the 
GCS limits to a NCS, the characteristic equation remains 
fulfilled, and ·..1P/1V becomes a null bivector. 

In the general case where 

Hpp +HQQ;fO 

the characteristic surfaces are distinct, and one finds 

P: p = - a = - !(Hpp + HQij)rf'vS;J1S;V #0, 

Q: p = a = ~(Hpp + HQij)rf' vS;J1S;v #0 

(6.48) 

(6.49) 

when the surfaces are GCS. Correspondingly, condition 
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(6.36) reads, respectively, 

P: .lw +.llb = ° and Q:.lw -.lib = 0. (6.50) 

Thus,.lw is either purely real or imaginary, and .lPAB con
tains only one arbitrary real (multiplicative) constant. .lPfLl' 
is algebraically general in both cases. Notice, it may be that 
one surface is a NCS, as in the situation where 
H = H(P)-HiJQ = 0; then the above argument applies 
only to the one GCS. 

In a normalized spinor base {k A ,/ A} such that 
kAlA = 1, SAB may be expanded in the form 

SAB =XkAkB +yIAIB +zkAIB +ilAkB 

with x,y real and z complex, giving 

- ~ = !SABSAB = xy - zi#O 

and 

(6.51) 

(6.52) 

Respecting the constraints On the null background field dic
tated by correspondence and defining 

with 1JASA AkA = - (1JiY -1J2Z), (6.42) has the form 

~.lCABCD = - H (xy - Zi)2p2.lwkAkB kCk D 
• 2 

+ P .l lb(yk(A + zl(A )(yk B + zl B) 

(6.53) 

X(yk c + zlcl(ykD)zIDdl (6.54) 

Therefore, 

~.l CABCD 1JA1JB1JC1JD 
= - H.lwP 2(xy - Zi)21Ji + .lwP2( - Y1J2 + Z1JI)4] 

(6.55) 

which, when z#O, has the characteristic polynomial 

(1J - ~]4 + (~~ _ ~]2 .l~~2 = 0, (6.56) 
z z z Z .lwp 2 

whose distinct roots are 

_ y {.lWP
2 

}1/4{ X Y i }1/2 inrr/2 1Jn - - + --.- -- - - e , 
z .llbp 2 Z Z Z 

n = 0,1,2,3 

(6.57) 

resulting in a .lCABcD of the type 1:[1-1-1-1]. Where z = 0, 
(6.55) implies 1J2 = ° and there exists a quadruple degenerate 
root, yielding a conformal curvature jump of type N:[4]. 
These jumps occur for characteristics of both types. 

2. Algebraically general background field 
(PAB = - J(!iJ +- ift) k(AIB)) 

For this subclass where SAB has the form (6.51), the 
invariants are conveniently written as functions of the pa
rameters x, y, and z: 

- ~ = xy - zi and - -r'l'S;pS;v = IZ I(xy + zi), 
(6.58) 

where Z = - ~(!iJ + ift)2 is the complex invariant of the 
nonlinear electrodynamic field. Introducing these in (6.37) 
and changing variables one encounters 

(6.59) 

20'= -(!iJ -ift)(!iJ +i~-I{[Hp -H'wilr -i(Hg;fr + iHiJ)]xy + [Hp +Hg;y -i(HyJfr +iHiJ)]zi}, 

which give for (6.38) 

A = (H pXy + Hey, y zi)(H jlijxy - H pzi) - (HCy'.w + iH iJ fxyzi = 0. 

The discriminant of this quadratic form in (xy) and (zi) is 

d = [HyJ9H,fr'w - H/ - «(HCy',w + iHiJ)2r + 4H/ HCy'Cy'Hwfr >0. 

Defining 

:]: = 2~p {vd ± [H/ + (HI/fr + iHiJ)2 - HC/'I/Hw,w]) 

and supposing Hw,W #0, the determinant becomes 

H 
A = H Y P y (Hwfr xy - 1'zi)(Hfrwxy + f.1zi). 

.W.W 

(6.60) 

(6.61) 

(6.62) 

(6.63) 

We claim that l' is strictly positive when H p > 0, independent of the values of the other derivatives of H. To prove the assertion 
assume n;;O; then V d>O implies 

A: = Hp2 + (HC/',w + iHiJf - HC/'I/H,fr.w<"O. (6.64) 

The definition of d and 1'<,.0 necessitates V d<,. - A-d = A 2. Since Hp #0 this requires 

Hp2 + (Hey)W + iHiJ)2<"A<,.D-Hp = 0, (6.65) 
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which is a contradiction of the assumption H p > O. Therefore l' > 0 and the determinant can be factored such that 

A = (Hp/r)(H,W'/irxy - rzz)(1'xy + Hg;g;zi). (6.66) 

Although it was originally assumed that Hk'Jk 7'=0, the result remains valid when H$,%-o because, in the final result, this 
derivative has disappeared from the denominators. When the background field is algebraically general, the two equations for 
the characteristic surfaces, obtained from A = 0, are 

I: rxy + Hgyzi = 0 and II: Hwwxy - 1'zi = O. 

These equations are linearly dependent if and only if d = O. 
Using (6.58), these may be rewritten into the two alternative 
characteristic types, 

I: (1' - H C/.y,).I + (1/IZ I)(HY''/! + r)'TwS;jlS;V = 0, 

II:(H?? + r).I + (1/\Z I)(Hww' - r)r"vS;/LS;V = O. 
(6.68) 

As a consistency criteria, (6.68) for null background fields 
must reduce to (6.45) by the limiting transition 
Z = P + Q---+O (i.e., fiJ + ik' -0). Applying the correspon
dence condition in the limit, l' becomes unity and the coeffi
cients of the characteristic equations conform to the 
conclusion 

v 
if Hpp + HijQ'>O, I_P and II-Q, 

(6.69) 

if Hpp + HijQ'O, I_Q and II-P. 
The linearly dependent case, d = 0, occurs if and only if 

H'l.? +iHQ =O=Hy'y,Hr ,? +H~. (6.70) 

Under these conditions l' = H p , reducing both characteris
tic equations for the single surface to 

or 

H?? xy - Hpzi = ~Hpxy + HC/gzi = 0 (6.71) 

(H?? + Hp).I + (1/IZ IHH;y.;y - Hp)r"vS;"S;v = O. 
(6.72) 

From some straight forward algebraic manipulation of 
(6.70), (6.71), (6.59), and (6.61), one deduces 

d = O~p = 0 = (T. (6.73) 

Therefore, with d = 0, (6.36) holds indentically for any 
Liw7'=O, and LiPAn from (6.34) contains two arbitrary con
stants (the real and imaginary parts of Liw). Ifwe assume 

(6.67) 

H ?w > 0 and calculate 4LiP AOLiP AB, we again determine 
that this invariant cannot vanish and remain consistent with 
the characteristic equation (6.71). Consequently, LiP"v is an 
algebraically general (but simple) bivector. Notice that a 
positive sign for HwCfr is not unexpected for a reasonable 
structure function since correspondence requires it for suffi
ciently small invariants. 

Assume now d 7'= 0; then A factors into two linear forms 
which are not proportional, giving two distinct characteris
tic equations of the form (6.67) where the coefficients are all 
real. Suppose that the integral of at least one equation, say 
the second, is GCS(i.e., ri=Hww or xy - zi¥O). Because of 
(6.73) and (6.38), d 7'= D-Ip I = I(TI ¥O, and Liw has the form 

Liw = LiAe(i12larg( - (7/pJ, (6.74) 

withLiA real, arbitrary, and nonzero. From {6.34),.o::1PAn con
tains only one arbitrary parameter LiA fixing the phase. 
Analogously to the previous cases, for GCS with d 7'=0 the 
expression 4.o::1PAB .o::1p AB is non vanishing, so that LiP"" is an 
algebraically general (but simple) bivector. 

When the backjround field is algebraically general 
(PAn = - ~(fiJ + iYt}k(A1BI)' (6.42) can be rewritten in the 
form 

.o::1CABCD = 4Hp~-I:iLiw[X2Z2kAkBkckD + y2i2lAIBiciD 

+ 2(xy + zi)(xzk(A kBkclDJ + yil(A IB1ckDI) 
+ (X2y2 + 4xyzi + z2i2)k(AknleIDI)] 

+ 4HpIZLiwk(AkB1cID)' (6.75) 

If the characteristics satisfy the second of{6.67) or are of type 
II, the invariants are 

z= «(HwCfr/r)xy)I/VP, I= (Hww h-l)xy. 
(6.76) 

Defining H,f ;} h: = t, the conformal curvature jump is 

LiCABCD = 4Hp(t - 1)-I:i.o::1w(t(x2e2i<PkAkBkekD + y2e- 2i<PIAIB1cID) 

+ 2(1 + s)s 1/2(x3/2yl/2ei<Pk(A kBkelDI + Xl/2y3/2e - i<pI(A IB1ckDd 

+ (I + 4s + s2)xyk(AknleID1 ] + 4Hp(s - I)Z.o::1wxyk(AkBicIDJ' (6.77) 

DefiningkA:=ei<P/zxl/2kA.fA =e-i<P/yl/2IA_kAi~ = (xy)I/2, and7JA:= (xy)-1/2(kA +7J1:)-kA7JA =7J,fA7JA = -I, 
(6.77) can be transformed into an expression which has a characteristic polynomial of the form 

LiCABCD 7JA7JB7JC7JD = 4Hp(s - 1)-IZLiw[s(7J4 + 1) - 2(1 + s)s 1/2(7J3 + 7J) + (1 + 4s + S2)7J2] + 4Hp(s - I)ZLiw7J2 = 0, 
(6.78) 

which has the distinct roots 

7J ± ± = ~t -'/2{(1 + t) ~ irs - I) [Z.o::1wlZLiw + 2t(t - 1)-2] 112} 

± [At-'{(I +t)± i(t-I)[ZLiwIZLiw+2t(t-1)-2]1/2}2- 1]112. (6.79) 

Therefore, LiCABeD is of type 1:[1 - 1 - 1 - 1J. 
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Similarly, if the characteristics are of type I, 

x = ( - (H.,:/~: Ir)zi) 1/2ew
, y = ( - (H~/, ~/ 1'T)zi) t/2e - co, 

L = (1 + H'fl.'fl /r)zi, (6.80) 

where w is real. Defining 
kA =e,"l2z1lZkA, iA =e--,42il/zIA_kAiA = (zi)1/2,oneob
tains the same result for the jump except for an overall 
change of sign and an interchange of H :;;:;; with - H" 0/ ; 
and LlCABCD is also of type 1:[1-1-1-1]. 

For GCS, each jump expression for the conformal cur
vature [specifically (6.42) and its consequences (6.54) and 
(6.75)] becomes to conformally flat when the perturbation in 
the electrodynamic field vanishes. When this circumstance 
occurs or, that is, when Llw = 0, (6.42) requires 

{
LlCABCD = 0 if I ;;i:0 

ILlCABCD = ~. .' 
LlCABCD1S of type N: [4Jlf I = 0 

(6.81) 

Therefore, whenever there exists a non vanishing discontinu
ousjump in the perturbation of the conformal curvature 
with Llw = 0, the jump is oftypeN:[4] and the characteristic 
surfaces have degenerated to NCS. Certainly, for this sub
case the number of free parameters in the jump also returns 
to the values appropriate for the corresponding NCS. 

7. METRIC PROPERTIES OF GENERAL 
CHARACTERISTIC SURFACES 

For general characteristic surfaces (I ;;i:0), the condi
tions distinguishing the surfaces S (x) = 0 as timelike with 
spacelike gradient (I > 0) or spacelike with timelike gradient 
(I < 0) are now investigated. Under the first circumstance 
the characteristic cones are interpreted as being inside of the 
standard cone, and in the second as outside. Certain struc
ture function properties can permit the propagation of dis
continuities of the derivatives in excess of the "speed of 
light". For convenience, we introduce the following nota
tion: CS = characteristic surface, T = timelike, S = space
like, and N == lightlike or null. 

A. Analyzing GCS with null background electrodynamic 
field 

PAB = lPkAkB-TI'V = \P \Zkl'kv' kl'kl' = 0, we infer 
from (6.45) that 

P: I = - HpplP IZ(kpS;P)Z, 

Q: I = Hi,iQ\P \z(kI'S;I')2. 

Consequently, 
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CS of type P i, {; 

CS oftype Q" {; 

if Hpp <0 

Hpp =0 

Hpp>O 

if H(j(j >0 

H(jQ=O 

H(j(j<O. 
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(7.1) 

(7.2a) 

(7.2b) 

B. For GCS with an algebraically general background 
field where - I = xy - ti, types I and II of (6.67) are 
decomposed separately 

Introducing the definitions 

X: = HpQ2 - HppHi,iQ, 

Y: = (Hw fr - H p)(H Ci' ,7' + H p) - (H C/ w 
=4IZ \2X, 

+ iHQ)2 

(7.3) 

X ;;i:Oassuresthatneitherof(6.67)canreducetoxy - zi = 0, 
or null surfaces can occur only in the exceptional situation 
where simultaneously xy = 0 = zi. 

For characteristics of type I from (6.67), 

TXy+HC/,C/ozi=O<;:::?I = (H'flyIT+ l)zi, (7.4) 
where 

CS is Tq - Ho/" IT - 1 <0. 
CS with (I) - HC/ C/' > 0 is 

(a)TifT> -HC/C/, 

{ 
Y - Hp (H :;;:;; + H C/' C/ ) < 0 or and .. 
[Y - Hp(Hw:;; + H,/,/ );;;.0 and Y <0]. 

(b)Sif Y>O. 
(II) - H:, C/ <0 is T. 

CS is Sq - H"./ /r - 1> O<;:::? - H,/ 0,> 0 and 

T < - H,/, C/' with 

(I)Y> O<;:::?X> 0 for Z;;i:O and/or 

(7.5a) 

(7.5b) 

(II)Y-Hp(H:;;:;; +HC/,C/»O. (7.5c) 

CS is Nq - H C/o C/ = T. (7.5d) 

For characteristics of type II from (6.67), 

H:;;:;;xy - rziqI = - (rlHw *' -l)zi, (7.6) 

where 

CS is TqrlH'Jow - 1 <0. 

CS with (I) H w :;; < 0 is T. 

(II)H ww > 0 is (a)T qr < H wo*, qY 

(7.7a) 

+ Hp(Hww + H C/ ~/»O=>Y>O 

qX>O for Z ;;i:0. 

(b)SifY<O. (7.7b) 

CS isSqrlHw:;; - 1 >O<;:::?r>Hfr:;;, which follows if 
(7.7c) 

(I)Y + Hp(H'Jo w + HC/,,,,) <0 or 

(II)Y+Hp(Hww + HC/o,/)'>O andY<O. 

CS is Nqr = H W.w . 

In synthesis we deduce 

II and II are T and H:;;:;; > 0, - H C/' .C/' > ° I 
:=:;.(Hp(HC0C/ + Hy".w» Y>OJ, 

II is S and II is T, 

Hww > OJ:=:;.( - H,/ C/o > 0 
and 

Y>Hp\H""y + H'Jowl >0), 

II is T and II is S, 
- H C/ ~/' > 0) :=:;. ( H w:;; > 0 and - Y> 0 J, 

Alarc6n Gutierrez. Dudley. and PlebaflSki 

(7.7d) 

(7.8a) 

(7.8b) 

(7.8c) 
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! I and II are S j ~! H}y y > 0, - Hq; g; > 0 and 
-Hp(HrJ!'fJ + Nw',w) > Y>Oj. (7.8d) 

The conditions for the four alternatives (7.8) are mutually 
exclusive; therefore, they are not only necessary but also suf
ficient and the implication ~ may be replaced by ¢:? in each. 
Notice, finally, that discontinuities of the derivatives of 
small perturbations of the nonlinear electrodynamic field are 
propagated within the light cone if and only if (7.8) is satis
fied, which is equivalent to 

(Hp/2IZI)(Hpp -Hfij»HpQ2_HppHQQ>0. (7.9) 

In the case where d = 0 the surfaces coincide, and the 
resultant conditions may be read from (7.5) and (7.7) by re
calling that 7 = H p for this situation. There are of course 
other special cases, for example, a complete set where one 
characteristic surface is null and (6.15) necessitates that 
X = O. But a detailed investigation of these generally patho
logic cases would be excessive pedantry, since a sufficient 
number of relevant cases has already been displayed. 

Next we reconsider the eiconal equation Y"vSI'S" = 0 
for GCS, where nonlinear electrodyamic waves are trans
ported along bicharacteristic rays which are null with re
spect to the metric Y"v as opposed to It'''. Directly from the 
characteristic surface equations (6.45), for the case of a null 
electromagnetic field, the eiconal equation implies 

P: y!PII'V = ¢ - 2(1t'" + Hpp7-''') 

Q: y<2II''' = ¢ - 2(It'V - HQQ7-'''), 
(7.10) 

where ¢ is an arbitrary conformal factor. As a note, these 
metrics coincide if and only if the structure function is the 
Hamiltonian of Born-Infeld NLE. 2 Also from (6.68), for the 
case of an algebraically general electromagnetic field, the 
eiconal equation implies 

II: y"!!,V = ¢ -2 [It''' + _1_ (Hyy - 7)/(Hyy + 7)7-''']' 
IZI 

The sum of the coefficients in (7.11) contains the multiplica
tive factor Hpp - HQQ , which vanishes in the case ofanalyt
ic NLE; therefore, for this subcase 

I, II:yA iI''' 

= ¢ -2 [It'v =F (Hw,y - 7)/(Hyy + 7)7-'v]. (7.12) 

These metrics coincide when the discriminant d vanishes 
and the metric is (7.12) with 7 = Hp. 

The intent of writing the metrics in these explicit forms 
is to make apparent their common structure. Each appears 
as 

(7.13) 

where It''' is the Einsteinian metric whose geodesics are the 
trajectories of gra vi tons, F (P, Q ) is a function ofthe invariants 
of the electrodynamic field pl'vand 7-'v is the traceless ener
gy-momentum tensor constructed from pl'v. Due to the 
presence of the conformal factor ¢, a gauge can always be 
chosen such that only the conformally invariant part is rel
evant to the geodesics of Y"" or, specifically, to the trajector
ies of the nonlinear photons. Perhaps the more curious phys
ical situations occur when the metric Y"v is such that its 
corresponding null cone is exterior to that of gl'v as specified 
in the constraints (7.2), (7.5), and (7.7), because these cases 
permit for the extraordinary speeds of interaction. 

8. CONCLUSION 

I: y I II'V=¢-2[It'V+ + (Hyy +7)/(7-H!ily)7-'V). 

I I (7.11) 

The dynamic equations for a charged perfect fluid with 
nonlinear electrodynamic interaction in a gravitational 
space-time are deduced from the fundamental action. The 
characteristic surfaces for this physical system are found to 
have discontinuous first derivatives of small perturbations in 
the fields (1) which may be of general types and (2) which 

TABLE I. Types of discontinuous jumps. 

Characteristic 
equations 
..!'=O 

~:I + H ppT"vS",S;v = 0 
Q:,.!' - H&:i'T"vS;"S;v = 0 

I: rxY+HCIJZ~=O 
II: H~;f xy - rzi= 0 

Restrictions on H 

.:IH,=O 
(a)Hzz =Hzz =0 

(b)lHzzI = IHzzl'f O 
.:IH,'fO 

Hpp + HQii'fO 
Hpp +HQii =0 
P coincides with Q 

d 'f0 
d=O 

[2] 

[2] 
[2] 

[I-I] 

[I-I] 

(I-I] 

[I-I] 

I coincides with II [I-I] 
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Limit 

.:1/--->0 

.:IP'--->O 

.:IP'--->O 

.:IP '--->0 

.:IP --->0 

{.:IP'} 
.1P --->0 

.:Iw---.O 

.:Iw---.O 

.:Iw---.O 

.:Iw---.O 

No. of No. of 
parameters .:IC"v'" parameters 

in .:IP"v in .:IC"v" 
2--->0 [3-1]-[4] 4-2 

2--->0 [3-1]-[4] 4-2 
1--->0 [3-1]-[4] 3_2 
3_1 [2-1-1]--[2,2] 5--3 

D=O [3-1]--[4] 4-2 
3 __ 2 [2-!-I]-[3,I] 5---+4 

D - i.7t" = 0 [2,2]--[4] 3--2 

3--->0 [2-1-1]--[4] 5 __ 2 

1--->0 [1-1-1-1]--[-] 1--->0 

2--->0 [1-1-1-1]--[-] 2--->0 

1--->0 [1-1-1-1]--[-] 1--->0 

2--->0 [1-1-1-1]-+] 2--->0 
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could have spacelike propagation. These perhaps unexpect
ed properties are entirely dependent upon the specific nature 
of the structure function of the nonlinearity. Presumably, 
the introduction of other nonlinear interactions (e.g., fluid 
dynamic) could be anticipated to provide similar conse
quences. The demonstration of a physically relevant source 
for a nonlinear electrodynamic interaction providing causal 
spacelike signal propagation remains open. However, space
like quantum processes present possible candidate!). 
Permitting for curved gravitational space-times and for 
characteristic surfaces under various restrictions, the dis
continuous jumps generated are cataloged in Table 1. In each 
case, the procedure for limiting to a vanishing electrodynam
ic jump is also presented. 22 A speculative comment on the 
emergence of conformal curvature jumps of type I: [1-1-1-1] 
is perhaps appropriate. The nonvanishing trace of the ener
gy-momentum tensor [since 
- !R = A + 2(ZH z + ZH i - H)] implies th~ existence of 

some finite fundamental mass and, consequently, length 
which ought to force the breaking of the conformal group 
previously enjoyed by the electrodynamic equations in the 
linear case. Under these circumstances, jumps of general 
types are not implausible. 

Whenever the characteristic surfaces are of types P and 
v 
Q, the discontinuities in the derivatives of small perturba-
tions of the nonlinear electrodynamic field are propagated 
interior to the light cone if and only if H pp < 0 < H QQ' 

For characteristic surfaces of types I and II, the discon
tinuities are propagated within the light cone if and only if 

(Hp/2(Z ()(Hpp - HQQ) > HpQ2 - HppHQQ >0. 

Consequently, if the physical environment is sufficiently 
nonlinear, there exists a distinct chance that there are rel
evant structure functions permitting spacelike propagation 
of jumps of general types. 
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Partitioning lower bounds for Bubnov-Galerkin's eigenvalues a) 
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Lowdin's partitioning technique is extended for calculating energy lower bounds in Bubnov
Galerkin's eigenvalue problems. 

PACS numbers: 03.65.Ca 

1. INTRODUCTION 

The Alexander Weinstt'in treatment [or the method of 
intermediate operators (MIO) 1-3] of Rayleigh-Ritz eigenval
ue problems (RREp4-7), i.e., 

HII/I) =EII/I), (1 ) 

provided us with an approach for determining lower bounds 
on the eigenvalues E of such problems. The method was 
successfully tested, on the one hand, by many authors (see, 
e.g., Aronszajn,8-10 Gould, II Weinstein and Stenger, 12 
Weinberger, 13.14 and the references therein) in various fields 
of mathematical physics. It has been extended, on the other 
hand, to quantum mechanical problems through the original 
works of Bazley l5.16 and Bazley and FOX 17.18 using an ade
quate choice of the so-called reference-space (see also Ref. 
t2, Sec. 4). (Other choices of this space were suggested, later 
on, by Gayl9 and MilIer20

). However, several authors21
-

z5 

have introduced a fundamentally different procedure for ob
taining energy-lower bounds in the above mentioned prob
lems. Their principal idea arose from a well known approach 
in the theory of determinants and matrices26 called the par
tioning technique (PT). Both the MIO and the PT have been 
further simplified by Lowdin,27-32 in his extensive works on 
perturbation theory, using different characteristics of opera
tors in Hilbert space. Nevertheless, deep analysis of the two 
procedures has clarified some relations between their ener
gies (see, e.g., Wilson33). Moreover, L6wdin and others31

-
38 

pointed out that these procedures can be employed, in addi
tion to the Rayleigh-Ritz variational method, for calculat
ing energies of arbitrary small errors. Contrary to RREP, 
the Bubnov-Galerkin's eigenvalue problems (BGEP), i.e., 

H,II/I) = EH21 1/1) , (2) 

has awarded less interest in the literature of mathematical 
and theoretical physics. In fact, the importance of BGEP in 
the quantum theory has been stressed (especially in quantum 
chemistry) by many authors (see, e.g., Hall,39 Hall etal,4o.4' 

Robinson and Epstein,42 and Thulstrup et al. 43). A variation
al treatment of Eq. (2), however, was discussed explicitly, 
many years ago, by Bubnov and Galerkin (see Michlin44). 
Their approach leads to energies of similar qualities as those 
obtained by the Rayleigh-Ritz method, i.e., to upper bounds 
on the exact eigenvalues E. Moreover, quadratic variational 
methods, analogous to those of James and Coolidge45 and 
Preuss46 as well as Frost's method,47 were demonstrated 
very recently by Abdel-Raours for dealing with the same 

alWork supported by the Deutsche Forschungsgemeinschaft. 

problems. 
On the other hand, energy-lower bounds for BGEP 

have been represented by Aronszajn49 and Bazely 15 (see also 
Weinberger, 14 Chap. 4) within the framework of the method 
of intermediate operators. These bounds, however, are asso
ciated with difficulties in constructing and treating the "base 
problem," the intermediate problems, as well as the refer
ence-space. The present work is devoted to the formulation 
of energy-lower bounds for BGEP using Lowdin's partion
ing technique. We start by employing matrix representation 
and proceed steadily towards an abstract formalism for the 
lower bounds. 

2. PARTITIONING OF MATRICES 

In the variational treatment ofBGEP [Eq. (2)], one con
siders that the vector It/') is the superposition of a complete 
set of Hilbert-space vectors { IXi) J, i.e., 

11/1) = IC i Ix'>· (3) 
i 

Substitution from Eq. (3) into Eq. (2) leads, after varying the 
parameters, to the conventional secular equations 

I{ (Xi IH,lx) - E (Xi 1H z Ix) }cj = 0, i = 1,2, ... (4) 
j 

characteristic of the variational theory. In Eqs. (4), it is as
sumed that HI and H2 are Hermitian operators. This system 
of equations can be abbreviated into the form 

Ac =EBc, (5) 

where the matrices A and B possess the following elements, 
respectively: 

Aij = (xiIHllx), 

Bij = <XiIH2IXj)' 
and the column vector C is defined by 

(6a) 

(6b) 

(6c) 

We now assume that the set { IXi) J is partitioned into 
two parts {a J and {b J (where a and b represent also the 
number of elements in each part). Therefore Eq. (5) can be 
written in the form 

(A 00 

\Aba (7) 
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Thus we have the relations 

Aaaca + AabCb = E (Baaca + BabCb ), 

AbaCa + AbbCb = E (BbaCa + BbbCb). 

The last equation gives the following value of cb : 

(8a) 

(Sb) 

Cb = (EBbb -Abb)-I(Aba -EBba)ca' (9) 

Substitution from Eq. (9) into Eq. (8a) leaves us with 

{EBaa - Auu - (Auh - EBabHEBhb - Abh)-I 

X(A ba -EBba)}Ca =0. (10) 

Consequently, we get, for all Ca #0, the following implicit 
relation in E, namely: 

E=Ba-;,IAaa +Ba-;,I(Aab -EBab)(EBbb -Abb)-I 

X(Aba -EBba)' (11) 

(Note that the square matricesAaa , A bb , Baa' and Bbb 
are positive definite if and only if HI and H2 are positive 
definite). Let us consider that the subset! a) involves one 
vector Ix I> and that CI #0. In this case Eq. (11) is reduced to 
the relation 

E =f(E) = B i11A11 + B ill(A lb - EBlb ) 

X (EBbb - Abb )-I(Ab I - EBb I), (12) 

which can be interpreted as E is equal to B ilIA II plus a 
perturbation term. [Notice the resemblance between Eqs. 
(12) and (15) in Ref. 24]. Choosing the vectors IXi> to be H 2-

orthonormal, i.e., 

(xiIH2Ix)=8ij for all i,j 

we get 

(13) 

Blb=Bbl=O. (14) 

[Note that assumption (13) is always possible according 
to a corollary in Ref. 14, p. 40]. From Eqs. (12) and (14) we 
obtain the important relation 

which has the following derivative with respect to E: 

af(E) f' E) --IA E -I -- = ( = -B II Ib( Bbb -Abb) 
JE 

XBbb(EBbb -Abh)-IAbl . (16) 

However, from Eqs. (9) and (14), we get, at a = 1 and c l #0, 
the values of Cb and cb+ by 

Cb = (EBbb -Abb)-IAbICI 

and 

Cb+ =CtAlb(EBbb -Abb)-I. 

Therefore we have 

(17a) 

(17b) 

( IS) 

which is a positive quantity. Substitution from Eq. (IS) into 
Eq. (16) leads to the valuable relation 

(19) 

which states thatf'(E) has a definite sign and the curve 
fiE ), E possesses, everywhere, negative inclination. From 
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Eq. (15) we may define a function F (E) such that 

F(E) =E-f(E) =0 

is valid. The derivative of this function satisfies the 
inequality 

F'(E) = 1 - I'(E»O. 

(20) 

(21) 

This emphasizes that Eqs. (2) and (20) have the same 
number of roots. The above characteristics off' (E), F (E), 
and F' (E) specify a rather favorable case for the calculus of 
iteration which may be treated using a method due to New
ton and Raphson (see, e. g., Ref. 50, Secs. 71-S0 and Ref. 51, 
Chap. 25). The iteration process converges if If' (E)I < 1, i.e., 
if the inequality cb+ Cb < ci is fulfilled. This happens if the 
vector IXI) has a large contribution with It/!> given by Eq. (3). 
Other properties of the energies obtained by Newton-Raph
son's procedure are comprehensively discussed in the above 
mentioned works of LOwdin. 

3. REFORMULATIONS USING PROJECTION MATRICES 

Let us define two matrices Q and P by 

Q= (~ 0) P= (0 
° ' ° 

0) 
1 . (22) 

We note that Q and P are self-adjoint and satisfy the relations 

Q+P= 1, QP=PQ=O. (23) 

Multiplication of Q and P with A (or B) and C of Eq. (7) 
provide us with the following matrices: 

and 

QC = (C;). Pc = C~). 

QAQ = (A~a ~). 

QAP= (~ 

PAQ= (AO 
ba 

PAP = (0° 0) Ahh . 

Also we get from (24e) the matrix 

P(EB -A )P= (~ (EBbb U_AbbJ 

(24a) 

(24b) 

(24c) 

(24d) 

(24e) 

(25) 

However, from Eqs. (11) and (12) we notice that the matrix 

Tbh=(~ (EBbb~Abb)-I) (26) 

should appear in any generalized formulation of the tech
nique presented in Sec. 2. For this reason we consider the 
equality 

(
aU

Oaa 
0) -I (a-I Uaa 

(EBbb -Abh) = 0 

which is true for all a #0 and Uaa is a unit matrix of order 
a X a. Multiplication of the first matrix of Eq. (22) by a en-
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abIes us to write the matrix at the left-hand side of Eq. (27), 
after using Eq. (25), as [a.Q + P (EB - A )P] -I. Further
more, from Eqs. (25), (26), and (27) we get the following form 
of Tbb (the subscripts bb are eliminated): 

T= P [a·Q + P(EB -A)P ]-Ip. (28) 

We remark here also that aT faa = 0, i.e., Tis indepen
dent of a.27 Equations (23) and (28) show that T, Q, and P 
satisfy the relation 

QT= TQ=O. (29a) 

Additionally,givingthematrixD = a.Q + P(EB -A )Pand 
usingthefactthatDD -I = I,PDD -Ip= P,andEq.(28), we 
obtain 

P(EB-A)T=P. (29b) 

For the further development of the technique we define 
a matrix fl by 

fl=Q+ T(A -EB)Q. (30) 

Multiplying this matrix from the left side by P (A - EB) and 
using Eq. (29b), we get 

PIA -EB)fl =P(A -EB)Q+P(A -EB)T(A -EB)Q 

=P(A -EB)Q-P(A -EB)Q=O, 

i.e., 

PIA -EB)fl=O. (31) 

However, multiplication of fl by (A - EB) yields 

(A -EB)fl = (P+ Q)(A -EB)fl = Q(A -EB)fl 
= Q(A - EB + (A - EB)T(A - EB))Q. (32) 

Equation (32) indicates that the matrix fl is an eigenmatrix of 
A, i.e., it satisfies the eigenvalue problem 

Afl=EBfl, 

if and only if 

Q (A - EB + (A - EB )T (A - EB ))Q = 0 

is fulfilled. This leads to the relation 

EQBQ = Q (A + (A - EB )T (A - EB ))Q, 

(33) 

(34a) 

(34b) 

which is exactly Eq. (11) in terms of the projection matrices 
Q and P. 

The orthogonality conditions (14), however, can be ex
pressed, using Eqs. (24c) and (24d), by 

QBP = PBQ = O. (35) 

Therefore from Eqs. (28) and (35) we conclude that 

TBQ = QBT = 0 (36) 

holds and, accordingly, the matrix fl shrinks to the form 

fl = Q + TAQ. (37) 

Consequently, the equation corresponding to (12), with 
QBQ = 1, is given by 

E=/(E)=Q(A+ATA)Q, (38) 

where the function/IE ) possesses the properties discussed in 
Sec. 2. Equation (38) also demands that the matrix fl pre
sented in Eq. (37) is an eigenmatrix of A. In connection with 
Eqs. (31) and (33), we remark thatfl given by Eq. (30) [orEq. 
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(37)] is a non-self-adjoint matrix satisfying the relations 

Qfl =Q, (39a) 

flQ = fl, (39b) 

and 

Pfl=fl-Q. (39c) 

4. GENERALIZED FORMALISM 

In order to represent Eqs. (11), (12), (34b), and (38) in 
terms of operators in Hilbert space, we proceed by consider
ing a reference-space Is >, where <s Is > = 1 holds. The asso
ciated projection operator Q is given by 

Q= Is><s I 
and its orthogonal complement P has the form 

P= 1- Q. 

These operators also satisfy the relations 

Q+ =Q, Q2=Q, 

p+ =P, p 2=p, 

and 

PQ= QP=O. 

Analogous to Eq. (28), we define the "resolvent" 
operator 

T= P [a·Q + P(EH2 - HI)P ]-Ip, 

(40) 

(41) 

(42a) 

(42b) 

(42c) 

(43) 

where HI and H2 are positive definite and Hermitian opera
tors satisfying Eq. (2). The parameter a indicates a nonzero 
number and the relation aTfaa = 0 specifies that Tis inde
pendent of a. Consequently, it is easy to show that the 
relations 

(44a) 

and 

QT= TQ=O (44b) 

are true. Moreover, we consider an operator fl, such that 

(45) 

Operating on Eq. (45) from the left side by P (HI - EH2) we 
get, with the aid ofEq. (4Ia), the relation 

P(H1 - EHz)fl = O. (46) 

In the general case, however, we obtain 

(HI - EH2)fl = (Q + P )(HI - EH2){} 

= Q(HI - EH2)(I + T(HI - EH2))Q 

= Q (HI - EH2 + (HI - EH2) 

X T(HI - EH2))Q. (47) 

Therefore fl is an eigenoperator of HI' i.e., 

H lfl=EH2{}, (48) 

if and only if the equation 

Q(HI - EH2 + (HI - EH2)T(HI - EH2))Q = 0 (49) 

is fulfilled. This provides us with the formula 

EQH2Q = Q (HI + (HI - EH2)T(HI - EHz))Q, (50) 

which is similar to Eqs. (11) and (34a) [notice that the opera-
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tor n also satisfies Eqs. (39a)-(39c)]. 
Let us now assume that the reference-space It ) is one 

dimensional and relates to another vector ItP ) by 

QltP)=IO, 

i.e., 

(tP IQ ItP ) = 1. 

Moreover, let It/!) be a vector defined by 

It/!) = n ItP) = (Q + T(HI - EH2 )Q )ltP) 

= It) + T(HI - EH2 ) It ). 

Operating with HI and using Eq. (48), we get 

Hilt/!) =Hln ItP) = EH2 I t/!) , 

(51) 

(52) 

(53) 

(54) 

which is BGEP presented in Eq. (2). In other words the de
mand that Eq. (SO) is true leads to a solution for BGEP. This 
solution is obtained by applying n on the vector ItP ) of Eq. 
(51). Additionally, an implicit relation for the energy E can 
be derived from (50) by multiplying from the right and left 
side by the vectors ItP) and (tP I, respectively. This leaves us 
with 

E = (t IHI + (HI - EH2)T(HI - EH2) It > 
(tlH2lt> 

(55) 

[note that Eq. (55) corresponds to Eq. (12) in the original 
formalism]. 

The orthogonality conditions (14) and (35) can be ex
tended to the present case by requiring that 

(56) 

holds. This is equivalent to choosing the reference-space It> 
to be It> = H iI2 It), where H2 is positive definite, i.e., H il2 
exists. Therefore, the normalization of this space is ex
pressed by 

(57) 

Substitution from Eq. (56) into Eq. (50) leads, with the help of 
Eq. (43), to the relation 

EQH2Q = Q (HI + HI THI)Q, (58) 

where Q, P, and Tare given by Eqs. (40), (41), and (43) after 
using the new form of It). Also on operating (58) with the 
vector ItP ) and its complex conjugate we get, analogous to 
Eq. (55), the equality 

E=f(E) = (tiHI +HITHIIO . (59) 
(t1H210 

Also from Eqs. (43), (56), and (45), we obtain the reduced 
form of the operator n by 

(60) 

which satisfies Eq. (48) and operates on ItP ) projecting out 
the exact eigenvector It/!) ofBGEP. [Notice the similarity 
between Eqs. (59) and (60) and (37) and (30), respectively, 
presented in Ref. 27]. Having Eq. (57), it is easy to show that 
f(E) has the following derivative: 

r(E) = - (tIHIT
2H l lt) 

= - (THltITHlt) <0. (61) 

Also defining a functional F (E) by 

F(E) = E - f(E) = 0, (62a) 
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we conclude that 

r(E) = 1 - /,(E»O (62b) 

holds. Thus the Newton-Raphson iteration procedure can 
be used for treating BGEP in an equivalent manner as the 
original approach of Lowdin and one can show that each 
successive value of E confines the exact eigenvalue.30 

~ENERG~LOWERBOUNDSFORBGEP 

From the representations of the previous section we re
alize that the whole technique holds further, when the opera
tor T [Eq. (43)] is replaced by a generalized one, 

T=P(a.Q+P(EH2-HI)P)-lp, (63) 

where the parameter E is an arbitrary (real or complex) vari
able. Moreover T satisfies the following relations: 

P(EH2 -HdT=P, 

QT= TQ=O. 

(64a) 

(64b) 

Putting P = I - Q into Eq. (64a) and using Eq. (56), we get 

(65) 

[Equation (65) indicates that the reference-space (57) is em
ployed]. We now assume that a vector ItP ) exists, such that 

(66) 

is valid. Applying the operator (EH2 - HI) on ItP ) and using 
Eq. (40), we obtain 

(EH2 - HIM) = (HI - (tlHllt + tP »)10· (67) 

Therefore, if It + tP) is replaced by a vector It/!.), Eq. (67) 
leads to the simple form 

(EH2-HI)It/!.) =(EH2- (tiHI +HITHIIO)IO· 
(68) 

This equation states that E and 1 t/!.) are the exact eigenvalue 
and eigenvector of BGEP, if and only if the functional 

E =f(E)= <tIHI+HITHIIO (69) 
I (t1H210 

is equivalent to E. Thus the solution of BGEP is reduced to 
the calculation of the roots of the relation 

F(E)=E-EI =0. (70) 

The derivatives of the functionalsf(E) and F (E) have the 
following properties: 

I' (E) = - <tIHIT
2H II0 <0 (71) 

and 

r(E) = l-/'(E»O. (72) 

The first inequality can be used, in addition to the Lagrange 
mean-value theorem,31.37 to show that if..:11 = E - E and 
..:12 = E - EI are the errors in E and EI, respectively, with 
respect to the exact eigenvalue E, then.:1 1 and.:1 2 are always 
of different signs. This fact is known as the "bracketing the
ory" and leads to the important result that in case..:1 1 is se
lected to be negative (e.g., by choosing E from Bubnov-Ga
lerkin's variational method), then the corresponding..:12 
must be positive and E I is a lower bound to the exact energy 
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E. Thus we get the inequality 

1 
E>E, = <tIH, +H,P PH,lt), 

a·Q + P(€upHz - H,)p 
(73) 

where € up is an upper bound to E calculated from the relation 

(1/;/n)IH,I1/;,ln) .. 
E <€ = = mmtmum. (74) 

up (1/;,1n)IH
2

11/;, In) 

The vector 1 1/;, In) ofEq. (74) is the superposition of the first n 
Hilbert-space vectors defined in Eq. (3). Finally, we notice 
that the lower bounds determined by (73) depend on the 
goodness of Eup with respect to the exact value E. It is also 
clear that these lower bounds are applicable only for the first 
(lowest) eigenvalue of Eq. (2). Calculations of other bounds 
demand further arrangements, especially for the reference
space It), of the technique. 

6. DISCUSSION 

The partitioning technique developed in Sees. 2-5 is 
actually a generalization of the original formulations of 
Lowdin. 27

-
32 It is obvious that these formulations corre

spond to the special case H 2 is a unitary operator. In fact the 
difficulty of treating BGEP has been removed in the above 
technique by introducing an adequate reference-space. This 
allows us to extend all properties of Low din's approach, in a 
straightforward manner, to the present formalism. Thus we 
can derive, for example, lower bounds for higher eigenvalues 
by proceeding similar to Lowdin32 and Wilson37 (see a forth
coming paper). 

The advantage of the present technique, however, is 
that it can be applied to all cases where Schrodinger's equa
tion (I) is converted into a BGEP with H, and Hz Hermitian 
(not necessarily differential) operators. 39

-43 In fact, it is also 
essential for the above technique that HI and H2 are definite 
andH2 is positive. However, if H, is positive and H2 is known 
to be negative, then one can replace Eq. (2) by the conjugate 
(or reciprocal) eigenvalue problem52

•
53 

H 2 11/;) =11,9"1/;), 

where,u = liE, and proceed similarly to the above tech
nique. In this case, the final form of the lower bounds will be 
given by (73) after changing HI by Hz and vice versa. 
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~ e exhibit a technique to construct formally the operators (JJ *) - 1 and (J llJ *) - 1 in the Chandler
Gibson theory. Our construction is based on integral equations whose kernels can be made 
contractive with an appropriate choice of parameters. We discuss uniqueness and give 
representations of the solutions as uniformly convergent series. 

PACS numbers: 03.6S.Ge 

I. INTRODUCTION 

The Chandler-Gibson equations
,
,2 are unique among 

N-body reaction theories in many respects. Among the out
standing features are (i) the natural approximations have a 
very clean geometric content, (ii) the input involves only sub
system bound state wave functions and potentials, (iii) the 
equations only couple transition operators projected on 
channel subspaces, and (iv) the poles of the resolvent kernel 
of the integral equations are in 1-1 correspondence with the 
N-body binding energies. The structure of the equations and 
consequently the above properties arise naturally out of the 
two-Hilbert space setting l

-
J in which the time-dependent 

problem is cast. The second Hilbert space is the direct sum of 
the asymptotic channel spaces which is the space on which 
the scattering operator is expected to be unitary. At one lev
el, this framework is just a notational device to make the 
multichannel multiparticle problem look something like a 
single-channel two-body problem. On the other hand, this 
framework respects the geometry of the problem to such an 
extent that the above features arise primarily as conse
quences of this choice offramework. 

The two-Hilbert space approach of Chandler and Gib
son has two other features that distinguish them from other 
N-body reaction theories. The first is that the kernel of the 
integral equations never becomes compact after any number 
of iterations, even though the solution of the equations is 
unique. 1.2 The other feature is the appearance of the operator 
(JJ *}-I which has no analog in other N-body theories. Both 
of these properties require looking at the computational as
pects of the scattering problem in a different light. Chandler 
and Gibson have shown that the theory of A-proper opera
tors4 can be applied, with a slight modification, to deal with 
the solution of the dynamical equations. This theory leads to 
a constructive method of solution of the Chandler-Gibson 
equations in the same sense that compact-kernel methods do 
for standard theories. 

The operator (JJ *) - 1 requires an additional calculation 
to construct the input to the dynamical equations. Chandler 
and Gibson have introduced an auxiliary operator M that 
can be constructed without the use of (JJ *)-1 and from 
which the exact transition operators can be obtained. The M 
equations are not as formally appealing as the transition op
erator equations in that they do not have unique solutions. In 

"'Work supported by the U. S. Department of Energy. 

addition, the construction of the transition operators in 
terms of the M operator require the extraction of singular 
quantities. These considerations, along with present limited 
calculational experience,5 indicates that approaching the 
problem directly in terms of the transition operator equa
tions should not be hastily discarded. One practical reason 
for this is that a large fraction of the work required to con
struct (JJ *}-I involves computing functions. These same 
functions have to be computed in order to construct the ker
nel of theM equations as well. Thus, this work is not avoided 
in either case, and the additional complications involved in 
computing (JJ *) -I may be easier to deal with than difficul
ties that one is likely to encounter with the M-equation 
approach. 

The purpose of this paper is to introduce techniques for 
constructing (JJ *) - 1 in both the exact and approximate 
Chandler-Gibson equations. The method we consider pro
vides an integral equation with a contractive kernel for the 
operators in question. This reduces the construction of 
(JJ *) -I to uniformly convergent perturbation theory. 

II. DEFINITIONS AND PROPERTIES OF (JJ") - 1 

We being by assuming that we have an N-particle sys
tem whose infinitesimal time evolution is governed by a Ha
miltonian, H. We denote partitions of this N-particle system 
into disjoint subsystems or clusters by lower case Latin let
ters a, b, c, .... We use the notation na for the number of 
clusters of the partition a. To each partition a with na > 1, we 
associate the asymptotic configuration where the individual 
clusters of a are separated beyond the range of mutual inter
action. In this region, the dynamics is well described by the 
partition Hamiltonian, H a , which is obtained from H by 
turning off all interactions between particles in different 
clusters of a. Corresponding to each Ha is an invariant sub
space, .d a' which is the manifold of the N-particle Hilbert 
space spanned by the generalized eigenstates of Ha for which 
all particles in the same cluster of a are bound. For some 
configurations.d a may be empty. For the unique N-cluster 
partition 0, JI 0 is the entire N-body Hilbert space $'. For 
each a with na > 1, we let Pa denote the orthogonal projector 
on the subspace JI a' For a = 0, we have Po = 1. 

We introduce the following operators: 

Ga(z)=(z - HaJ- I
, 

G (zl==(z - H)- ~ 

(2.1) 

(2.2) 

(2.3) 
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a 

Uab(Z)==V b + VaG(Z)Vb, 

Ph(Z) = Pa Uab(Z)Pb' 

(2.4) 

(2.5) 

(2.6) 
where in (2.4) and all that follows, we use the notation l:' a to 
denotel: I aln.# II . The Chandler-Gibson equations are equa
tions for Tab(z) and have the form 

Tab(z) = Pa VbPb + I' Pa vax -IPcGc(z)TCb(Z). (2.7) 

The natural approximations to this system of equations in
volve the replacements Pa-+fla' X-+X{[ = l:'afla' where 
the fl a's are assumed to satisfy 

(i) flu = fl~ = fl:, (2.8) 

(ii) [fla' Ha ] _ = 0, (2.9) 

(iii) Xfl = I' fla has a bounded inverse on the closure 
a 

of its range. (2.10) 

Most flo's of interest also satisfy flaPa = Pafla = flo, 
i.e., they project on a subspace of the corresponding JI a . 

Also, in most approximations of interest, many of the Ila's 
are zero. Our object is to provide equations for constructing 
X -I and X if I. 

III. TECHNICAL RESULTS 

The equations that we ultimately construct result from 
certain assumptions on the operators under consideration. 
Although these assumptions have been verified elsewhere, I 
we include proofs here for completeness. The first result is 
due to Chandler and Gibson. 1.2 

Theorem 3.1: X has a bounded inverse, X - I, that satis
fies IIX -III;;;. 1. 

Proof Since Po = 1 we may express X in the form 

X= 1 + I' Po· (3.1) 
a#O 

X is clearly bounded, self-adjoint, and satisfies 

(t/J, Xt/J) = (t/J, t/J) + II (Pa t/J, Pa t/J), 
0#0 

= 11t/J1I2 + I' IIPa t/J112;;;.O. (3.2) 
a#O 

Equation (3.2) implies that the numerical range6 of X is con
tained in the interval [1, B N - 1], where B N is the Nth Bell 
number,? which is the number of partitions of N particles. 
Since the spectrum is a subset of the numerical range6 we 
have a(X) ~ [ 1, B N - I], which immediately implies that 
X - I exists and satisfies IIX - III;;;. 1.8 

The second major result that we need concerns the 
specification of the ranges of sums of orthogonal projectors. 

Theorem 3.2: Let !Ila I satisfy (2.8) and defineXrr by 

(3.3) 

Then 

(3.4) 
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and if (2.10) is also satisfied 

(ii) ~(X1T) = ~(X1T), (3.5) 

where ~(A ) and ~(A ) are the range and closure of the range 
of A, respectively. 

Proof Since X". and fla are bounded self-adjoint opera
tors we can express the Hilbert space JY' as a direct sum 

JY'=A/"(X".)$ ~(X".) 

= JV"(fla) $ ~(fla)' 

(3.6) 

(3.7) 

where .~(A ) is the null space of A. Since X1)" and fla al~o 
satisfy X 1T;;;'0 and fla ;;;.0 the null spaces can be charactenzed 
by 

But 

t/JE.~(X1T) iff (t/J, X"t/J) = 0, 

Ifc/Y'(fla) iff (t/J, fla t/J) = O. 

a 

which requires that ~Y'(X".) implies t/JE.1I(fla) or 

(3.8) 

(3.9) 

(3.10) 

./V(X".)~A~(fla)' (3.11) 

If we combine this result with the direct-sum decomposi
tions above we obtain (i). 

To show (ii), we let! Ifn JE~(X".) with t/Jn-+t/J and prove 

¢e~(X".). Since X". has a bounded inverse on ~(Xrr)' we 

can define the sequence !¢n JE ~(X1T) by ¢n = X; It/Jn 
which represents the unique element in the inverse image of 

t/Jn under X1T in ~(X1T)' Now clearly 

II¢m -¢nll..;IIX ;III:!f(x
w
i IIlfm -I/Inll, (3.12) 

where 

IIX;; 111.!f(x I = sup IIX".- It/JII· 
, II¢II = I 

(3.13) 

1/'2M(Xi 

Since! Ifn I is convergent and IIX1T -III :'fIX,i is bounded, it 
follows that! ¢n I is Cauchy and converges to a unique ¢EJY'. 
Thus, sinceX1T is bounded 

X1T¢ = lim X".¢n = lim Ifn = t/J, 
n.-..oo n- .... oc 

which proves ¢e.91(X,,) and Eq. (3.4). 

IV. INTEGRAL EQUATIONS 

In this section, we write down integral equations for 
X - I and X 1T - I and discuss some of their properties. We be
gin by considering X - I. The most important point is that the 
spectrum of X is real, bounded above ° and below 00, as 
discussed in the proof of Theorem 3.1. This means that if we 
multiply X by a sufficiently small parameter a > 0 we can 
rescale the spectrum to fall between ° and 1. With such a 
choice, one expects 

11(1 - aX)/! < 1. (4.1) 

The reason that this is of value is that through simple alge
braic relations, we can obtain the equation 

X-1=a+(I-aX)X-l. (4.2) 
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This equation has a unique solution for any a:;i;O by Theo
rem (3.1). Ifwe find an a such that (4.1) is satisfied, then (4.2) 
has a contractive kernel and the sum 

(4.3) 

converges to X -I in the uniform operator topology. 
The required result is 
Theorem 4.1: IfO<a <2 infill/lil = \ (1/1, XI/I)!IIXII2, then 

(4.1) holds. 
Proof By definition (4.1) is equivalent to 

sup ! 1 - 2a(I/I, XI/I) + a ZIiXI/I1I2) < 1, 
11'1'11= 1 

where we have used X = X '" to obtain (3.3). This will clearly 
be satisfied provided 

0<a<2 inf (I/I,XI/I)! sup II XI/I II 2 

11"'11=1 11"'11=\ 

= 2 inf (1/1, XI/I)/IIX 112, 
11"'11= 1 

which is the desired condition. 

(4.4) 

It is easy to obtain weaker bounds that are somewhat 
more useful in practice. 

Corollary 4. 1: If 0 <a < 2IIIX 112<2I(BN - 1)2 then (4. 1) 
holds. This follows immediately from (3.2) and (4.4). 

Of greater interest is the construction of X ; 1. This is 
trickier since X tr- \ exists uniquely only when it is considered 

as an operator on Yi'(Xtr ). What is actually needed in the 
dynamic equations is X - \,11 a' which makes sense by Theo
rem 3.2. 

The equation corresponding to (4.2) for X tr -IlIa is 

(X; IlIa) = alIa + (1 - aX".)X; IlIa' 

which is easily obtained given (3.3) and 

X".X; I = II ,,y(Xffl ' 

where II ::4(X~1 is the orthogonal projector on Yi'(X rr) . 
Given that X". has a bounded inverse on Yi'(X".), 

(4.5) 

(4.6) 

IIX".II < 00, X". :;;;.0, and Xrr = X:, one expects that one can 
find a sufficiently small a such that 

1\(1 - aX".)I! ,:fIX I = sup \1(1 - aX".)1/I1i < 1. (4.7) 
~ 11"'11 = \ 

¢'E.,y(X~1 

Even though (4.5) does not have a unique solution on the N
body Hilbert space, if (4.7) holds, then the series 

f (1 - axrr)maiia (4.8) 
m=l 

converges to X ; lila in the uniform operator topology since 

(1 - aX".): Yi'(X".)-+ Yi'(Xtr ) and Yi'(X".) d Yi'(Ila) by 
Theorem 3.2. The same manipulations leading to (4.1) can be 
used to obtain 

O<a/2< inf (I/I,X".I/I)/ sup IIX".1/I1I2 (4.9) 
II¢'II = 1 1111>11 = 1 
¢'E:W(X ~I ¢'E:W(X ~J 

as a sufficient condition for (4.7). 
To obtain more useful conditions implying (4.7), we 

prove the following lower bound on the numerator of (4.9). 
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Lemma 4.1: 

inf (1/1, X tr 1/I):;;;.lIIIX ; 111:f(x ) 
11'1'11 = 1 ff 

(4.10) 

t/,E.,y(X~1 

Proof Since X". is a bounded, non-negative, self-adjoint 
operator on the N-body Hilbert space, it uniquely induces a 
bounded, non-negative, self-adjoint operator on the closed 
subspace Yi'(Xrr) considered as a Hilbert space with the in
duced topology. By abuse of notation, we denote this opera
tor by X". Since X". has a bounded inverse, 0 is in the resol
vent set of X 1T' From the spectral theorem, to each I/IEY? (X 1T ) 

there is a positive measure dJ.l",( A) satisfying 

(4.11) 

and 

(4.12) 

Since X 1T is non-negative, the resolvent set of X 1T is open and 
contains 0, it follows that 

AO = inf A > O. (4.13) 
AEa\X~1 

As a consequence of the stated conditions on the spectrum 
and the functional calculus8 

lIAo = sup IliA I = IIX". -111· 
AEa\X~1 

By (4.11) and (4.12) and the positivity of dJ.l~ (A ), we obtain 

(cp, X 1T CP ):;;;'Ao(CP, cP ) = !!X; ~!I:WIX~) (cp, cP ) 

for all CPEYi'(X".). The bound (4.10) follows by taking infi
mums, proving the theorem 

Lemma (4.1) allows us to obtain a sufficient bound of a. 
Corollary 4.2: If 

221 
O<a< _\ 2< 2 -I ' 

IIX 1T II !,yIX~) IIX1T 11 (BN - 1) IIX". II :;fIX
ff

) 

(4.14) 

then (4.7) holds. 

V. CONCLUSION 

In this paper, we have considered the problem of con
structing X - I and X ; 1 for use in the Chandler-Gibson 
equations. The construction discussed exhibits X-I as the 
unique solution of the integral equation (4.2). The equation 
depends on a fixed parameter a, although the solution and 
uniqueness considerations are independent of the choice of 
a:;i;O. We have exhibited a nonempty set of values of this 
parameter for which the kernel becomes contractive. For 
these choices of the parameter, the solution can be represent
ed as a uniformly convergent series (4.3). 

For the approximate Chandler-Gibson equations, one 
requires the operator X ; 1 which exists uniquely only on 
----- ----- -----
Yi'(X1T ). We have shown Yi'(X1T ) = Yi'(X".) ~ i?li(Ila ) so 
X; IlIa exists on the full Hilbert space. This is the unique 
solution of (4.5) on Yi'(X1T ). This equation also depends on a 
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parameter such that for sufficiently small values of the pa
rameter, this solution can be represented by a uniformly con
vergent series (4.8). Again, sufficient bounds on this param
eter are computed for convergence of this series. 
Unfortunately, even the weakest bounds require an a priori 
knowledge of a lower bound for IIX 1/"- 11I#(Xffl . 

We have made no attempt to consider the conditions on 
a set of projectors for which X ;; 1 is bounded on the closure' 
of the range X1/"' This condition is necessary for the unique
ness and convergence conditions quoted in the last section. 
This is also among the restrictions imposed by Chandler and 
Gibson on approximation schemes. 

The equations introduced here do not have compact 
kernels, like the Chandler-Gibson equations, but neverthe
less have unique solutions. In addition, these solutions can 
be represented as uniformly convergent power series. We 
remark that it is also possible to construct X -I, and under 
some circumstances, X ;,- 1, using compact-kernel techniques 
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of the type suggested in Ref. 9. We have not considered these 
methods in this paper. 

Ie. Chandler and A. Gibson, I. Math. Phys. 14,328 (1973); I. Math. Phys. 
18,2336 (1977); J. Math. Phys. 19, 1610 (1978). 

2e. Chandler and A. Gibson, Proceedings of the Conference on Mathemat
ical Methods and Applications to Scattering Theory, Washington, D. e., 
1979. 

3H. Ekstein, Phys. Rev. 101,880 (1956). 
'w. V. Petryshyn, Bull. Am. Math. Soc. 81, 223 (1975); Symposium of Pure 
Math (AMS, Providence, R. r., 1970), Vol. 18, Part I, p. 206. 

51. M. Sloan (private communication). 
"T. Kato, Perturbation Theory for Linear Operators (Springer, New York 
1966), p. 267-268. 

7M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Na
tional Bureau of Standards, Washington, D. c., 1964). 

KM. Reed and B. Simon, Functional Analysis I (Academic, New York, 
1972). p. 222. 

9W. N. Polyzou, Proceedings of the Ninth International Conference on the 
Few-Body Problem, Eugene, Oregon, edited by M. Moravscik and F. S. 
Levin. 

Wayne Polyzou 2857 
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Faddeev type equations are considered in differential form as eigenvalue equations for non-self
adjoint channel space (matrix) Hamiltonians HF . For these equations in both the spatially 
confined and infinite systems, the nature of the spurious (nonphysical) solutions is obvious. 
Typically, these together with the physical solutions (given extra technical assumptions) generate 
a regular biorthogonal system for the channel space. This property may be used to provide an 
explicit functional calculus for the then real eigenvalue scalar spectral HF , to show that ± iHF 
generate uniformly bounded Co semigroups and to simply relate H F to self-adjoint Hamiltonian
like operators. These results extend to the four-channel Faddeev type equations where the 
breakup channel is included explicitly. 

PACS numbers: 03.6S.Nk 

J. INTRODUCTION 

The Faddeev-1ike equations will be discussed here with
in the more general framework of arrangement channel 
quantum mechanics (see Kouri, Levin, and Krugerl) for N
distinguishable particles. The channels are defined to be par
titions of the particle labels into clusters (irrespective of the 
stability of these clusters). Let Hbe the N-particle Hamilton
ian (with center of mass kinetic energy removed for spatially
infinite systems) acting on a Hilbert space JY'. The most sig
nificant feature of the theory is the decomposition of H into 
channel components HaP such that 

2: HaP = H for all f3 (Ll) 
a 

and a, f3 belong to the subset of channels of interest (see 
Hoffman, Kouri and Top2). The matrix H with components 
HaP is called the channel-space Hamiltonian. The Hamil
tonian H may be decomposed into kinetic and potential ener
gy parts as H = T + V. Similarly the a channel Hamiltonian 
Ha may be decomposed as H" = T + Va' where Va is the 
sum of the interparticle potentials internal to the clusters of 
a (Kowalske). The sum of residual interactions between par
ticles in different clusters of a is denoted by va = V - Va so 
H = Ha + va for all a. Typically H is not self-adjoint or 
even normal and for pairwise interactions is chosen so that 
H"a = Ha for all a. For this class of decompositions we 
write 

H = Ho+ V, (1.2) 

where [HolaP = 8ap H{3 and V is off-diagonal. Furthermore, 
the potentials in va are distributed between [V] pa for differ
ent f3 #a so that the scattering equations corresponding to 
this choice of H have a kernel for which some iterate is "con
nected" (Kowalski,3 Polyzou and Redish,4 Evans5). The pre
scription (1.1) incorporates the Faddeev6 equations, the 
Baer-Kouri-Levin-Tobocman (BKLT)7 channel coupling 
decomposition and a transposed form of the Bencze-Re-

alOperated for the U.S. Department of Energy by Iowa State University 
under contract No. W -7405-eng-82. This research was supported by the 
Director for Energy Research, Office of Basic Energy Science, WP AS-O 1-
03-01-2. 

dish-Sloan (BRS)5.K-IO equations. 

Let a vector in the channel space '(/ = ill f(' on which H 
(l 

operates be denoted by '11 with Hilbert space components 
I ifJ" >. A class of equivalent norms on ((; may be induced 
naturally from the ,W'-norm. 5 The channel-space form of the 
time-independent Schrodinger equation may be written as 

H'I1 = it '11. (1.3) 

lt then follows from (1.1) that either2 

II '/fa) #0, (H - it ),2:1 '/f,,) = 0 ( 1.4) 
(l a 

or 

( 1.5) 

The former are called physical solutions since La 1 '/f" > is a 
Hilbert space eigenfunction for H so it = EER. The latter are 
called spurious solutions. This characterization applies to 
both normalizable and wavelike solutions. 

For a spatially-infinite system, the imbedding of N-par
ticle bound-cluster H eigensolutions into normalizable phys
ical H eigenvectors is not clear from general arguments. This 
must be verified explicitly for each H as will be done in the 
Faddeev case. Possibly complex eigenvalue normalizable 
spurious solutions may exist in general. 11-14 It has been dem
onstrated previously that no such solutions exist in the Fad
deev case.6 For general H, it is typically assumed that there 
exists a unique imbedding of all two-cluster H scattering 
solutions into wavelike physical H eigensolutions (if the cor
responding a appears in the channel decomposition). A pos
sibly nonunique imbedding of multicluster scattering solu
tions is also typically assumed. From these we may pick a 
subset in one-to-one correspondence with the H solutions to 
be kept as physical H solutions and replace the rest with real 
eigenvalue wavelike spurious solutions. 2

•
5 These are simply 

"numerically spurious" linear combinations, e.g., differ
ences, of imbedded scattering solutions corresponding to the 
same H solution but with asymptotic part chosen in different 
channel components. Thus they do not have physical asymp
totic boundary conditions. In the Faddeev case they will be 
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obtained directly and have simple plane wave structure. 
Traditionally, the spatially-infinite Faddeev equations 

are regarded as having no spurious solutions. Implicit in this 
statement is the requirement that, in addition to (1.3) and 
,( 1.5) such solutions must satisfy the homogeneous form of 
Faddeev's integral equations. This result rules out normali
zable spurious solutions, as indicated previously, but not the 
wavelike ones described above which satisfy an inhomoge
neous form of the integral equations. 

For the spatially confined case it is possible to show that 
the (point) spectrum of H is imbedded into the (point) spec
trum of H. However, in general no simple imbedding proce
dure for H eigensolutions is available and little is known 
about spurious solutions. These solutions will be analyzed 
completely in the Faddeev case. 

A question of primary interest for any arrangement
channel Hamiltonian is that of the completeness and basis 
properties of the physical and spurious solutions on the 
channel space. By completeness of a set of vectors which 
may be normalizable and/or unnormalizable, we mean that 
any vector in '?! can be approximated in norm as a possibly 
partly continuous linear combination of these vectors. Note 
that for nonorthogonal sets there exists a distinction between 
completeness and the basis property. The latter is stronger, 
requiring that any vector in'?! can be represented as a unique 
possibly partly continuous linear combination of basis vec
tors (convergence in norm implied). Certain natural require
ments on the imbedding of physical solutions necessary and 
sufficient for these completeness and basis properties are de
tailed in Appendix A. 

Should the basis property hold, then it is natural to de
velop a functional calculus for the (scalar spectral) operator 
H.5 Since H is not self-adjoint or normal, it is necessary to 
obtain the biorthogonal dual eigenvectors separately. We de
note a vector in the dual channel space'?!' by;' with compo
nents (t, I and its action on 'liE'?! by 

(1.6) 

The dual eigenvectors of H satisfy 

(;', H'II) = A. (;', 'II) for all 'IIEdom(H) (1.7) 

or 

H';' = A. ;', ( 1.8) 

where H' denotes the (Banach space) dual ofH. We shall 
make use of the general result that a biorthorgonal dual to 
the H eigenvector corresponding to a Hilbert space solution 
IIJI (E ) is given by 

<t (E)a I = < IJI(E)I for all a. (1.9) 

These ideas will be developed for the Faddeev equations. For 
a discussion of these and other results for general H opera
tors, e.g., c1osedness, spectral theory, semigroup theory, ... , 
the reader is referred to previous work. 5 

Faddeev's equations in differential form with pairwise 
interactions are considered first for a spatially confined sys
tem in Sec. II. Here the spectrum is discrete.5 The imbedding 
of H eigensolutions and existence of real eigenvalue spurious 
solutions are examined in detail here. Except where there is 
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an "accidental" coincidence of physical and spurious eigen
values resulting in the "loss" of a physical eigenvector, these 
solutions together are complete and, with an extra technical 
assumption, form a basis on '?!. Thus the program outlined 
earlier may be implemented to first construct biorthogonal 
dual vectors and then a functional calculus for the real eigen
value scalar spectral (*-self-adjoint) Faddeev Hamiltonian 
Hp. The structure and properties of HF are further elucidat
ed here. 

In the third section, the analogous treatment is given for 
the spatially-infinite case where the weak (unnormalizable) 
scattering solutions must be considered. Here the real eigen
value spurious solutions are all plane wavelike, as may be 
easily verified directly. These results are extended in a num
ber of ways in the fourth section to allow for true three-body 
forces. 

In the concluding section we remark on the cluster in
terpretation of the wave function components as previously 
elucidated by L'Huillier, Redish, and Tandy. 15 Some obser
vations are made for the more general Faddeev-like equa
tions of these authors. The role of the Faddeev example in 
clarifying the structure of more general H is discussed and 
particularly its application to the analysis of related Hamil
tonians, e.g., the three-particle BKLT. 

II. FADDEEV'S EQUATIONS FOR A SPATIALLY 
CONFINED SYSTEM 

We consider a spatially confined system of three parti
cles. The confinement may be achieved by the inclusion in 
the Hamiltonian of an external potential Ve which goes to 
+ 00 as any of the particles approach the (piecewise smooth) 

boundary JR of some region R. Alternatively, we may sup
pose that the Hilbert and channel-space wave functions are 
defined on the interior of a box and a periodic boundary 
condition is imposed at the walls. If the potentials have a 
range greater than the box size, then they are regarded as 
suitably treated. Many of the relevant mathematical con
cepts used to describe the structure of H F (or H) are most 
conveniently introduced first here where the spectrum is dis
crete. 5 This type of problem is also important for applica
tions to statistical mechanics of reactive systems where a 
convenient representation is first required for a confined sys
tem of a finite number of particles. 2.16 It will be clear from 
the following analysis that some aspects of the interpretation 
of the components of the physical channel-space eigenvec
tors will carryover from the spatially infinite case. 15.16 

First we exhibit a simple formula for the imbedding of 
H eigensolutions into physical HF eigenvectors. A set of real 
eigenvalue spurious solutions providing a basis for .Y' are 
obtained by inspection after rearranging the Faddeev equa
tions. Together these are complete and, with an extra techni
cal assumption, form a basis on '?! provided there is no "acci
dental" coincidence of eigenvalues of the full and 
noninteracting Hilbert space Hamiltonians. Exploiting the 
simple structure of the spurious solutions in this case, we 
may obtain explicit expressions for the biorthogonal spur
ious dual eigenvectors (as well as the physical ones). Also a 
functional calculus for the real eigenvalue scalar spectral (*-
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self-adjoint) HF is readily obtained which, in particular, al
lows the analysis of semigroup properties. The structure of 
HF is further elucidated by exhibiting a self-adjoint Hamil
tonian-like operator to which HI' is "equivalent." 

The particles are labeled 1,2, 3, and we assume that 
they interact through pairwise potentials. Following the 
usual convention, the interaction potential between particles 
i and} is labeled Vk where k # i,} and k also labels the channel 
(k )(ij). In differential form, the analog ofFaddeev's equations 
(for the spatially confined region) have the form 

(
\ tJll») 

HF'I1 = A '11, with '11 = \ tJl2 ) 

I tJl3 > 
(2.1) 

For a system confined by an external potential as de
scribed above, '11 is defined on Rand 

HF = He + VI' (2.2) 

where He and V F may be chosen as 

(

T+ Ve + VI 

H = 0 e 

o 
and 

Vp =(~2 ~I 
V3 V3 

Implicitly the 'I1\aR = O. 

o 
T+ Ve + V2 

o 

(2.3) 

For the periodic problem, '11 is defined on the interior of 
a box with periodic boundary conditions imposed at the 
walls and 

(

T+ VI 

Ho= 0 
o 

o ) o , 
T+~ 

(2.4) 

(2.S) 

and with V I' defined as above. In both these cases T is the 
total kinetic energy of the three particles. The periodic prob
lem has some special features reminiscent of an infinite sys
tem. In contrast to a system with a confining external poten
tial, the center of mass kinetic energy operator may be 
naturally separated from the rest of the Hilbert or channel
space Hamiltonian resulting in a separation of variables fac
torization of the eigenfunctions. One part is a plane wave in 
the center of mass variable and provides a discrete center of 
mass kinetic energy contribution to the total energy. The 
other depends on the internal (e.g., Jacobi) variables and pro
vides a discrete contribution from the relative motion to the 
total energy. Another feature of the periodic problem remi
niscent of an infinite system is that the states involving a true 
bound cluster of all particle, should they exist, are "dynami
cally disconnected" from the states involving smaller clus
ters, e.g., in the three-particle periOdic system the true three
particle bound clusters never dissociate into one- or two
particle clusters and are never formed from these. Again this 
property is not true if we introduce an external wall 
potential. 
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The analysis of the channel-space equations for both 
spatially confined problems is similar so we present in detail 
here only the case with a confining external potential. In 
integral equation form, essentially the only difference be
tween these two cases occurs in the various Green's func
tions through the eigenfunctions providing their spectral re
presentation. Since with an external potential, the boundary 
conditions on the wave functions are made explicit by incor
porating the external potential in the Green's functions, this 
case is notationally more convenient to consider. Here 
H = T + Ve + l:i = I Vk and the corresponding Hilbert 
space Schrodinger equation 

H\tJI) =EltJI) (\tJI)\aR =0) (2.6) 

has a complete orthonormal set of solutions, \ tJI (n), in cW' 
which are labeled by an index n and have discrete real eigen
values En. 

Let us suppose first that none of the En "accidently" 
coincides with the eigenvalues of the noninteracting Hamil
tonian He = T + Ve' Now consider the imbedding of solu
tions (2.6) into the solution set of the corresponding Faddeev 
equations (2.1). It is clear that \ tJI (n) must satisfy the homo
geneous integral equation 

ItJI(n) = Ge(EM)V I tJI(n), (2.7) 

where V=l:7=, Vi and Ge(z) = (z-He)-'. There is, of 
course, no inhomogeneous term since En - He is invertible. 
The corresponding channel-space vector 'I1(n) is defined to 
have components 

(2.8) 

(cf. L'HuiIlier et al. '5 j. It will be assumed here the potentials 
are such that \ tJlj(n) is normalizable for all n, e.g., H e -

bounded will do. From (2.7), it is a trivial matter to show that 
'I1(n) satisfies the differential equation 

(2.9) 

and the homogeneous integral equation 

(2.10) 

with Ge (z) = (z - He) - I provided En is not an eigenvalue of 
He' Otherwise a modified inhomogeneous integral equation 
for 'I1(n) must be constructed. 

Next we consider the spurious solutions. It is conve
nient to rewrite the Faddeev equations (2.1) in the form 

(ti - (T + Ve)ltJlk ) = v{tI1tJIj»). 

k=1,2,3. (2.11) 

By definition the right-hand side of each equation is identi
cally zero for the spurious solutions. Let us denote a com
plete orthonormal set of solutions of 

HeltJI) = (T+ VelltJI) =A 11/1) (iW)laR = 0) (2.12) 

by \~ (n) where A = E~ is the corresponding real eigenval
ue. For certain simple choices of Ve , we can write them down 
explicitly. (e.g., ifVe corresponds toa box, then the \~ (n) are 
given in terms of sinusoidal functions.) A set of spurious 
solutions forming a basis on .Y = ! 'I1E'G': l:] = I I tJlj > = 0 l 
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can now be chosen as ! c!»1(n), c!»2(n) I where 

c!»'(n) = 6'ItP (n) i = 1,2, (2.13) 

where 9' = (8 ~ ,8 i ,8 ~ f, i = 1, 2 are linearly independent 
numerical spurious vectors, i.e., ~J = 18 J = 0, i = 1, 2. 

These spurious solutions satisfy the differential equation 

HFc!»i(n) = E~c!»'(n) i = 1,2, 

and the homogeneous integral equation 

c!»i(n) = Ge(E~)V Fc!»'(n) i = 1,2, 

(2.14) 

(2.15) 

provided E ~ is not an eigenvalue of He. Otherwise a modi
fied inhomogeneous integral equation for c!»i(n) must be 
constructed. 

Since all the physical solutions are imbedded in 'G' and 
! c!»1(n), c!»2(n) I span Y, it follows from the discussion of Ap
pendix A that [\fI(n), c!»1(n), c!»2(nll are complete on 'G', i.e., 
any vector in 'G' can be approximated arbitrarily closely by 
finite linear combinations of these. 

Next we consider the biorthogonal dual eigenvectors of 
HF which satisfy 

H;"~' =A ~'. (2.16) 

A discussion of this equation has been given by Sandhas. 17 

The solutions ~'(n) of (2.16) corresponding to the \fI(n) are 
characterized by having all components equal (cf. Sec. I), i.e., 

3 

(~'(n)t = I (if!dn)1 = (if!(n)l, forallj. (2.17) 
k=1 

Then 

H;"~/(n) = En ~'(n). 

the cf>i(n), \fI(m) and ~'(n) satisfy the biorthogonal 
relationships2,5, 1 8-20 

(~'(n), \fI(m)) = am •n , 

(~'(n), cf>'(m)) = 0. 

(2.18) 

(2.19) 

We aim to complete this biorthogonal system by construct
ing vectors ~"(n), i = 1,2, which are dual vectors to the spur
ious solutions, satisfying 

(~"(n), \fI(m)) = 0, 
(2.20) 

(~i'(n), c1i(m)) = t5m,na,J' 

If we assume that for some class of potentials, all/ 2 linear 
combinations of\fl(n) converge in norm (/2 assumption), then 
[\fI(n), c!»1(n), c!»2(n)} form a basis for C{J in addition to being 
complete. 21 Furthermore the ~i'(m) are uniquely prescribed 
by (2.20) and it is easily verified that5 

(2.21) 

The set [~'(n), ~I'(n), ~2/(n) J is called the associated sequence 
of coefficient functionals l9 for (\fI(n), cf>1(n), cf>2(nll. We shall 
not investigate here the range of validity of the /2 assump
tion. Note however that the /2 convergence is certainly al
ways true for the sum of the components. From the Hahn
Banach theorem,22 the existence and uniqueness of the ~i'(n) 
follows if each c!»'(n) is a finite distance from the span of the 
other eigenvectors. The need here is to guarantee the separa-
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tion of the closure of the span of the \fI(n) from nonzero vec
tors in Y. 

These results may be expressed succinctly as: 
Theorem 1: Under the /2 assumption, the set I ~'(n), 

;1 'In), S21(n); \fI(n), cf>1(n), cf>2(n)j is a regular biorthogonal sys
tem for 'G' providing a resolution of the identity 

2 

1 = I\fI(n)~'(n) + I Icf>i(n)~"(n). (2.22) 
n i= 1 n 

Furthermore, the sum over any subset of terms in (2.22) gives 
a bounded (non-self-adjoint) projection operator onto an 
HF-invariant subspace of CC;. 

Proof Equation (2.22) follows from the previous discus
sion, as does the projection operator property. We remark 
that boundedness for finite sums is obvious and boundedness 
for any subset of terms is proved by taking an approximating 
sequence of finite sums and using the Banach-Steinhaus 
theorm. 22 0 

From Theorem 1, in particular, the projection 
operators 

p = ~\fI(n)~'(n), (Q = ,t ~ c!»'(n)~"(n)) (2.23) 

for the physical (spurious) solutions are bounded. We now 
use these facts to give an explicit construction of the dual 
eigenvectors ~"(n) corresponding to the spurious solutions. 
Pick 63 to be any vector such that ~J = 1 8 J :fO, 6 i i = 1,2 as 
previously. Let f 6., 62

, 63
; Xl', Xl', X3 

/} be a complete 
biorthogonal system in R3

, then X3 
/ = ell, 1, I), Next define 

dual vectors 

~i'(n) = (tP (n)lx" i = 1,2, (2.24) 

then 

(2.25) 

so 

~i'(n) = ~i'(n)Q 
= ~i'(n) _ ~i'(n)P (2.26) 

= ~i'(n) - I(~i'(n), \fI(m))~'(m). 
rn 

The right-hand side is given in terms of known vectors and 
the sum converges since P is bounded. 

The structure of H F is described by 
Theorem 2: Under the /2 assumption, a countably addi

tive resolution of the identity (spectral family) for HF is given 
by 

2 

E(a) = I \fI(n)~'(n) + I I cf>i(n)~i'(n), (2.27) 
EME8 i = 1 E?,Eb 

where t5 are Borel sets in the complex plane; (here, on the real 
line would suffice), Thus HF is a spectral operator. 5 

Furthermore 

HF\fI = I En (t 'In), \fI)\fI(n) 
n 

2 

+ L L E~(~i'(n), \fI)cf>'(n) 
;= 1 n 

(2.28) 
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where 'IIEdom(HF) and ~ (HF) is an open set containing the 
spectrum of HF. Thus HF is also scalar spectra1. 5•23 

Proof These results have been discussed previously for 
general H.5 We remark that the proof of the scalar spectral 
property uses that HF is closed for potentials ofinterest. 0 

The difference between the spectral and scalar spectral 
properties for an arbitrary operator is described in Appendix 
B. As a corollary of Theorem 2, we have that HF is *-self
adjoint where the involution * is associated with the conju
gate linear duality mapping D: 'If ~'If' given by 

D'II(n) = ~'(n), Dc!>'(n) = ~l'(n), (2.29) 

i.e., 

For general channel-space Hamiltonians H, *-self-adjoint
ness can only be guaranteed for the restrictions of H to the H
invariant subspace spanned by the physical eigenvectors. 5 

A functional calculus may now be defined for HF (loose
ly) by 

f(H F ) = lIHI(A )E(dA), 

or more explicitly by 

f(H F ) = "'iJ(En )'II(n)~'(n) 
n 2 

+ I If(E~)c!>'(n)~t(n); 
i = t n 

(2.31) 

(2.32) 

(cf. the functional calculus for normal or self-adjoint opera
tors). A form of the functional calculus involving a contour 
integral is also available. Z4 It is easy to see that boundedness 
off( ) ensures convergence of the sums from (2.32) for 
f(HF)'II for any 'IIE'If since 

~f(En )'II(n)(~'(n), 'II) = ~f(En)( IP (n) I ~ ['II]a /'II(n), 

(2.33) 

which is an [Zlinear combination of the 'II(n) and, 

2 I 2:f(E~)c!>'(n)(~i'(n), 'II) 
i -=.:-1 It 

2 A 

= 2: If(E~)(~I'(n), (1 - P)'II)c!>i(n), (2.34) 
i= 1 n 

which is an [2 linear combination of plane waves in each 
component since (~i'(n), (1 - P)'II) is a linear combination of 
Fourier coefficients of the components of (1 - P)'II.21 This 
vector is in 'I: since P is bounded. Furthermore, applying the 
Banach-Steinhaus theorem, we see thatf( ) is bounded en
sures thatf(H F ) is bounded. 

This property is particularly important for the time-
f c + i/IiH < f dependent theory where operators 0 the Iorm e -- , are 0 

interest. Let us examine in more detail here the properties of 
these semigroups. The following preliminary result is useful: 

Lemma J: Let J: cW' ----<>'1: be the injection operator for 
the physical solutions so 

J lIP (n) = 'II(n) for all n. (2.35) 
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Then under the [Z assumption J is bounded so if 
lIP) = ~n fn lIP (n) then 

( )

1/2 

11'II1Iy,.;;IIIJIII·lI lP llw = IIIJIlI ~lfn\Z 
where I III III < + 00 (2.36) 

Proof Boundedness follows from that of P since J = P6 
where ~; = 1 (6)i = 1. A direct proof may also be given using 
the Banach-Steinhaus theorem. As a simple consequence of 
the lemma and Eqs. (2.32)-(2.34), we now have 

Theorem 3: Under the /2 assumption, ± iH F are the 
infinitesimal generators of uniformly bounded Co semi
groupsZ5 e ± illiHfl. 

We remark that the existence for general H with strictly 
bounded potentials of e ± illiHI has been demonstrated.s,zo 

These will not in general be uniformly bounded. 
Clearly there is a similarity between the structure of the 

Faddeev Hamiltonian HF and a self-adjoint Hamiltonian
type operator. This is further elucidated by the following 
result: 

Theorem 4: Under the /z-assumption, HF is equivalent 
to the self-adjoint operator 

o 

in the sense that there exists a bounded invertible operator 
Sf' such that 

o 
(2.37) 

o 
Proof By direct construction. A complete set of orthog

onal eigenvectors for this self-adjoint operator may be cho
sen as 

(
11P(n)) 

'IIo(n) = ~ , 

+.\Inl ~ (I¢ ~nl»). 

c!>~(n)=( ~ ). 
11,11 (n) 

(2.38) 

The corresponding orthogonal dual vectors are denoted by 
~~(n), ~'(n), ~'(n). The operator SF is given by 

2 

SF = I 'IIo(n)~'(n) + I, I, c!>~(n)~i'(n). (2.39) 
1'= I n 

Boundedness, as usual, follows from the /2 assumption and 
the Banach-Steinhaus theorem. From orthogonality and 
biothogonality, 

2 

Si 1 = L'II(n)~(n) + 2: Ic!>'(n);;;(n). 0 (2.40) 
i= 1 " 

This equivalence further clarifies the way the physics is im
bedded into Faddeev's Hamiltonian (as well as the appear
ance of spurious solutions). A corresponding equivalence 
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property holds for general scalar spectral operators H where 
± iH generate uniformly bounded semigroups. 23 As a corol

lary to the theorem, we have that 

o 
o 
o 

(2.41) 

We remark that the duality mapping D with respect to 
which HF is *-self-adjoint is related to SF by 

(2.42) 

Here C: c(,' ----'" '{j" is the usual Hilbert space conjugate linear 
isomorphism. Also observe that Theorem 4 may be used as 
an alternative basis for providing a functional calculus of H F 

leading simply to such results as Theorem 3. 
Finally we note that throughout this section we have 

assumed that none of the eigenvalues of H and He "acciden
tally" coincide. Should this happen, it is possible to lose the 
corresponding physical eigenvector which is "replaced" by a 
spurious one. The scalar spectral property of the Faddeev 
Hamiltonian then no longer holds. This case is discussed in 
detail in Appendix C. 

III. FADDEEV'S EQUATIONS FOR A SPATIALLY 
INFINITE SYSTEM 

These equations are obtained from (2.1 )-(2. 3) by remov
ing the external wall potential and adopting the resulting 
equations for II' defined everywhere, i.e., 

HFW =,J,11', whereHF=Ho+VF' (3.1) 

with Ho and V F defined as previously. In the spatially-infi
nite case it is convenient to assume that the center-of-mass 
kinetic energy has been removed from T. 

We first exhibit a simple imbedding formula for the true 
three-particle bound states as well as the asymptotic two
cluster scattering solutions. For the breakup channel (as
ymptotic three-cluster) scattering solutions, a somewhat 
more complicated formula is derived from formal manipula
tion of the corresponding integral equations. A set of real 
eigenvalue plane wave spurious solutions providing a basis 
for Y, the real eigenvalue scalar spectral (*-se1f-adjoint) 
property, functional calculus and semigroup properties of 
HF as well as equivalence to a self-adjoint Hamiltonian-like 
operator are easily demonstrated as in the previous section. 

The Hilbert space Hamiltonian H for this system is as
sumed to have a complete set of eigenvectors (including the 
"weak" scattering solutions). Let II{I (n) denote the normal
ized true three-body bound states and II{I ,,± (kU

, m), a = 1, 
2, 3, denote the scattering solutions for channel a where 
particle a scatters off a bound state of the other particles (if 
such bound states exist). The wave vector k a describes the 
relative asymptotic momentum of particle a and the bound 
state; m is the quantum number for the associated two-parti
cle bound state; the total energy (excluding center-of-mass 
energy) is denoted by E = E(k''' mI. The breakup-channel 
scattering solutions where the three particles are asymptoti
cally free are denoted by 11{I6t (kO). Here kO denotes the suit
ably chosen pair of wave vectors for the relative asymptotic 
momenta with a corresponding kinetic energy E = E (kO) (ex-
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c1uding center-of-mass energy). These wave vectors can 
most conveniently be given as a pair of relative Jacobi mo
menta. + ( - ) denotes a pre- (post- ) collisional choice of 
these asymptotic conditions. Completeness of H implies that 

1 = II l{I(n)(l{I(n)1 
n 

+ ato~f dkall{la±(k",m) (1{I!(ka,m)l· (3.2) 

Certain of these solutions may be imbedded directly into 
channel-space solutions following a procedure analogous to 
that of the last section. 

The true three-particle bound state solutions satisfy 

(3.3) 

where Go(z) = (z - T)-I and provided En <0. If En > 0, then 
Go(E n ) (or Go(E n lV) is regarded as having been suitably regu
larized. We define a channel-space vector \fI(n) with 
components 

I~(n) = Go(En}Vj I l{I(n), j= 1,2,3, (3.4) 

and if En > 0, the regularization of GolEn) is chosen so that 
the r.h.s. lies in JY'. This vector satisfies I.] = I Il{Ij(n) 
= II{I(n) and 

(3.5) 

If En is not in the (continuous) spectrum O:r(Hol ofHo (i.e., of 
H j = T + V; for any j),27 then WIn) satisfies the homogen
eous integral equation 

(3.6) 

where Go(z) = (z - HO)-I. If En ECa(Ho), then Go(En) is re
garded as suitably regularized. 

The asymptotic two-cluster (a = 1,2, 3) scattering solu
tions also satisfy 

II{I ,,±(k", m) = Go±(ElVll{I !(k", m) a = 1,2,3, 
(3.7) 

whereE= E(k", m)andGl(E) = limGo(E ± fE)( = Go(E) 
E-"'O 

ifE <0). We define channel-space vectors W! (k'\ m),a = 1, 
2,3, with components 

II{I ~ (k", m) = G l (E)V; II{I a± (k", m), j = 1,2,3 
(3.8) 

so this vector satisfies I.J = I II{I ~ (ka, m) = II{I ! (k", m) 
and 

HFW,,± (k", m) = EWa± (k", m), 

or in integral form, 

(3.9) 

Wa±(k", m) = cfJ,,(k", m) + Gl (E)VFW! (k", m), (3.10) 

where (cfJ,,(ka, mIt = DaJ I¢ (ka) ® I¢m)' I¢ (k") is a plane 
wave for particle a of relative momentum ka and I¢m ) and is 
the mth bound state solution of the appropriate two-particle 

problem. Also Gl (E ) = limGo{E ± tE). It is assumed here 
£--->0 

that the potentials are such that the WIn) are in C6' (Ho-

bounded will do) and the II' a± (k", m) are suitably well
behaved?? 

For the breakup-channel (asymptotic three-cluster) 
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scattering solutions, the above imbedding procedure is not 
applicable. However, a somewhat more complicated imbed
ding formula is derived below by resuming the formal solu
tion of the appropriate channel-space integral equation. 
First denote by It/J l (kO) the two-particle scattering solu
tions of the equation (T + J-j - E )14> ) = 0 with asymptotic 
wave number kO. The wave function It/J / ) factors as a prod
uct of a plane wave for partic1ej and a two-particle scattering 
solution for the other particles. If we define two-particle T 
matrices by t l = J-j + Jj G o± t l then G / Jj = G o± t / ' 

JiG / = t / G f, Jj 14> /) = t / It/J ), and It/J /) 
= (1 + G f t l )14> ), where 14> ) is the corresponding three

particle plane wave. The breakup-channel solution 'fI o± may 
be chosen as any of'fl& .. "j* = 1,2,3, satisfying the integral 
equation 

'fI & .. ) (kO) = cl»ot,) (kO) + Gl (E)V F 'fI &') (ko), (3.11) 

where E = E (kO) and (cI»o=v,) h = okJolt/J l ). Formal expan
sion of the solution yields 

('fIo'O-))k = okJo l4> ) + G o± t f 14> > + G l t k± 

X (L G o± t / + L G o± t l L G o± t I± + ... ) 14> ). 
dk Nk I#j 

(3.12) 

However, since II[! o±) = 14> l) + G l Vjll[! o± ), we have 
that 

L GfVjJl[!o±) 
Nt 

= L(G o±V;I4>l) +GlV;GlVjll[!cf») 
Nk 

= L G l t l \4> ) + L G o± t / L G o± VI \ IfF l ) 
J#k j#k I#J 

= (L Gltl + L Glt/ L Glt / + ",)14». (3.13) 
J#k Nk I#j 

Consequently one obtains the imbedding formula 

('fIot-dk = OkJ' \4> ) + G cf t k± It/J ) 

+ G o± t k± G o± L J-j II[! o± ) 
J#k 

= okJ·I4> ) + G o± Vk 14> ! ) 
+ G o± Vk G k± L J-j II[! o± ) k = I, 2, 3, (3.14) 

loF k 

which agrees with the result of Benoist-Gueutal and L'Huil
lier.2S We may verify directly that 'fIo=V.) defined by (3.14) 
satisfies (3.1). 

Thus we have shown that the set {'fI o=v-» 'fI; , a = 1, 2, 
3, 'fI(n)}, for each choice ofj*, is in one-to-one correspon
dence with the (physical) eigenvectors of the corresponding 
Hilbert space Hamiltonian. 

The spurious solutions are most easily found by writing 
Faddeev's equations in a form analogous to (2.11) (for this 
case there is no external potential of course). Let I tP (k) be a 
complete set of solutions to 

T 14> (k) = E 14> (k), (3.15) 

labeled by a suitable wave vector k. Then a set of spurious 
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solutions {cI»l(k), cl»2(k) J providing a basis for Y is given by 

cl»i(k) = Oil4> (k) i = 1,2, (3.16) 

where 6 i are defined as in the previous section. 
Suppose that for a class of potentials, all L 2-linear com

binations of the '1'; and 'I' o± are convergent in norm and 
that such linear combinations where the energy is restricted 
to a Borel set of the real line form a closed subspace (L 2 

assumption). This is of course true for the Sum of the compo
nents and also for the individual components in asymptotic 
regions. (We shall not, however, investigate here the range of 
validity of the L 2 assumption.) It then follows from the dis
cussion in Appendix A that {'fI&0» 'fI;, a = 1,2,3, 'I'(n)J 
for each choice ofj* and + or -, together with the spur
ious solutions {cI»l, cl»2) form a basis for <:C;. Note that a suit
able "limit-in-mean" interpretation will be required for the 
integrals representing linear combinations of these solutions 
(see Titchmarsh29 for a discussion of this problem in the stan
dard L 2-Fourier theory and Amrein et al.30 for a more gen
eral case). As discussed previously5 in a general context, the 
non uniqueness of the choice of 'I' o± guarantees the existence 
of spurious wavelike solutions with unphysical asymptotic 
boundary conditions. Indeed we could generate the set of 
spurious solutions described above by taking 

3 

cl»i(k) = L e;.'I'o=v.)(k) i=1,2, (3.17) 
j* = 1 

where from (3.14), each component of the r.h.s. is a plane 
wave as required. The integral equations for cl»i(k) now follow 
automatically from (3.11). Thus another choice of basis for 
YJ would be {'fIo=U"l'j* = 1,2,3, '1';, a = 1,2,3, 'fI(nll (un
der the L 2 assumption) choosing either + or - . 

All the wavelike solutions discussed above do not lie in 
the channel space YJ and are thus termed more correctly 
"weak eigenvectors", They can be regarded as elements of a 
larger space ~' dual to ~ where ~ C YJ C 'f?' and ~ may be 
chosen as a Banach or countably-normed space dense in ((,. 
The domain of HF can be extended in ~" to include wavelike 
functions.s 

As in the spatially-confined case, it is useful to con
struct the dual vectors (associated sequence of coefficient 
functionals) corresponding to the chosen basis {'I'(n); 'I' a' 

a = 0, 1,2,3; cl»i, i = 1,2,\ for YJ (where from now on, we 
assume that some specific choice ofj* for 'l'o± = 'l'ot.) and of 
+ or - has been made). They may be used to form a gener

alized biorthogonal system. The ~'(n) and ~~(ka, m) are given 
by 

3 

(~'(n)t = L (I[!k(n)! = (lJI(n)[ [or all), (3.18) 
k=1 

(~'(k(\ mIt = ~! = I (lJIak (ka, m)1 = < IJI" (ka, m)1 for all 
), a = 0, 1,2,3, 

and they satisfy 

H~~'(n) = En ~'(n), 

H~~~(ka, m) = E(ka
, m)~~(ka, m) a = 1, 2, 3, (3.19) 

H~l;;(ko) = E (kO)~b(kO). 

The following generalized biorthogonal relationships are 
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also satisfied: 

(~'(n), \II(m)) = 8m,n' 

(~'(n), cf>i(k)) = (~'(n), \IIa(ka, m)) = 0, 

(~~(ka, m), \(Ip(k'P, n)) = 8a,p8m,n8(ka - k'P), (3.20) 

(~~(ka, m), \(I(m)) = (~~(ka, m), cf>i(k)) = 0, 

for a,/3 = 0, 1,2,3; i=1,2. 

The generalized biorthogonal system is completed by con
structing dual vectors ~t(k) to the spurious solutions, which 
satisfy 

(3.21) 

Under the L 2 assumption, the above prescription of the ~i'(k) 
is unique in an almost everywhere sense and furthermore 
they satisfy 

(3.22) 

Theorem 5: Under the L 2 assumption, the set 

{~'(n), ~(k), ~~(ka, m), ~i'(k'); \(I(n), \fIo(k), \fIa(ka, m), cf>i(k') 

(a = 1,2, 3, i = 1, 2)J 

is a generalized regular biorthogonal system of C(; providing 
a resolution of the identity 

1 = ~ \(I(n)~'(n) + "to ~ I dk
a 

\fIa(k
a
, m)~~(k", m) 

+ itt I dkcf>i(k)~i'(k). (3.23) 

Furthermore if the sums and/or integrals in (3.23) are re
placed by partial sums and/or integrals over Borel subsets, a 
bounded (non-self-adjoint) projection operator onto a HE" 
invariant subspace of C(; results. 

Proof Formally, the proof is the same as for Theorem 1. 
Boundedness follows from the closure part oftheL 2 assump
tion. From the countable additivity, it follows that this boun
dedness is uniform. 23 0 

Explicit forms for the bounded projection operators 
onto the physical and spurious solutions are again available. 
The structure of HF is described by 

Theorem 6: Under theL 2 assumption, a countably addi
tive resolution of the identity (spectral family) for HF is given 
by 

E(8) = L \II(n)~'(n) 
EnED 

+ "to ~ L,k",m,EIJ dk" \(Ia(k'" m)~~(ka, m) 

+ it L'k'EIJ d k cf>i(k)~i'(k), 
(3.24) 

where 8 are Borel sets in the complex plane; (here, in the real 
line would suffice). Thus HF is a spectral operator. 
Furthermore, 
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n 

+ lo ~ I dka E(ka, m)(~~(k", m), \II)\IIa(k
a
, m) 

+ itt I d k E (k)(~i'(k), \IIW(k) 

= f ,iE(d,i ) \II, 
L(HFl 

(3.25) 

where \IIEdom(HF) and.a (HF) is an open set containing the 
spectrum ofH F. Thus HF is also scalar spectral. 

Proof Formally, the proof is the same as for Theorem 2. 
o 

As a corollary of Theorem 6, we have that HF is "'-self-ad
joint where the involution'" is associated with the duality 
mapping induced by the regular biorthogonal system of ei
genvectors (cf. Sec. II). A functional calculus may now be 
defined for HI" (loosely) by [cf. (2.31) and (2.32)] 

I(HF ) = ( I(A ) E(d,i ), (3.26) 
Ja (H.l 

or more explicitly by 

I(HF ) = L/(En)\II(n)~'(n) 
n 

+ ato ~ I dk
a 
I(E(k

a
, m))\IIa(k

a
, m)~~(k", m) 

+ itt I dk I(E(k)W(k)~i·(k). 
(3.27) 

The analogs of Theorems 3 and 4 hold for the spatially-infi
nite case. Thus, under the L 2 assumption, ± iHF generate 
uniformly bounded Co semigroups. In Appendix D, we de
scribe the use of this result to obtain a prescription for the 
imbedding of normalized Hilbert space eigenfunctions via a 
mean ergodic theorem for HF. Also HI" is equivalent to the 
self-adjoint operator 

G 
0 1) Ho 
0 

in the sense that 

BFHFB,c' ~G 
0 

1J Ho (3.28) 

0 

where B F is a bounded invertible operator which has a repre
sentation analogous to (2.39) and is simply related to the 
duality mapping with respect to which HF is "'-self-adjoint 
[cf. (2.42)]. 

An explicit construction of the dual vectors associated 
with the spurious solutions is a little more complicated here. 
Formally, the construction is the same as in the last section. 
If \(IoUO) (k) is chosen as the physical breakup-channel solu
tion, then pick 93 so that () : = 8iJo i = 1, 2, 3 and 9 t

, 92 as 
previously. The corresponding biorthogonal duals satisfy 
X3

' = (1,1, I)andx;~ = Ofori = 1,2. By analogy with (2.26) 
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we have 

~r(k) = ~r(k) - I(~r(k), \II(n))~'(n) 
n 

ato ~ f dku (~r(k), \IIu(ka, m))~~(ka, m), (3.29) 

where ~r(k) = Xi' (4) (k)1 with Xi' described above. The inner 
product (~r(k), \II(n)) may be evaluated immediately as it is a 
convergent integral (at least as a "limit-in-mean"); however, 
the expression (~r(k). \II a (ka

, m)) may be regarded as a singu
lar measure with respect to the wave vectors and must be 
considered more carefully (see Appendix E). Note that the xt 
determine the asymptotic plane wave structure of the ~t(k) 
(i = 1,2) and ~(kO) (i = 3) as well as the inhomogeneous 
terms in the integral equations for these wave functions5 (see 
Appendix F). 

IV. FADDEEV'S EQUATIONS WITH A TRUE THREE
BODY POTENTIAL 

In previous sections we have considered only the case of 
pairwise interactions between the three particles. Here we 
also allow for the possibility of a true three-body interaction 
VI2J so the Hamiltonian of the system is given by 
H = T + Ve + Vm + L~ = I Vk • In this work we shall con
sider only the spatially infinite case with Ve ==0. An analysis 
of the simpler spatially confined problem analogous to Sec. 
II could easily be developed. The potential VI23 may be in
troduced into the matrix Hamiltonian of Sec. III in many 
ways which satisfy the summation property (1.1). Those pre
serving a simple imbedding procedure are described below. 

Consider the case where the potential VI 23 is introduced 
along anyone of the three rows as, for example, in 

(

T + VI + VI23 VI + VI23 VI + VIB) 
HF = V2 T+ V2 V2 .(4.1) 

V3 V1 T+ V1 

It is convenient to introduce some further notation. Let 

V; + 123 = V; + V123 , Hj + 123 = T + V; + 123' GJ+ 123 (z) 
= (z - H j + 123 ) ~ I, and let 4> j ~ 123 satisfy (E - H j + 123) 

14> l+ 123) = 0 and correspond asymptotically to a plane 

wave. Further define t A 123 = V; + 123 + V; + 123 G l t It- 123 
so Gj~ 123 V;+ 123 = Go±tj~ 123' V;+ 12314> j~ 123) 
=tj~I23I4» and 14>/+123) =(1 +Go±ti~m)I4»· 

The imbedding formulas for both the true three-particle 
bound states as well as the asymptotic two-cluster scattering 
solutions have the same form 

1'PI(n) = Go(En)VI+I23I'P(n), 

l'Pj(n) = Go(En)V;I'P(n), 

j = 2, 3, (4.2) 

where suitable regularization is required if En;'O and for 
a = 1,2,3, 

I 'P 11 ) = G o± (E )VI + 1231 'P ! ), 
I 'P 0 ) = G o± (E ) ~ I 'P a±) j = 2, 3. (4.3) 

An imbedding formula for the breakup-channel scattering 
solution may again be obtained from a formal resummation 
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of the corresponding integral equation giving 

(\IIot-))1 = DI •i .l4> ) + G 0* t t+ 1231rf1 ) 

+ Glt I~ I23 G O±(V2 + V3)1'P l), 

(\110].1)' = DkJ.I4» + G o± t k± IrfI) (4.4) 

+Gftk±GO±(VI+I23+ Vk)I'Po±), 

[k, k I = [2, 3l· 

As should be clear from (4.4), the spurious solutions have 
exactly the same plane wave form as for the operator of Sec. 
III. Given an appropriate L 2 assumption, the results of that 
section on the real eigenvalue scalar spectral (·-self-adjoint) 
property, the semigroup property and equivalence to the 
self-adjoint Hamiltonian-like operator of (3.28) are again 
valid here. 

Next we consider the case where the potential VI2J is 
introduced along the diagonal 

(4.5) 

Denote Ht23 = T + V123 , G123(z) = (z - H\23)~ 1, and let 
Irfl 1~3) satisfy (E - H 123 )lrfI 1~3) = 0 and correspond asymp
totically to a plane wave. Further define t j1m 

= V; + VjG 113 t i1m so G j~ 123 Vi = G 113 t j1m, 
V; 14> j~ 123) = t j1m lif 113) and 14> j~ 123 ) 
= (1 + G 113 t ll23)l4> 113)' 

Let us suppose first that there is no eigenvalue common 
to the point spectra of Hand HI23 should these sets be non
empty. Then the imbedding formula for the true three-parti
cle bound states is given by 

where suitable regularization is required if En 
EC(J'(H123 ) = [0, (0). Similarly, for the two-cluster scattering 
solutions a = 1,2,3, 

From the same approach as described previously, one ob
tains for the breakup-channel solutions 

(\IIO].))k = DkJ.I4> 11.1) + G 113 t [=/12.114> /1.1) 

+ G 1~3t ,±/I23 G 1~.1 I J!}11f/(i'-), (4.8) 
jerk 

k=1,2,3. 

A set of spurious solutions providing a basis for .'/ is 
given here by ~i = Oil if ), i = 1,2 where Irfl ) satisfies 

(E - HI2.1)lif ) = o. (4.9) 

So as well as the spurious wavelike solutions apparent 
from (4.8), there may also be real-eigenvalue-normalizable 
spurious solutions. Under an appropriate L 2 assumption, the 
spectral and semi group properties described previously 
again hold for this operator, except that it is now equivalent 
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to 

° ° ) o . 
HI23 

Let us return to the case where there is an accidental 
coincidence of one or more eigenvalues of Hand Hm. It is 
clear that the simple imbedding procedure for the bound
state solutions of H is no longer valid. If such a solution is 
missing then a simple adaptation of the discussion of Appen
dix C shows that a generalized eigenvector may be construct
ed instead as a replacement. The operator HF under the L 2 

assumption is type-one spectral. 
A slightly different approach is to explicitly introduce a 

fourth breakup channel, still preserving the summation 
property (l.l). We consider (cf. Newton31

) 

VI VI 
HF = 

(

T+ VI23 

V2 

V

I23 

) 

V2 ' 

V3 T+ V3 

(4.10) 

which acts on vectors'll with four components IlJIj ),) = 0,1, 
2, 3. The imbedding formulas for both the true three-particle 
bound states as well as the asymptotic two-cluster scattering 
solutions again have the same form 

IlJIo(n) = Go(En)Vl23llJ1(n), 

I I/) (n) = Go(EnWjllJl(n), (4.11) 

) = 1,2,3, 

where a suitable regularization is required if En >0, and for 
a = 1,2,3, 

IIJI a"D) = G l (E )VI23IIJ1 ;} ), 

IIJI ~ ) = G cit (E) Vj IIJI a± ), (4.12) 

) = 1,2,3. 

The usual approach for the breakup-channel solutions yields 
for)* = 0, 1,2,3 

3 

+G o±ti13I¢) +GltlihGl 2: VjllJl o±), 
j= \ 

('IInt-) k = boJ-11/> ) 
+ Go±t til/» + Go±t k±Gl 

x(vm + 2: Vj)llJI o±), 
Hk 

k = 1,2,3, (4.13) 

where t 1~3 satisfy t 113 = Vm + VmG rf t 113 so G i~3 VI23 
= G l t \"'23' V123 I¢ 1}3) = t i131¢ >, and 11,6 113) 
=(1 + Glt!'13)I¢)· 

It is clear from (4.13) and also from simple rearrange
ment of the differential equations that there is a set of plane 
wave spurious solutions which span .J". Under the appropri
ate L 2 assumption, the spectral and semigroup properties 
described previously again hold for this operator, which is 
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equivalent to 

o 0 
Ho 0 

° Ho 

° 0 

V. DISCUSSION 

We briefly review the discussion ofL'Huillier et al. 15 on 
the componentwise interpretation of the asymptotic two
cluster scattering solutions as this gives further insight into 
their nature. These sorts of considerations also lead to simple 
deductions on the nature of the spurious wavelike solutions 
compatible with our findings. These results are of more gen
eral applicability, as will be observed with regard to the N
particle Faddeev-like equations of the above authors. In fact, 
the Faddeev equations considered here are just one example 
of a wave-function formulation of many-particle scattering 
theory where the components of the asymptotic two-cluster 
scattering solutions are related to the Hilbert space solution 
by operators acting as asymptotic filters in various asymp
totic regions, i.e., selecting specific types of outgoing waves 
(see Vanzani et al.32

). 

For the spatially-infinite Faddeev equation of Sec. III, 
the filter operators are just those used for the imbedding of 
the corresponding scattering solutions, i.e., 

Fj(E) = Go±(E)Vj ) = 1,2,3, (5.1) 

so II/)} = Fj IIJI). Since Vj is zero outside the)-tube, \5 IlJIj ) 

must satisfy (E - T) IlJIj ) = 0 there, and thus for the a = 1, 
2,3 scattering solutions corresponds to a (hyper-) spherical 
breakup wave distribution among all three components. 
From the differential form of Faddeev's equation, for any 
eigenvector, 

(5.2) 

where the Faddeev source S J = Vj'2k h IlJIk ) is confined to 
the) tube. Thus outside the) tube, II/) satisfies 
(E - T)llJIj ) = 0, which can correspond to the breakup part 
of a scattering solution or a spurious plane wave solution. 
The nonspurious part of II/) evolves under ~ asymptoti
cally in the) tube and thus supports bound states only in 
channel). 

If we consider the scattering solutions of the four-chan
nel Faddeev equations, then the choice of asymptotic condi
tion for the incoming part can always be made to give the 
incoming wave function components the appropriate phys
ical interpretation (including the breakup, i.e., choose 
)* = 0). Also, only II/) can support) channel bound states in 
the outgoing part of the solution. For '110 (0) or'll a± a = 1,2,3 
where E> 0, there will, however, be a (hyper-) spherical out
going breakup wave distributed between all four compo
nents, thus destroying the "perfect" componentwise 
interpretation. 33 

The N-particle Faddeev-like equations of L'Huillier et 
al. have the form 

where r and a are two-cluster channels and r y is the irredu-
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cible y-connected potential. The asymptotic two-cluster 
scattering solutions (and true N-particle bound state solu
tions) may be imbedded into solutions of the above equation 
using the filter operator Fy(E) = G o± (E )ey'y. For scattering 
solutions, ('II)y includes a y-bound-state part (should it exist) 
in the y tube as well as finer-clustered parts in appropriately 
larger regions. By inspection we see that these equations also 
have a set of plane wave component spurious solutions. 
Without a demonstration of the imbedding of various multi
cluster scattering solutions, a complete spectral theory for 
the operator corresponding to (5.3) is not available. 

Reviewing the results presented, we note that the Fad
deev type channel-space Hamiltonians examined here pro
vide the first example of the postulated scalar spectral struc
ture for general channel-space Hamiltonians5 (except in 
certain "accidental" cases). For a spatially infinite system 
with pairwise interactions (Sec. III) the operator is particu
larly simple, having no normalizable spurious solutions and 
having a real spectrum. Furthermore, the wavelike spurious 
solutions have the simplest possible structure for the three
channel, three-particle case, being plane wavelike every
where rather than just asymptotically. The second example 
of Sec. IV is more indicative of the general case, where nor
malized spurious solutions may also exist (although this case 
is still special in that the solutions have real rather than com
plex eigenvalues). The technique of elucidating the channel
space Hamiltonian structure by presenting an equivalent op
erator with simple structure has broader applicability except 
that normal operators must in general be used. 34 

For both infinite and spatially confined systems, exam
ples of the possible breakdown of the scalar spectral property 
have been given. A normalizable physical eigenvector is "re
placed" by a spurious one, as has been anticipated from spec
tral theoretic arguments for general channel-space Hamilto
nians.s The method of construction of appropriate 
generalized eigenvectors is also quite general, given a basis 
property of the spurious solutions on Y. 

In future work, the nice scalar spectral property of the 
Faddeev Hamiltonian will be a powerful tool in analyzing 
the structure and spectral theory of related Hamiltonians, 
e. g., the three-particle BKL T choices. 34 Spurious multipliers 
are used here as intertwining operators. 

APPENDIX A 

We review some results developed previously5 which 
relate the imbedding of H eigenvectors to the completeness 
and basis properties of H eigenvectors. If the physical and 
spurious eigenvectors are complete on the channel space, 
then it is necessary for all of the Hilbert space eigenvectors of 
H to be imbedded into those of H (strictly, "almost all" for 
continuous eigenvalues). There are also partial converses to 
this result. Suppose that all the eigenvectors of H are com
plete, so any vector in H can be approximated in norm by a 
certain class of linear combinations of these eigenvectors. 
Suppose, first, that the corresponding approximating linear 
combinations of channel-space eigenvectors are convergent 
(a trivial result if all the eigenvalues are discrete, i.e., the 
spatially-confined case5

). Then we have the physical chan-
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nel-space eigenvectors together with any complete set on 
Y = ! 'IIE~ : La \1/1 a) = 0 1 are complete on ~. Second, 
suppose that for any convergent linear combination of eigen
vectors of H, the corresponding linear combination of chan
nel-space eigenvectors is convergent in norm. Then we have 
that the physical channel-space eigenvectors together with 
any basis for Y form a basis for ~ . These results are used in 
Sees. II, III, and IV. 

APPENDIXB 

An operator T for which there exists a countably addi
tive resolution of the identity {E(a ) 1 is called spectral. In 
particular, such bounded projections commute with each 
other, with T and E(q} ) = 0, E(C) = 1. Such operators may be 
decomposed as follows: 

where S = SA E(dA ) is the scalar part and N is quasinilpo
tent, i.e., 

lim IIIN"IIII!" = O. 
n - .. co 

{ E(a ) 1 commute with both Sand N. 
If/( ) is analytic on an open set.:1 (T) containing the 

spectrum arT) ofT, then we have the functional calculus 
(formally) 

I(T) = "~O (~;) L IT/ 1")( A) E(dA) 

and 

I(S) = fl( A ) E(d A). 

We say a spectral operator T is to type m if Nm + I = O. If 
m < 00, then the residual spectrum Ra(T) = 0. Type '0' spec
tral operators are called scalar spectral, e.g., 

n X n matrices are spectral 

normal operators are scalar spectral, 

S is scalar spectral. 

Sufficient conditions for the spectral property have been de
scribed by Dunford and Schwartz? I Direct verification of 
these is, however, expected to be extremely difficult for 
channel-space Hamiltonians (Chandler'5). An alternative 
characterization is more convenient. 1fT is spectral and the 
spectrum is denumerable, then every vector in the space has 
an unconditionally convergent expansion in terms of"gener
ali zed eigenvectors" 'II n say. 1fT is type m, then these satisfy 

These ideas extend in the usual "weak" fashion to the case 
where a continuous spectrum is present. Thus for scalar 
spectral operators, e.g., HF , the standard type of eigenvector 
expansion is valid. We shall show that the more general type 
1 operators are relevant to the analysis of channel-space 
Hamiltonians where, for example, not all the Hilbert space 
Schrodinger equation solutions are imbedded into physical 
eigenvectors. 
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APPENDIXC 

Here we investigate a situation where the scalar spectral 
property of the spatially confined Faddeev Hamiltonian HF 
could breakdown. This is the case where one or more eigen
values of H and He accidentally coincide, possibly causing 
the simple imbedding procedure for the corresponding H 
eigensolutions not to be valid. Specifically, suppose that 

En =E?,. =E(K),say,wherenE///·",mE./(", 

whereJJl" and J/" are finite sets (for each K). 
To understand the cause of the breakdown of imbed

ding, it is instructive to consider the above case as the limit of 
a sequence of well-behaved problems (as discussed in Sec. II). 
We perturb He and Hby £ Ve to give He and H with non coin
cident eigenvalues E?" and En and corresponding eigenvec
tors I¢ (m) and 1«P(n), respectively. Thus En - E?,.~ as 
£-+0 if nE/Y" , mE./(". Weare particularly interested in the 
behavior of'qI(n) with nE.;/I" as £~. Now, for nEff", 

1«P(n) = Ge(En WI«P(n) 

= I (¢(~)I vL~(n) 1¢lm) 
m£~. En -E m 

+ ~e(EnWI«P(n), 
where 

Gelz)=(z-il
e
)-'= I 1¢(m)(¢(m)1 +~e(z), 

m£~. z-E~ 

so (¢ (m)1 V 1l/i(n)/(En - E?,. )-+(tP (m)\ CJI(n), a finite con-
stant, as £-+0. 

From Sec. II, the components of the imbedded channel
space solution qI(n), nEff", are given by 

\ «Pj(n) = I (¢(m)I~I~(n) I¢(m) + ~e(En)Vjl«P(n) 
m£k. En - Em 

and 

I¢ (m)-+ltP (m), 

,'1 e(En)~ 1«P(n)_~ e(En)~ I CJI(n), 

(¢(m)1 ~Il/i(n) . 
- _ ->-00, J= 1,2,3, 

En -E?,. 

as £-0. Consequently if nEY", 

d· ( ij/(n) (.l..i() . ) 1St -_-- ,span '!' m I = 1, 2, mE~,,) -+0 as £---..0, 
jj'l1(n)11 

i.e., the normalized form of the physical solution ij/(n) co
alesces with the spurious solutions cf>i(m) i = 1,2, mE./(" as 
£_0. 

Let us now return to the analysis of the limiting situa
tion described above. Suppose that there are no imbedded 
phy~ical eigenvectors corresponding to I CJI(n) for 
nE1/'" ( ~ .;)i,,) for each K. First observe that for such n, if we 
choose any 'I1(n) such that I.}=, I ~(n) = I CJI(n), then 

(HF - E(K))'I1(n)EY. 

Further, it is easily verified that we can modify 'I1(n) by add
ing a suitable linear combination of the c\li(m) i = 1,2, 
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mLit ", so that, specifically, 
2 

(HF -E(K))'I1(n) = I I C7,m c\li(m) 
i= 1 mE.//

K 

for some C ~m not all zero. With such a choice we have 

(HF - E(K)f'l1(n) = O. 

Since HF couples 'I1(n) and c\li(m) for nEff .. , mE./( .. , it is 
not scalar spectral. However, given the [z assumption, it 
could at worst be spectral of finite type since the coupling is 
on a finite-dimensional subspace and the above construction 
of the generalized eigenvectors 'I1(n) shows that it is type 1. 
This results from the summation property of H F and the 
completeness of the spurious solutions. To elucidate this 
structure we observe that since I 'I1(n), c\li(mll provides a basis 
for CG', we may uniquely define a set of biorthogonal dual 
vectors I ~'(n), ;i'(mll. Clearly 

(~'(n))j = (CJI(n)l, j = 1,2,3 

and (H~ - En)~'(n) = 0'. 

lt is readily verified that, provided mLlt" for any K, 

(~i'(m), (HF - E~)'I1) = 0 for '11 = cJ>i(m), 'I1(n), 

where nM/" for any K, and if nE:1/'" then 

(;"(m), (HF - E?" )'I1(n)) 

= (;i'(m), it, pE.2;. CZpc\li(p) + it, PE-2;.(E~ - E~)'I1(n)) 
=0, 

Consequently, (H~ - E?,,) ~i'(m) = 0' (provided mU ,,). 
However if m~" for some K, then 

(~i'(m), (HF - E?,.)'I1(n)) = C7.mifnE/V~ 

so ~i'(m) may not be an eigenvector of H;'. However, it is 
easily demonstrated that 

(H~ - E?,. f~i'(m) = 0'. 

By way of example, consider the simplest case, where the 
only eigenvalue coincidence is En> = E~. = E., say. Sup
pose that the imbedding for I CJI (n*) breaks down; then we 
construct 'I1(n*) so that 

(HF - E. )'I1(n*) = C,c\I'(m*) + Czc\l2(m*). 

lt is appropriate here to replace c\li(m *) with linearly indepen
dent linear combinations cf>i(m*) so that 
~'(m*) = C,c\I'(m*) + C2c\12(m*). T~n if ~'(n*), ~"(m*), 
~z'(m*) are the biorthogonal duals, ~2'(m*) is now an eigen
vector of H~, and HF has the structure 

'I1(n*) cf>'(m*) cf>2(m*) 

~~:~:~) (~. :. ~) 
~2'(m*) 0 0 E. 

In the notation of Appendix B, E(En), n =In* and E(E?,.), 
m =I m * are simply the projection operators onto the corre
sponding H rinvariant eigenspaces. The resolution of the 
identity is completed by 

E(E.) = ('I1(n*)~'(n*) + cf>l(m*)~"(m*)) + cf>2(m*)g2'(m*), 

which also decomposes as a sum of two HF-invariant projec-
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tion operators. Finally, 

N = (HF - E. JE(E.) = ~}(m*);'(n*), 
and, of course, N2 = O. 

Various other specific cases can be analyzed similarly. 

APPENDIX D 

Suppose that the L 2 assumption for H F of Sec. III holds. 
Then H F is real eigenvalue scalar spectral and satisfies a 
mean ergodic theorem. Explicitly, the following holds. Let 
E(En) denote the projection operator onto the bound-state 
eigenvectors with eigenvalue En. Then 

E(En)= s·lim __ l_f"e±itHFe=FiIE"dt. 
(I, - I,)~oo t2 - t) " 

To prove this result directly one first expresses a vector 
'l'in C(f explicitly as a linear combination of the basis eigen
vectors of HF • Then the Lebesgue dominated convergence 
theorem may be used to show that 

II E(En)'I' - _1_ I" e ± itH F e =F iIE"'I' dt 11-0 
t2 - t} I, 

as t2 - t}-oo. 
Alternatively, the result may be proved using (3.28) and 

the mean ergodic theorem for the self-adjoint operator 

o 
H o 
o 

0) o . 
Ho 

It is easily checked that for any 'l'EC(f such that~" 11/',,) 
= II/' (n) we have E(En)'I' = 'I'(n). 

Consequently the mean ergodic theorem provides an 
alternate imbedding procedure for the bound-state solu
tions. We remark that the existence of such an imbedding for 
general channel-space Hamiltonians is at present 
unresolved. 

APPENDIX E 

In the expression (3.29) for the spurious dual eigenvec
tors we must examine singular expressions of the form 
(;i'(k), 'I' a± (ka

, m)). It is convenient to introduce a Jacobi 
decomposition of the wave vectors, i.e., k = (k), k23) = "', 
where k} is the momentum of I relative to the pair 23 and k23 
the momentum of 2 relative to 3. For the corresponding ki
netic energy E = E) + E23 = ''', and plane wave 
I~ (k) = I~ (k}) ® I~ (k23J> = .... 

It is easily verified from (3.8) and (3.10) that 

('I'a± (k", m))j = oaJ I~ (ka) ® I~m) 

+ Gt-t/Gt- Vjll/' : (k", m), 

a = 1,2,3, 

so, for example, 

(~i'(k), 'I'}±(kl, m)) = X ;o(k} - k})(~(k23l1¢m(23) 

+ L xj(~(k)IGo±t/GtVjll/')±(kl,m). 
j~j' 

From (3.14) and notingthatx j. = o eliminates theo (k - kG) 
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term, we have 

(~i'(k), '1'0'0.) (kO)) 

= X ([o(k) - k~)(~ (k23)IG l (E~3)t}(E~3 )I~ (k~3» 
+ (~(k)IG f t I± G a± V I 11/'0'0.) (kO) ] 

+ (1-2-3-1) + (1-3-2-1), 

and here G a± and t~ are the true two-body operators corre
sponding to G a± and t j ± . The operators G t and G l ap
pearing to the left above may be decomposed into Cauchy 
principal-value and energy delta-function parts. 3

) This 
makes explicit all delta functions in the above expressions, 
since the remaining operators are connected. The detailed 
behavior of the regular terms appearing depends on the na
ture of the potentials. 27 

APPENDIX F 

Some results for the dual eigenvectors in the spatially 
infinite case of Sec. III are presented here, omitting eigenvec
tor labels where possible, for simplicity. By definition, for 
a=I,2,3. 

[;:T=(I/',;tl, 'tIi 

so [S- ell ']) ~ (~(all ® (~m I, 'tIi asymptotically where I~ (a) 
is a plane wave for particle a, and I~m > is a bound state in the 
other particles, However, 

~ , = ~~ + ~± V FGJ' , 

where [s~]) = Oaj (~(a)1 ® (~m I· Also, since 

[~± ']j = (I/' <it I, 'tIi, 

we have that [U 't ~ <~ I, 'tIior~±' ~X3'(~ I in the breakup 
region (here I~ ) is a plane wave) and 

~ , = ~t-' + U V FGJ' , 

where [So± ']) = (~/ I, 'tIi so ~Oi '.(E - Ho) = 0' and So±' 
~X3' <~ I in the breakup region, The above mentioned inte
gral equations for ;a± ' and ~:!- ' reduce to the LS-GT equa
tions if we explicitly set all the components of these vectors 
equal. 

For the spurious duals, from biorthogonality, we must 
have 

;±i'~xi'<~I, i= 1,2, 

in the breakup region. They must satisfy the integral 
equations 

;+1' =;1:i' +;±i'VFG(;, 

where [;' 1'1; =X;(~/ " 'tIj. 
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In this paper, we investigate the existence and completeness of the wave operators 
W ± = s-1imt~ ± 00 exp (itH).9 exp ( - itHo) corresponding to the quantum-mechanical 
scattering of nonrelativistic particles by certain classes of impenetrable noncompact surfaces 
bounding domains nCR v (v > 2) which contain a half-space and are contained in another half
space. Here, Ho is the usual negative (distributional) Laplacian -.1 in £"0 = L 2(RV), H is the 
negative Dirichlet Laplacian in £" = L 2(n), and .9 is an appropriate identification operator. 
Under these conditions, we prove by elementary methods that W ± exist as partially isometric 
operators whose initial sets have a transparent physical meaning. Suppose now that the domain n 
C R V also has the periodicity property (x,xv)5O:::::>(x + l,xv)5O when I ranges over a Bravais lattice 
in R V

- I, where we writexERv as (x,x v )' withxERV- 1 and xvER. Then (a) RanW ± = cW'scatt (H) 
and (b) W + are asymptotically complete, in the sense that 
£" = cW'sc~tt (H) EI1 cW'slIrf(H). Here, cW'scatt (H) and cW'.urf (H) are suitably defined subspaces of 
scattering and surface states of Jr', respectively. Results (a) and (b) are proved by reducing the 
original scattering problem to a family of "scattering" problems in a periodicity cell of n, using 
direct-integral methods, and by then using methods analogous to those of Lyford. The present 
work constitutes a rigorous foundation fo~ the theory of scattering onow-energy atomic beams by 
crystal surfaces, considered as impenetrable periodic barriers. Our methods should also be 
applicable to rigorous investigations of classical scattering by periodic surfaces with Dirichlet or 
Neumann boundary conditions. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

In this paper, we give a time-dependent treatment of the 
quantum-mechanical scattering of nonrelativistic particles 
by certain impenetrable surfaces, and particularly by period
ic surfaces. In this context, impenetrable means that the rel
evant wavefunctions obey the (generalized) homogeneous 
Dirichlet condition at the surfaces considered. Quantum
mechanical scattering of nonrelativistic particles by impen
etrable surfaces has been successfully used, \ at the level of 
formal stationary scattering theory, as a model for low-ener
gy atomic-beam scattering by crystal surfaces. The present 
work initiates the study of such scattering phenomena by 
rigorous methods. We have also applied the methods of this 
paper to investigate rigorously classical wave scattering by 
periodic surfaces with the homogeneous Dirichlet or Neu
mann boundary condition~. The results will be reported in a 
subsequent publication. 

Our point of view will be that of time-dependent scatter
ing theory with two Hilbert spaces. The "unperturbed" Ha
miltonian Ho is the negative distributional Laplacian in ,W'o 
= L 2(JRv

) (v > 2) and the "perturbed" Hamiltonian H is the 
negative Dirichlet Laplacian - LlD(n) in Yr = L 2(n), 
where n C JR" is an appropriate exterior domain and 
- .j D(n ) acts as - Ll on suitable elements of Yr' vanishing 

on an in a generalized sense. The class of exterior domains 
considered here is such that n always contains a space and is 
contained in a half-space. Most of our discussions refer to the 
case when, in addition, n has the periodicity property that 
(x,x,) En:::::> (x + I, Xv) En, where I ranges over a general 
tn JR" - I and where we have written X E JRV as (x,x v ), with 
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XEJRv - \ and Xv E R. No smoothness or regularity conditions 
are imposed on an in this paper. 

It is surprising that the time-dependent scattering prob
lem posed by such exterior domains has apparently not been 
treated in the literature (even at the formal level), except for 
essentially trivial cases, as a perturbation of Ho by the rel
evant noncompact surface, although this is very natural 
from a physical viewpoint. 

We proceed to describe the organization of the present 
paper. 

In Sec. II, we state and prove Theorem 2.1, which ap
plies when the domain n C JRV of interest contains a half
space and is itself contained in one, but n need not have any 
periodicity properties. This theorem asserts that the wave 
operators 

W +- = W + (H,Ro) = s-lim exp(itH} ,;/, exp( - itHo} 
- -" ( 'to ± Y:: 

appropriate to scattering in such exterior domains are par
tially isometric, where [;P is a suitable identification opera
tor. The initial sets of W ± have transparent physical 
meanings. 

The main results of the paper, Theorems 3.1 and 3.2, are 
stated in Sec. III, where the strategy of their proofs is also 
discussed. These theorems apply when n. besides being as 
stated in the last paragraph, also possesses the periodicity 
property mentioned above. Theorem 3.1 asserts that 
Ran W + are equal to the subspace %~scatt (H) of scattering 
states, Consisting of those f E ,'J{" which are evanescent from 
each region bounded by an and a hyperplane X v = const. 
(The coordinate x" is as above. ) One expects that ')Yscatt (H) is 
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generally a proper subspace of the subspace of absolute con
tinuity of JY' with respect to H. Theorem 3.2 asserts that 
W ± are asymptotically complete in the sense that JY'scatt (H) 
is the orthogonal complement, with respect to JY', of the 
subspace JY'surf (H) of surface states. JY'surf (H) consists of 
thosef E JY' which for all time remain "close" to an in a 
suitable sense. Our definition of JY'scatt (H), as well as our 
completeness results, are analogous to the corresponding 
definition and results in a paper of Davies and Simon,2 deal
ing with scattering by crystals. (The physical problem con
sidered in the present paper is different from those consid
ered in Ref. 2 and our methods of proof, except for the use of 
direct-integral procedures, are mostly very different from 
theirs.) 

The remaining sections, Sees. IV-VIII, are devoted to 
proving Theorems 3.1 and 3.2 by means of a series of lem
mas. The proof of Theorem 3.1 involves two steps. The first 
is to replace the original scattering problem (Ho,H) by an
other time-dependent scattering problem (H O,H), where H 0 

is the negative Dirichlet Laplacian - ~ D (n 0), n 0 denoting 
an appropriate half-space containing n. The advantage of 
the latter problem over the original one, from the standpoint 
of the methods used here, is that H is a less "drastic" pertur
bation of H O than of Ho. The second step is to exploit the 
periodicity of n to reduce the study of the problem (H O,H) to 
that of a family of "scattering" problems in an external do
main ru which is a periodicity cell of n, and is, therefore, 
generally a distorted cylinder. We handle this family of prob
lems by mathematical techniques analogous to those used by 
Lyford in his studies of the spectral and scattering theory of 
distorted cylinders3

-
5 and distorted periodic waveguides.6 

The second step mentioned above relies on direct-inte
gral methods, whose usefulness in other scattering problems 
involving periodicity properties is well recognized.7 The as
sumed periodicity of n allows one to represent JY' as a con
stant-fiber direct integral g L 2(ru) d/1, where d/1 is propor
tional to Lebesgue measure in R" - I and Y C R" - I is a 
certain open parallellipiped. As explained in Sec. V, in order 
to prove Theorem 3.1 it suffices (modulo standard measure
theoretic technicalities) to establish that the wave operators 

s-lim exp (ithe )17 exp( - ith ~) (f)EY) are partial isometries 
I ----±- rx:, 

which are complete in the usual sense,9 where {h~, f) E Y} 
and {h o' f) E HI} are families of self-adjoint operators in 
terms of which Hand H 0 can be represented as S~ h(l d/1 and 
S~ h ~d/1, respectively, and 17 is an identification mapping. 
The completeness of these wave operators is proved in Sec. V 
by using a version of well-known theorems of Birman and 
B I I, k",od Ii II e opo s 11 ue to Ly ord, together with properties of 
the h ~ 's and h,/s discusssed in Sec. IV. 

In Sec. VI, we prove a lemma which states, in particu
lar, that the point spectrum of each he is nowhere dense in lR. 
In Sec. VII, we establish a lemma giving a bound of the 
L 2(ru I-norm of (hfJ - {;) -1 for every f} and a certain dense 
set of/'s as {; approaches suitable points ofR. These two 
lemmas are applied in Sec. VII to show that each hfJ has an 
empty singular continuous spectrum. The latter result plays 
an essential role in the proof of Theorem 3.2 which is given in 
Sec. VIII. 
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The function-space notation used in the paper is ex
plained in Appendix A. Appendices Band C are devoted to 
stating and proving various results needed in the main text. 

After completing this work, we learned of the recent 
study ofWilcox l3 on classical wave scattering by plane dif
fraction gratings with the homogeneous Dirichlet or Neu
mann boundary conditions. In that study, and in contrast to 
our approach, Wilcox constructs the relevant operators and 
proves their completeness by using his theory of Rayleigh
Bloch expansions. 14 He also derives a number of other re
sults. In Ref. 13, the above completeness property is estab
lished under the hypothesis that no Rayleigh-Bloch surface 
waves exist. (These waves are analogous to the surface states 
considered in the present paper.) 

II. EXISTENCE AND PARTIAL ISOMETRY OF WAVE 
OPERATORS FOR SCATTERING BY A GENERAL 
CLASS OF IMPENETRABLE NONCOM PACT SURFACES 

Let n be a domain in RV (v>2) such that 

(I) Rv
- ' X [/3,oo)CnCRV-1 X [a,oo) 

for some 0 < a </3<!. 
We will write the points of RVas (x,xv) , with x 

ER" - land Xv E R. Clearly, (I) implies that an is contained in 
the "slice" a<x" </3. No conditions other than (I) will be im
posed on the domain n in the present section. 

Let 

dY'0 = L 2(RV), cW' = L 2(n ), 

and define the self-adjoint operators 

Ho= -~, H=~D({})' (2.1) 

where ~ is the usual distributional Laplacian in dY'o and 
~ D (n ) is the Dirichlet Laplacian in JY, acting by - ~ 15 on 
the (equivalence class of) functions in its domain, which is 
given by 

(2.2) 

Here, L 2(~;n) is the Hilbert space defined in the first para
graph of Appendix A and H 6 (n ) is the usual Sobolev space. 

Definition: Let Ko and K be self-adjoint operators in the 
respective Hilbert spaces %0 and %, with Ko having a 
purely absolutely continuous spectrum, and let B: ,5Yo~ .r 
be a bounded operator. Then the wave operators 
W ± (K,Ko;B ) are defined by 

W ± (K,Ko; B) = s-lim exp (irK) B exp( - itKo) 
t- '""± CJ:J 

when they exist. [For all the wave operators W + (K,Ko;B) 
considered here, Ko is an operator obeying the above spectral 
requirement. ] 

In this section, we discuss the wave operators 

W ± = W ± (H,Ho) = W ± (H,Ho; [1'), (2.3) 

as well as the operators W ± (H,Ho; J), which is another way 
of writing W ± which has certain well-known technical ad
vantages. Here, fYJ: dY'o--+~' is given by 

(9f)(x) = fIx), fEJro, xEfJ, (2.4) 

and J:Fo-')Y by 

(J f)(x) = j(xvJ fix), fEcW'o, X = (x,x,.)Efl, (2.5) 
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where} E C 00 (lR) satisfies the condition 

j(yl = {O, y<!, 
1, y-,1. 

Theorem 2.1: (a) W ± (H,Ho) exist and are equal to 
W ± (H,Ho; J). 

(2.6) 

(b) W ± (H, Ho) are partially isometric with initial sets 

Yr' ± = {/E Yr'o:}( k) = ° for a.e. k = (kl, ... ,k..,)ERv 

with kv SO}. (2.71 

Remark: The assertion (b) of the theorem has a trans
parent physical interpretation. Intuitively, in order for a wa
vepacketj" evolving as exp( - itHo)/for large negative 
times, to arrive "near" some point of an at t = 0, its Fourier 
transformJ: must have for t __ - 00 support intersecting the 
region of momentum space with kv < 0 in a set of positive 
measure. Again intuitively, if a wavepacket g, in il, which 
was "near" an at t = 0, has been scattered, then the support 
of g/ must, for large positive times, intersect the momentum
space region with kv > ° in a set of positive measure. 

Proof of Theorem 2.1: (a) Let g E Y\lt{V) be of the form 

g(x) = g 1 (X)g2(X v ). (2.8) 

Here, g I E Y(RV - I) and the Fourier transform of g2 is in 
CO'(R'\ {all. Now,gED(Ho)andJexp( - itHolgED(H) (tE 
R), where the second assertion follows by exp ( - itHo)gEY 
(RV) (tER), (I), (2.1), (2.2), (2.5), (2.6), andjEC 00 (Rl. Therefore, 

\ I :, [exp(itH) J exp( - itHo) g) II n 

= II(HJ -JHo) exp( - itHolg\\n 

.;;;" gd IR ·{li j"(xv ) exp[itLl (R)] g2iiR 

+ 21If(x v ) exp[itLl (R)]g; IIR}' tER, (2.9) 

where the primes indicate differentiations with respect to xv, 
Ll (R) is the (distributional) Laplacian in L 2(R), and 
11-1 iA = II·IIL '(A) for each measurable set A C RM 
(n = 1,2, ... ). 

Sincei',j" E CO' (R) and since the Fourier transforms of 
g2 and g; are in C o(R'\ {a}), it follows l6 that each of the 
terms in the last line of (2.9) are.;;; const It \ - (I + £) for each \ t I 
> 1 and € > 0, and hence that the norm in the first line of 
(2.9) is in L f«( - 00, -1)u(l,oo)) as a function oft. Whence, 
because the mapping t--(HJ - JHo) exp( - itHo}g from R 
into iff' is continuous and the set of all g's of the form (2.8) is 
dense in Yr'o, W:t (H,Ho;J) exist. 

By virtue of this result, it suffices to show that 

lim II(J - 9) exp( - itHo)glln = a (2.10) 
l-... ± C10 

for each such g in order to conclude that W ± (H,Ho) exist 
and are equal to W ± (H,Ho;J). Now, by (2.4)-(2.6) and} 
EC "'(R), (( J - 9)f)(x) = r{x)f(x) (fEYr'o, xEfl), where r 
EC "'(n) vanishes for Xv -, 1. Hence, (2.10) follows by the 
same result 14 invoked above. 

(b) We want to prove that 

II W:t /II~ = L.k,~ol/(kWdk, fEYr'o· (2.11) 
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To prove (2.11), we first remark that 

lim ((exp( - itHolfl\~o,n = 0, 
t---\. ± ao 

for each/EYr'o, where 

n° = RV 
- 1 X R + , 

with R + = (0,00). 

(2.12) 

(2.13) 

Equation (2.12) follows for f E Yr' 0 of the form specified 
by (2.8) and the sentence following that equation by an argu
ment of the same type as that used to estimate the large It I 
behavior ofthe expression in the last line of (2.9). A density 
argument completes the proof of (2.12). 

As is well known,17 the unitary operator Z/: 
Yr'o-iff' (tER) with action 

(Z/ f)(x) = (2it) - v/2 exp(ilxI2/4t )i((2t )-IX) (2.14) 

on each/E Yr'o, approximates exp( - itHo) in the strong 
sense for t_ 00 : 

dY'o-lim [exp( - itHo) - Z/ ] = o. (2.1S) 
t--.. ± 00 

Using, in particular, the unitarity of exp( - itHo), (2.12), 
(2.14), and (2.1S), we obtain 

= lim 
t--. ± 00 

= lim 
t-- ± 00 

Ilexp( - itHolfll;l 

Ilexp( - itHo)fll~" 

\\ZJ\I~ .. = i~~o\i(kWdk .• 

The techniques ofthis paper are not suitable for proving 
the desired completeness properties of the wave operators 
W ± for the general class of exterior domains n considered 
in this section. For this reason, we now turn to a more re
stricted class of exterior domains, of considerable physical 
interest, for which these techniques do yield the complete
ness of W ± in a physically very satisfactory sense. 

III. SCATTERING BY PERIODIC SURFACES: MAIN 
RESULTS AND STRATEGY OF PROOF 

The remaining sections of this paper will be devoted to 
scattering by periodic surfaces at which the homogeneous 
Dirichlet condition is imposed. 

A. Statement of main results 

Theorems 3.1 and 3.2 of this section are our principal 
results. Before stating them, some definitions are in order. 

Let 

L = fIERv-l:l = "f.1nia i • niE'l, i = l, ... ,v -I}. (3.1) t 1=1 

where{a; };-: II is a set of v-I linearly independent vectors 
in R v

-
I

. 

Henceforth, n will denote a domain in R" (v;;. 2) which 
satisfies Condition (I) of Sec. II and the additional condition 

(II) (Periodicity) For all I E L, 
(x,x,.) En=> (x + I,X,,)E n. 

As before, H will be defined by (2.1) and \2.2). Let 
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JV scatt (H), the subspace of scattering states of JV = L 2(11 ), 
and JVsurf (H), the subspace of surface states of JY', be de
fined by 

JY'scatt (H) = {f~: lim II exp( - itH )flln. = 0, 
f ___ ± 00 

(3.2) 

JVsurf(H) = {f~:lim supil exp( - itH)flln,n
G 

= O}. 
a-OC) tER 

Here we have used the notation 

Ao = {(x,xy)EA: Xy <a}. 

(3.3) 

(3.4) 

It is easy to show that 'W'scatt (H) and JY'surf(H) are closed 
linear manifolds of JV, i.e., that they are subspaces in the 
sense in which this word will always be used in this paper. 
One can also show that JVscatt (H) and JY'surf(H) are mutual
ly orthogonal (Lemma 8.1). Notice that 
JVscatt (H) C JVac (H), where JVac (H) is the subspace of ab
solute continuity of JV with respect to H. In general, one 
expects that this inclusion is proper, a point which has been 
forcefully made by Davies and Simon2 in the context of a 
problem considered in the latter reference. 

Theorem 3.1: The wave operators W + in (2.3) are com-
plete, in the sense that _. 

W·± W± =E±., 

W ± W·± = Pscatt , 

(3.5) 

(3.6) 

where E ± and Pscatt are projection operators with domains 
jy"o, and JV, respectively, with E ± JVo = JV ± [see (2.7)] 
and Psc,tt £" = JVscatt ' 

Theorem 3.2: Asymptotic completeness holds for W + 

in the sense that -

(3.7) 

Remark: The way in which Theorems 3.1 and 3.2 have 
been stated suggests that they are true for a wider class of 
exterior domains than those considered in this section, not 
necessarily having any periodicity properties. An important 
problem for future research will be to extend Theorem 3.1 
and 3.2 to such more general domains. 

B. Method of proof 

Some further definitions are needed before outlining 
our approach for proving Theorems 3.1 and 3.2. 

Let 

(1)0 = G xR ~ , 

& = 11 n &0, 

where G is given by 

(3.8) 

(3.9) 

G= {YER"-I:y = "fly(i)a j , yi')E(O,I), i= 1, ... ,V-I},(3.1O) 
1= 1 

and, hence, is an open periodicity cell of Lin (3.1). By (3.8)
(3.10) and Property (I), & C &0 and &0\& is bounded. Notice 
also that the closures of the union of all the translates of &0 
and & by the vectors of L equal 11 ° [see ( 2.13)] and fl, 
respectively. 

2875 J. Math. Phys .• Vol. 22. No. 12. December 1981 

i=I, ... ,V-I}, 

(3.11) 

where {b,}~ ~ II is a set of v - 1 linearly independent vectors 
in R such that aj·bj = Dij (i,j = I, ... ,v - 1), we define the 
direct integrals 

JV ° = L'" L 2(&0) dp, 

JV' = L'" L 2(&) dp, 

(3.12) 

(3.13) 

of Hilbert spaces, wheredp = I Y 1-ldfJ, dfJbeing Lebesgue 
measure in RV

- 1 and I Y I the Lebesgue measure of Y. We 
denote the "component" of a vector kEJY" in the fJ th fiber 
L 2(&) by k o. 

We define unitary operators UO and U, with domains 

JY' ° = L 2(11 0) 

and JV = L 2(fl ), respectively, and ranges JV ° and JV', re
spectively, wherefl °was defined in (2.13) [JV °should not be 
confused with JVo = L 2(R").] In particular, U is defined as 
follows. IffE L 2(&) is of bounded support,lS then 

(Uf)o(x) = I exp( - if.fJ)f(x + f,xy), 
IEL 

fJEY, X = (X,Xv)ECt>, (3.14) 

where only a finite number of summands in (3.14) are differ
ent from zeroa.e. inN. The set of all suchl's is denseinL 2(&), 
and it is easy to show, using (3.14) together with (3.1) and 
(3.11), that U, restricted to suchf's is isometric: 

IIUfW,r = L II(Uf)olli"w) dp = Ilflli"o)' 

Therefore, U can be extended uniquely to the whole of JVby 
continuity. One can prove that UJV = JY", and hence that U 
is unitary. UO is defined in the same way as U, except with fl 
and & replaced by fl ° and &0, respectively. 

In order to prove the desired completeness properties of 
W ± (H,Ho), we introduce the self-adjoint operator 

HO= -..::1 D(flO), (3.15) 

where ..::1 D (fl 0) is the Dirichlet Laplacian in H 0, acting by ..::1 

on the functions in its domain, which is given by (2.2), but 
with fl replaced by fl 0. As is well known, H ° has a purely 
absolutely continuous spectrum. In some vague sense, His 
"intermediate" between H () and H () (11 ° ell C R''). A crucial 
step here is to represent HO and H as direct integrals of 
operators: 

UOH°(U°)-I = J.,'" h~ dp, (3.16) 

UHU- I = J.,'" ho dp, (3.17) 

where h ~ (fJEY) and ho (BEY) are self-adjoint operators in 
L 2(&0) and L 2(&), respectively, which will be completely 
characterized in Sec. III. Since the functions 
fJ ~h ~and B ~ he from Y (equipped with the measure p) 
into the set of self-adjoint operators in L 2(&0) and L 2(&), re-
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spectively, are measurable, it follows that (3.12), (3.13), 
(3.16), and (3.17), as well as certain other expressions in this 
paper involving direct-integral decompositions, make sense. 
The measurability of e e-+he is asserted by Lemma C.l, 
which is stated and proved in Appendix C. That of e e-+ h ~ 
can be proved similarly. Equations (3.16) and (3.17) will be 
established in Sec. IV. 

Our strategy for proving Theorems 3.1 and 3.2 will now 
be explained. 

By the chain rule and Theorem 2.1(a), 

W ± (H,Ho) = W ± (H,HO;r)W ± (HO,Ho;f3'°), (3.18) 

provided that the wave operators on the rhs of (3.18) exist. 
Here, JO is the restriction of J to ~ = L 2(fl 0) and cW' 0: 
cW'o~cW' 0 is the extension of 9 given by 

(.0'0 f)(x) = fIx), fEPt'o, xEfl 0. (3.19) 

According to Lemma B.l of Appendix B, W ± (HO,Ho;9°) 
exist, satisfy (3.5), and also satisfy (3.6) with Pscatt replaced by 
IL'I110I' Hence, if Theorem 3.1 holds for W ± (H,HO; J O), with 
the rhs of(3.5) modified to IL '1110)' then this theorem holds 
for W + (H,Ho) in its original form. The first step in proving 
that W + (H,HO; JO) have this property is to show that the 
wave operators W ± (he,h ~;77) (eE~) are partial isometries 
which are complete in the usual sense, 77 being the restriction 
of J O to L 2(dl The properties that wO

" w is bounded and 
that in the present Dirichlet case w automatically possesses 
the local compactness property (defined in subsection B of 
Sec. IV) for every bounded subset of H I(W) (Lemma 4.6) are 
both essential in our proof that W ± (heh ~;77) are complete 
(Lemma 5.2). This proofis effected by invoking the previous
ly mentioned variant II of results of Birman and Belopol's
kii. 10 This completeness result leads to a variant of Theorem 
3.1 in which Psoatt is replaced in (3.5) by the projection opera
tor P ~c: ,;y' ~d{ defined by (5.3). The second, and final step 
is to show that P ~c = .9 scatt. This is proved in Sec. VIII and 
is based in an essential way on the result (Lemma 7.6) that 
each he (eE~) has an empty singular continuous spectrum. 

This spectral result is also essential in our proof of 
Theorem 3.2. Given this result, the latter theorem follows 
directly from three elementary lemmas (Lemmas 8.1-8.3). 

IV. SOME PROPERTIES OF THE OPERATORS 

h ~,hli (eE~) 
Various function spaces, such as H 6.100 (n), L ~oc (.::1 ;(;)), 

etc., and the corresponding inner products and norms will be 
used, mostly without comment, in this and the succeeding 
sections. Our notation for these spaces, which is partially 
similar to that ofWi1cox l9 and Lyford,s.1i is explained in Ap
pendix A. 
A.h~ (eE:9') 
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Let 

oY = {rERV,-I:r=2·<t:njbj, njEZ, i= 1, ... ,V-l}. 
(4.1) 

We also need to define 
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fEL 2(WO), a.e. 5ER +, rE~. 

Here, we have used the notations (3.8) and 

A (r) = {xEA:lxl <r} (4.2) 

for an arbitarary subset A C R". The wr (.;5,e)'s are general
ized eigenfunctions of -.::1 in L ~oc (.::1 ;w'o) defined by 

W r (x;5,e) = (2hrlG I) 112 exp[i(r + e )·i] sintxvo 

rEoY, 5ER f- , eE ,ct} , 

and corresponding to the eigenvalue 

Kr(5,e)=5 2 + Ir+eI2
, 

(4.3) 

(4.4) 

where 1·1 = 11·11 R' I in this instance and I G I denotes the 
Lebesgue measure of G [see (3.lO)]. 

Lemma 4.1: Equation (3.16) holds, with h~ (eE,~) the 
self-adjoint operator with domain 

D (h~) = {fEL 2(wO):lL" K;(5,e)1 lr(5,e W d5 < 00 } 

(4.5) 

and action 

h ~ fIx) = - .::1f(x) 

= L 2(wO)p~!i~ I];P LlrIKr(5,e )wr (x;5,e )lr(5,e) d5, 

fED (h ~), a.e. XEUJo. (4.6) 

Remarks: (1) This is a well-known result. 20 

(2) h ~ can also be characterized in a manner similar to 
that in which he is characterized in Lemma 4.4. The present 
characterization, (4.5) and (4.6), is more explicit and its con
sequence (4.7) will be used to prove Theorem 3.1. 

(3) By standard arguments, Lemma 4.1 entails that the 
spectral measure E (·;h ~) for h ~ (eE~) is given by 

(E (D;h ~ )f)(x) = ,B i, XdKr(5,O ))wr (x;5,O )lr(5,(1) dt, 

a.e. XEd), (4.7) 

provided that D C R is a bounded interval, X Ii being the 
characteristic function of D. Under this proviso, (4.7) makes 
sense, since only a finite number ofthe summands in (4.7) do 
not vanish for a.e. X E WO and since each integrand on the rhs 
of (4.7), as a function of 5, vanishes a.e. outside of a bounded 
subset of R + . It follows from (4.4) and (4.7) that the spec
trum of h ~ (OE~) is absolutely continuous and consists of 
the closed interval [A (0),00), where 

A (e) = minjr + e 1
2

, OE:9'. 
TE,j 

B. he (eE~) 
Before defining the family {ho ,0E:9'} of self-adjoint op

erators, we state the following: 
Definition: A complex-valued functionf on fl is said to 

have Property (Pe) for some OEY ifit is of the form 

f(i,x v ) = exp(iO.i)u(i,xv) 

a.e. on fl, where uti + I, xv) = u(i,xv) a.e. on fl for all/EL. 

Let he (OE~) be the operator in L 2(W) with domain 
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D (he) = I fEL 2(.j;W)nH I(w):fhas an extension 

jEll b,'oJii) with Property (Pe ) and (Vg,V f)w 

= (g, -.jf)(", gEDe I (4.8) 

and action 

(4.9) 

Here, for each 8E.C!) , 

De = ! fEll I(w):fhas an extension jEll b,loc (n) 

with Property Po j. (4.10) 
For completeness, we remark that De(8E:§) is the do

main of a densely defined, closed, symmetric, and positive 
quadratic form, say qe: 

qe(g,f) = (Vg,V 1>,,,, J,gEDe· 

The unique self-adjoint operator associated with the form qe 
(8E:§)ishe , whence De = D (h ~). None of these facts will be 
used here, except for the property that each q e is closed. This 
property is stated by the next lemma, and will play an impor
tant role in proving the self-adjoint ness of the he's. 

In Lemmas 4,2-4.4, we consider a fixed, but arbitrary 
8E:§. In the proof of Lemma 4,2, as well as in many other 
arguments in this paper, the notation (4.2) will be used with
out comment. 

Lemma 4.2: De is a closed subspace of H I(W). 
Proof Let {In}C De be a sequence converging tofin 

H '(w), Since by (4.10) each In has an e~ension 
jn = exp(i8,x)un ton which is inHb,loc (n),andhas£,roperty 
(P e), it is easy to show that {in } is Cauchy in H 6,loc (n ). Since 
H b,loc (n) is a (closed) subspace of H ioe (n ), it follows that 
jn _gEll 6.1oc (n). Because of this and the assumption that 
In- lin H I(W), it follows thatglw(r) = Ilw(r) (rER + ), and 
hence that glw = f 

It remains to prove that g has Property P e' This is de
duced easily from the facts that eachjn has this property and 
that Un-U in L ~oe(n), where u(x + l,x v ) = u(x,xv ) a.e. in n 
for alllEL .• 

Lemma 4.3: he is self-adjoint. 
Proof Since CO' (w) C D (he), he is densely defined. It 

follows from (4.8), (4.9), and the fact that D (he)C De that 

(g,hel)", = (Vg,V 1>,,,, f,gED(h e )· 

Hence, he is symmetric, whence h ; = he will follow21 if 
there exists for each gEL 2(W) an element ugED (he) such that 

(he +IL'{w))ug =g, (4.11) 

Now, De is a (closed) subspace of the Hilbert space 
H I(W) by Lemma 4.2, and hence Riesz's representation theo
rem asserts that there exists for each gEL 2(W) a ugEDO such 
that 

(V,Ug )l.,,, = (v,g)w, vEDo' (4.12) 

where C·) I"" is the inner product in H I(W). (Hereafter, we 
will use the inner product and norm notations of Appendix 
A without special comment.) 

An argument similar to one of Wilcox22 shows that ug 

in (4.12) is in L 2(.j;W) and that it also has the property 

.jUg = ug -g, (4.13) 
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so that (4.11) holds, Combining (4.12) with (4.13), we see that 

(Vv,Vu g )(" = (v, -.jUg),,,, vEDe, 

whence ugED(he) .• 

There is an alternative characterization of D(ho) which 
will be very useful in this paper. 

Lemma 4.4: he has domain 

D(he) = {fEL 2(£l;w)nH I(w):f has an extension 
JEL ~)J.j;n )nH6,loc(n) with Property (Pe)}' (4.14) 

Remark: The intersection withH I(W) in the rhs of(4.14) 
is redundant, by Lemma 4.4, D(he ) C fi) e [see (4.14) and 
(7.1)J, and an argument in the proof of Lemma 7.2. The same 
redundancy occurs in (4,8). 

Proof of Lemma 4.4: Consider the set D(he ) defined by 
(4.8) and the set Ee defined by the rhs of(4.14). LetfE D(h5!J 
Then the extension jof fmentioned in (4.8) is in L ~(.j;n) 
by Lemma C.2 of Appendix C. Hence, D(ho ) C Eo. Now let 
IEEe. Then Lemma C.3 of that appendix asserts that (C9) 
holds for all gEDe. Therefore, Ee C D (he) and, hence, 
D(he) =Ee·. 

We now establish the relation between H and the he's 
stated in Sec. III. 

Lemma 4.5: (3.17) holds. 
Proof Since each he is self-adjoint and the function 

8 ....-...he is measurable (Lemmas 4.3 and C.l), it follows that 
S.~ he df.L is self-adjoint. We will prove the present lemma by 
showing that the latter operator and UHU -I coincide on a 
core of UHU -I, namely on the set of all g = U f such that 
fED (H) is of bounded support, 

Letg = U I be of this type, so that eachge is given by 
the first line of (3.14). We will show that geED (he), where 
now and henceforth in this proof we fix 8E:§. Clearly, ge 
EL 2(.j;W)nH I(W), since each functionf(· + I,.) in (3.14), re
stricted to w, is in this intersection [as follows fromfED (H) 
and Property (II)) and in view of the property that only a 
finite number of the summands in (3.14) are not zero a.e. in w. 
Extendge to a functionge on nby the sum in (3.14). One sees 
easily that ge has Property (Pe). In addition, one can show 
that geEL foe (£l;n) by the same type of argument used to 
prove that geEL 2(£l;w). 

We now prove that g e is also in H b.loc (n) and, hence, 
that go ED (he), by Lemma 4.4. SincefEll 6(n) is of bounded 
support, there exists a sequence {In} C C O'(n ) such that (a) 
supp fn is contained for each n in an n-independent compact 
subset of W which also contains supp I and (b) fn - f in 
HI(n). Let 

ge(n.NI(x) = I exp( - il·8 )In(x + l,xvl, x = (i,Xv)En, 
lEL 
II,,,N 

for each n and all positive integers N. By (a), there exists for 
every rER + a positive integer N r such thatf(x + l,xv) 
= fn(i + l,x,,) = 0 for a.e. (i,xv)Efl (r) if lEL and 1/1 >Nr • 

Hence 

IIgo - goln.N'\lt.nlrl 

< L Ilf(' +,.) - /,,(. + ")IIW(r,- 0 
lEL, 

111.;;N 

forn,N-oo, rER+ (n(r)1=0). (4.15) 
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By (4.15) and the fact that every go In,NIEC o(I}), it follows 
that goEf{ 1~.loc (n). 

Using, among other properties, go ED (ho), 
fl· + I,.)ED (H) (/EL ),andtheabovefinitenesspropertyofthe 
sum (3.14), we obtain 

hogo = - .:::1go = (U( - .:::1f))o = (UHf)o = (UHU-1g)o·. 

The property of local compactness which we now de
fine will be of importance in future discussions. 23 

Definition: An open subset A C W will be said to have 
the local compactness (LC) property for a bounded subset B 
C H I(A )ifBisprecompactinL 2(A (r)) for all rER + ,i.e., iffor 
each such r each sequence {In} C B has a subsequence 
{In, }which is independent of r and such that {fn IL 2(A (r))} 
is Cauchy in L 2(A (r)). (The equivalence ofthe twd definitions 
is easily proved.) 

Lemma 4.6: eu has the LC property for every bounded 
subset of H I(eu) contained in Do (BE::1). 

Remarks: (1) In this paper, we will only apply this 
lemma to bounded subsets of H I(eu) contained in 
D (ho)C Do forsomeOEc~. 

(2) The fact that each/EDe (OEf1) has an extension to 
H 6.loc (n) is essential in our proof of this lemma, because of 
our use of an ingenious argument ofLyford,24 which is based 
on Rellich's theorem25 in lItv. 

Proof of Lemma 4.6: For some OE::1, let {gn} be a se
quence in Do which is bounded in the H I (eu )-norm. By (4. 10), 
each gn has an extension gIl EN 6.loc (n). Let X be the restric
tion to il of a functionXEC o(R"). Then Xg" EN 6 (n ) for each 
n and hence can be identified in the usual way with a function 
in H J(W). Therefore, by the above argument,24 {Xgn In (r)} 
is precompact inL 2(n (r)) for each fER + . SinceXEC 0 (RV) 
is arbitrary, it follows that {gn II} (r)}, and hence (gil leu(r)}, 
has this same precompactness property for every such r .• 

V. PROOF OF THEOREM 3.1 

Let 

W l = W ± (ho,h ~;1}), OEf1, 

W'± = W ± (H,H°;JO), 

(5.1) 

(5.2) 

where we remind the reader that HO was defined by (3.15) 
and that 1} and J ° are the respective restrictions ofJ in (2.5) to 
L 2(euO) andL 2(1} 0), respectively, wheren ° is as in (2.13). We 
also need to define the projection operator P ~c : df'" -+df"', 
which is given by 

UP:c U -\ = L" Pac(ho ) d/-t, (5.3) 

where each Pac (h 0 ) is the projection from L 2(eu) onto the sub
space of absolute continuity of L l(eu) with respect to ho. 

Definition (5.3) makes sense because the function 
O-+Pac (he) from ::1 to i"'(L 2(eu)) is measurable, as follows 
from (5.5) (which holds by Lemma 5.2) and the fact that 
~ W o± are measurable functions, i.e., that 0 
.-.. (g, W f f) '" are measurable functions for all 
IEL 2(euO), gEL 2(eu)?6 That ~ W o± are measurable follows 
in a standard way from the corresponding property of e.-. 
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h ~ and {}'-"h o and the existence of W t (OE,~) as strong 
limits. 

Lemma 5.1: For each OE[§, let W if exist and be partial 
isometries which are complete in the usual sense: 

Wt ± W o± = IL'I",ol' 

WI W 1* = Pac(ho)· 

Then W' ±: exist and are complete, in the sense that 

W'; W'± = IL 'Ill °1 , 

W'± W'; = P~c' 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

Prool: Combining (3.16) and (3.17) with (5.1), (5.2), and 
other pertinent definitions, one sees that W' exist and that 

UW'± (U0)-I = L" W if d/-t ± (5.8) 

under the assumptions of the lemma, where, of course, the 
direct integral in (5.8) denotes a bounded operator mapping 
each gE,.J¥' 0, [see (3.12)] into kEdY" [see (3.13)], with ko 
= W I go for a.e. OE::1. In particular, the facts that J and 1} 
are multiplication by C = functions dependent only on Xv is 
used to derive (5.8). The desired results (5.6) and (5.7) follow 
directly from (5.3)-(5.5) and (5.8) .• 

Lemma 5.2. WI (OE::1) have properties (5.4) and (5.5). 
Remark: By Lemma 5.2 and the absolutely continuous 

nature of the spectrum of each h ~, the abSOlutely continuous 
part of every ho is unitarily equivalent to h ~. Hence, by 
Lemma 4.5, Remark (3) after Lemma 4. 1, the fact thatH;;;,O, 
and a standard argument, it follows that a(H) = [0,00 ). This 
result also follows, of course, by Lemmas 5. I and 5.2, the 
well-known fact that H O has a purely absolutely continuous 
spectrum coinciding with (0,00), and H;;;'O. 

Before proving Lemma 5.2, we will use it to prove Theo
rem 3.1. 

ProololTheorem 3.1: Invoking, in particular, Lemmas 
5.1 and 5.2, Lemma B.1 of Appendix B, and the consequence 
(3.18) of the chain rule, we see that the wave operators (2.3) 
exist, fulfill (3.5) and fulfill (3.6) with P,catt replaced by P ~c. 
The proof is completed by invoking (8.2), which is estab
lished in Sec. VIII .• 

Proof of Lemma S.2: Since h ~ has a purely absolutely 
continuous spectrum, this lemma will follow \1 if each of the 
properties (i)-(iii) below holds for all OE::1 and all bounded 
intervals 8: 

(i)1}D(h~CD(hl!)' 1J*(hlJ)CDh~); 

(ii) (1}* - IL'(wo))E(8;h~) and (1}1}*h'(MI )E(8;ho) are 
compact; 

(iii) (h o 1} - 1}h ~)E (c5;h ~) is trace class; 

where E (·;h ~) and E (.;ho) are the respective spectral mea
sures for h ~ and he' 

Henceforth in the proof, we consider a fixed OE:Y and a 
fixed bounded interval c5 C R. We proceed to show that (i)
(iii) hold for this e and 8. 

(i) We recall that the characterization of D(ho) in 
Lemma 4.4 applies to D (h ~) if eu and n are replaced by CUll 

and I} 0, respectively. Using, in particular, these character
izations, the definition of 1}, the assumption that the supporl 
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ofjEC "'(R) lies in [ !, (0), (3.8), (3.9), and Condition (I) of Sec. 
II, property (i) follows easily. 

(ii) This property is provable by arguments of a well
known type,27 so we will be brief. To prove the compactness 
of(7J7J* - IL'(wd E (8;h e ) [that of (7J*7J - IL'(wOd E (8;h~) can 
be proved similarly], it suffices to show that, for an arbitrary 
sequence {gn} which is bounded in L 2(W), the sequence 
{un = E (8;he) gn}, when restricted to w(r), is precompact in 
L 2(w(r)) if rER + is sufficiently large. This is because 
7J7J* - h,(w\ is multiplication by the function 
(f - 1)lwEC ""(w) of bounded support. Since each Un is in 
D (he) C De' we find, by the "partial integration" property in 
(4.8), the spectral theorem and the boundedness of 8 that 
{u n} is bounded in H I(W). Hence the desired precompactness 
property follows by Lemma 4.6. 

(iii) Since only a finite number of terms on the rhs of(4. 7) 
are nonvanishing for a.e. XEWo, and in view of the facts that 
the trace class is an ideal of the algebra of bounded operators 
and that for each r the operator from L 2(WO) to L 2(R + ) de
fined by the map~ jr( .,0) is bounded, it suffices to show 
that for each r the operator Tr,e:L 2(R + )_L 2(W) defined by 

(Tr,eg)(x) = i X,s(Kr)(s,O))wt(x;s,O)g(S) ds, 
R+ 

gEL 2(R+),a.e. XEW, 

is trace class. This follows by applying an obvious variant of 
a well-known theorem of Stinespring. 28 

VI. POINT SPECTRUM OF he (OEY) 

We know that the absolutely continuous spectrum of he 
coincides with the spectrum of h ~. (Recall the Remark after 
Lemma 5.2.) In this and the next section, we will discuss the 
singular spectrum of the he's. The main result of the present 
section (Lemma 6.2) states, in particular, that the eigenval
ues of each he in suitable bounded intervals are of finite mul
tiplicity and are isolated. This result will be applied in Sec. 
VII to prove that the singular continuous spectrum of every 
ho is empty. 

In this section, OEY will be fixed. This will allow us to 
simplify the notation by omitting 0 from various symbols. 
For example, we write 

(6.1) 

where kr should not be confused with Kr(S,O) in (4.4) and 
where, we remind the reader, .Y was defined in (4. I). 

For fEL ;oc (0), we define 

fr(x,,) = L ~r(x)f(x,x,.) dx, rE.Y, a.e. x"E[I, (0), 

where G is as in (3.10) and 

7Jrly)=IGI- l exp[i(r+O).y], 7E.i",YERv-l. (6.2) 

Now, {17r' rE.Y}is a complete orthonormal setinL 2(G ) and 

wa."" = {(X,Xv)EW:X" > a} 

is a purely cylindrical region for a;.1 by property (I) of n. 
Hence, we have for eachfEL ;oc (0), 

fix) = I 17r(x)fr(x,,) a.e. XEWI.",' (6.3) 
rE.'./' 
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with the sum understood in the L ioc(0 I ,oo) sense. 
Lemma 6.1: Let fbe an eigenfunction of he pertaining 

to the eigenvalue A: 

hef=A/ 

Then 

in the L 2(Ll;wd sense, where the C,.'s are constants. 
Proof SincefED(he) by hypothesis, and since 

D(ho)CL 2(W) and D (he)Cii?' 0 (see (4.14) and (7.1)], this 
lemma is an immediate consequence of Lemma 7.3 .• 

Lemma 6.2: Letlbe an interval of the form ( - oo,b] or 
[a,b ], where a,b are finite and where no k,. 's (1"E.i") are con
tained in ( - 00 ,b) or (a,b ] in these two respective cases. Then 
he has a finite number of eigenvalues in I and each such 
eigenvalue is of finite multiplicity. 

Remarks: (a) Wilcox29 has shown that the spectrum of 
he is purely discrete when v = 2. His method of proof seems 
to be applicable to v> 2. 

(b) Sufficient conditions for he to have an empty point 
spectrum are known. 30 

Proof of Lemma 6.1: It will be by contradiction.31 Let 
there exist an infinite sequence {t/Jm l of orthonormal eigen
functions of he with eigenvalues in I. Since <l>mED (he)CDe 
for each m, we have, 

I!Vt/Jm!l;<b 
for aU m, so that {t/Jm I is bounded in H I(W). Hence, by 
Lemma 4.6, {t/Jm J has a subsequence, denoted henceforth by 
( t/Jm I, which is Cauchy in L ~ (w). 

Applying Lemma 6.1, we see that 

IIt/Jm 11"".re <exp( - p(r - 1)), rEf 1,(0), m = 1,2'00" (6.4) 

where p = min {(kr - b )1 12;kr > b,1"E.i" J is positive by our 
assumptions on I. By (6.4) and the fact that {t/Jm l is Cauchy 
in L ~ (w), it follows that {t/Jm l is also Cauchy in L 2(W), 
which is impossible .• 

VII. ABSENCE OF THE SINGULAR CONTINUOUS 
SPECTRUM OF h(J (8eE1) 

A key ingredient in our proof of this fact is a result 
(Lemma 7.5) bounding (he - t)-I f (OEE1) for a set off's 
dense in L 2(W) as t tends to appropriate points on the real 
axis. Several lemmas needed to establish this result will be 
proved first. 

We fix BEY throughout this section, except in the re-
mark after Lemma 7.6. Let 

ii?' e = {fa ~(Ll;ci))nH 110<; (0):f has an extension 

ja ~oc(.d;fl)nH ~,Ioc(fl) with Property (Pe )}. (7.1) 

The next two lemmas state properties of ~ /J which will 
be needed later in this section. 

Lemma 7.1: If the sequence {fn}C ii?' e is Cauchy in 
2 -. -

L loe (.d;w), then/,. - feii?' e in the L ;oe (Ll;w) sense. 
Proof This follows by (7.1), Lemma C.4(a), and argu

ments similar to ones employed to prove Lemma 4.2. • 
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Lemma 7.2: fiJ e CL 2(..:1 ;W) = D (h o). 

Proof: By (7.1) and Lemma 4.4, fP onL 2(Ll;w) 
nH trw) = D(he ). By (7.1) and Lemma (C.4)(a) [takea-+oo in 
(C.lO)], oC:oonL 2(Ll;w)nH I(W) .• 

We will use the notation Wa defined by (3.4), as well as 
the notation 

(7.2) 

For ZEC\(O, (0), we define [z = -$I exp (it/> 12), with 
cp = arg ZE ( - 11",11"). For Z < 0, it is immaterial for our pur-

poses whether.JZ is defined as i.jT;r or - ivfzi". 
Lemma 7.3: (a) IfjEfil e' then its expansion (6.3) is 

L ~oc (tiJt.oo I-convergent. If, in addition, 

- Llf(x) = sf(x) 

a.e. in wa,oo for someaE[ 1,(0) and some SEC, then the expan
sion "coefficients" offin (6.3) are of the form 

IT(XV ) = CT exp( - J kr - S x,,) + Dr exp(J kT - S xv) 

in [a, (0) for all 'IE.Y, where kT is as in (6.1) and C,and D, 
are constants. 

Remark: Notice that ReJ kT - s >0 for 1m S =i0 and 

that 1m J k,. - ~ > ° (respectively, 1m J kr - ~ < 0) for 
1m ~ < ° (respectively, 1m ~ > 0). 

Proof of Lemma 7.3: Since it follows by arguments simi
lar to those used previously, 32 we will be brief, LetfE@ e' For 
each bEla, (0), let Xb: L 2 (wO)-L 2(W) be of the form kb 'Y/, 
where kb: L 2(w)_L 2(W) is multiplication by a C <>O(R) func
tion which equals unity for y ..;; b and zero for y ;;;. b + 1. 
Here, aE [ 1,(0). Considerations of the type used to prove 
property (i) in the proof of Lemma 5.2 show that 
X : lED (h ~ ) for each such b under the present assumptions. 
Using this result, together with (4.5)-(4.8), (6.1)-(6.3), 
Lemma 4.1, and the Fourier sine theorem,33 and varying b 
over [a, (0), we find the expansion (6.3) off converges in 
L roc (..:1;w I. ao ) and that eachfT in this expansion has an abso
lutely continuous first derivative for xv;;;'a and satisfies 

d2:T~XV) + (~_ kT)I,(x
v

) = 0 
x" 

a.e. in [a, 00 ) •• 

Definition:fEL toe (w) is said to satisfy the outgoing (resp. 
incoming) radiation condition in W if 

{ 
exp ( - J k, - A xv), kT ;;;'A, 

f,(x v ) ex r----
exp ( ± i J IkT - A I xv), kT <A, 

holds with the + (resp. -) sign for a.e. xvE[a, (0) for some 
a;;;. 1, some AER, and all 'IE.Y. 

Let 

A = {A.ER: Aiap(ho) and A ik" l'E.Y}, 

where ap(he ) is the point spectrum of he· 
Lemma 7.4 (Uniqueness): LetfE@ e satisfy the incom

ing or outgoing radiation condition in wand let -..:1 I = A I 
for some AEA. Thenf = 0. 

Proof: Let IE@ 0 satisfy the outgoing radiation condi
tion. (The case whenfsatisfies the ingoing radiation condi-
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tion can be handled similarly.) By Lemma 7.3, there exists a 
set of constants {C T' l'E.Y} such that 

fIx) = L C, exp(arJ Ik, - AI X,,)'Y/T(X) (7.3) 
TE.Y' 

in the L foc(Ll;wa.OQ ) sense, where a is some constant in [1,(0) 
and 0'1' = - 1, i in the respective cases k,. >A,kT <A, the 
only possible cases since AEA. Invoking Lemma C.4 (b) of 
Appendix C, it follows that the series 

aLI:) = ];cTa,J Ik, - A I exp(a1.J IkT - AI xJ'Y/r(x), 

(7.4) 

obtained by formal differentiation of (7.3), is rigorously true 
in the sense of L ~)c(wa.oo )-convergence. 

By -.:l f = A/, fEfiJ e' and Lemma C. 5 of Appendix 
C, we conclude that 

i[ l-af _fal](X,b) dx=O 
G axv ax" 

(7.5) 

for almost all b;;;'a. (Actually, (7.5) holds for all b;;;.a by modi
fying/, if necessary, on a set of measure zero, since/, as the 
(weak) solution ofthe elliptic equation -..:1 I = A I, is equiv
alent to a C ""(w) function.1 Using (7.3)-(7.5), we find in a very 
familiar way34 that CT = ° for kr <A, whence fEL 2(W). 
Since -..:1 / = A/, we see that/EL 2(Ll;w). Applying Lemma 
7.2, we infer thatfED (he). Since A iap(he ), the desired result 
/ = 0 follows. • 

Let 

R~ =R~(he)=(he -~r-l 

when {; is in the resolvent set of he' 
Lemma 7.5: Let (r,D )eA be a bounded interval and let 

aE[ 1, (0) be fixed. Then we have for all/in the unit ball of 
L 2(W) with suppfCwa : 

IIR" ± ia flll.", • ..;;Ka•b (7.6) 

for all bEta, 00 )(Wb =l=t/», provided that AE(r,8) and 0'E(0,1). 
Here, Ka•b is a constant independent of A, a, and! 

Remarks: Using this lemma together with standard ar
guments, one can show that a principle of limiting absorp
tion holds for he. In particular, it can be proved that the 
limits 

exist for all thef's and A's specified in Lemma 7.5. We will 
not need this result here. 

Prool of Lemma 7.5: We will prove the lemma for the 
case of the + sign in (7.6). Suppose that the lemma is false in 
this case for some finite b > a;;;' 1. (When the symbol b occurs 
hereafter in the proof, this b will always be meant.) Then 
there exist sequences { ~ n = An + ian} and {fn}' with 
An E(r,8), a n E(O,I), \\/"\\'d.=I,andsupp/"Cwa for 
each n, such that 

IIR~Jn IIl,,,,.;;;'n 

for all n. Since (r,8 ) X (0, 1) is a bounded region in R2, {~n} 
will be assumed to converge without loss of generality. 
Hence, A,,-+AE(r,8), since the lemma would be true 
otherwise. 
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For each n, let 

Un = "R;Jnlll-:-w~R;Jn' gn = IIR;"flll-:-w~fn' 
whence Ilu n 111,wb = I for all n andgn - ° inL 2(W) for n-oo. 

Since Un ED (ho)CDo for every n, it follows easily with 
the aid of Lemma 4.6 that {un} has a subsequence, denoted 
by {Un} henceforth, which is Cauchy in L 2(wc) for each 
cE(O,b). Directly from the definitions, - .au. = ;.un + g., 
so that - .au. (x) = ;.u n (x) for a.e. XEllJa.oo by the assump
tion that supp fn C Wa' Taking also into account that 
unEL 2(W) for every n, we find by Lemma 7.3 that each Un is 
given by an L 2(.a;W I • oo I-convergent series (6.3), withfr(xv) 
replaced by 

(un)r(xy)=Cnrexp(-~kr-;nxy), TE:£, xyE[a,oo), 
(7.7) 

for some set {Cnr , TE:£} of constants. Whence 

Ilun lI",p, P'" P < lIun IIwp• for each n if a<p<q < 00 and 
0< p < 00. Therefore, {un} is Cauchy in L ~c (w). Since 
-.aun =;nun +gn' {un}isCauchyinL~oc(.a;w)aswe11. 

Thus, un-uEYJ 0 in L ~oc(.a;w), by Lemma 7.1, with 

-.::1u =AU 

for someAE(y,D). Using (7.7) in particular, one proves easily 
that U satisfies the outgoing radiation condition, whence 
u = ° by Lemma 7.4. 

However, since Un-U in L ~oc(.a;w), Lemma C.4(a) en
tails that Un -u in H loc (w). This result and the fact that 
II Un I ""~b = I for all n implies that U io 0, a contradiction 
which proves the present lemma .• 

The principal result of this section is 
Lemma 7.6: ho has an empty singular continuous 

spectrum. 
Remark: By Lemma 7.6 and (3.17), Hhas a purely abso

lutely continuous spectrum if each ho has an empty point 
spectrum. 

ProofofLemma 7.6: Let (y,o )CA bea bounded interval 
and letfEL 2(W) be of bounded support. Then we find with the 
aid of Lemma 7.5 that 

I (f,R" ± i<7f)", I <const 

for all pairs (A,0')E(y,8 ) X (0, I), where the constant is indepen
dent orA and 0'. Since the set of all suchf's is dense in L 2(W), it 
follows36 that ho can have, at most, absolutely continuous 
spectrum in (y,D ), i.e., thatRanE ((y,o );ho) CW'ac (he). Using 
this result together with the fact, entailed by Lemma 6.2, 
that there exists a countable set of pairwise disjoint intervals 
whose interiors are in A and whose union equals R, and with 
a simple limiting argument of a type used elsewhere,37 the 
lemma follows .• 

VIII. PROOF OF THEOREM 3.2 

Define the projection operator Ps with domain dY': 

UPsU- 1 = E" Pp(O) dJ.l. 

As in Sec. V. Pp (e) (eEY) is the projection from L 2(W) onto 
the subspace dY'p (he) of L 2(W) which equals the closed span 
of the eigenfunctions of he. As a by-product of results of this 
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section, it will follow that 

Ran P ~c = dY'scatt (H ), 

Ran Ps = dY'surriH ), 

(8.1) 

(8.2) 

where P ;c' dY'scatt(H), and dY'surr(H) were defined in (5.3), 
(3.2), and (3.3), respectively. 

In order to prove Theorem 3.2, we will need the next 
three simple lemmas. 

Lemma 8.1: ,3Y'scatt (H) and dY'surrlH) are mutually or
thogonal subspaces of dY'. 

Proof The subspace property follows by the usual argu
ment, very familiar in the context of nonre1ativistic scatter
ing by short-range potentials. 38 If ° io fEdYscatt (H), then for 
anyaER+, 

sup Ilexp ( - itH}flln ,no;> lim Ilexp( - tHf) I In ,no 
IER (-----+ ± 00 

= IlfllnioO, 

where no was defined in (3.4). Thus, f t7rsurf (H), whence 
the orthogonality property follows .• 

Lemma 8.2: RanP~c CdY'scatt(H). 
Proof Let fERanP ~c' Then g = U fhas the property 

that geEdYac (he) for a.e. eEY. Consider a fixed 0 for which 
this holds and a fixed aE[ 1,00). Letting X(wa) be multiplica
tion in L 2(W) by the characteristic function of W a' the opera
tor X(wa}E (8;h e ) is compact for each bounded interval 
8 C R +, as can be shown by means of an argument of the type 
used to prove property (ii) in the proof of Lemma 5.2. By 
Lemma 4.6 and a simple argument, 39 this compactness prop
erty entails that 

lim II exp( -itho}gellw
a 

=0, 
t----+ ± 00 

where we used the notation (3.4). 

Since 

II exp( - itH )fll~a = I" II exp ( - ithe) go II!. dJ.l 

and 

II exp( -ithe}gell,u.<llgollw, 

we conclude that 

lim II exp( -itH)flln. =0, 
l-± 00 

by bounded convergence .• 
Lemma 8.3: RanPs cdY'surr(H). 
Proof Similar to that of the corresponding result40 of 

Ref. 2 .• 
ProofofTheorem 3.2: By Lemma 7.6, 

L2(W) = dY'ac(he ) ElldY'p(he ), OEY. 

Combining this result with Lemmas 8.1-8.3, we see that 

dY' = RanP ~c Ell RanPs 

CdY'scatt(H} ElldY'surr(H}, (8.3) 

whence (3.7) follows .• 
Equations (8. 1) and (8.2) are immediate consequences of 

combining (8.3) with Lemmas 8.1-8.3. 
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APPENDIX A: FUNCTION-SPACE NOTATION 

Let A be an open subset of iRn (n;;;. 1). The norm and 
inner product in L 2( A ) will be written 

II·IIA' ("')A' 

respectively. L 2(.::1; A) denotes the Hilbert space of all 
fEL 2( A ) with .::1 fEL 2( A ), equipped with the norm 

Ilfll.:l:A = (1Ifll~ + II.::1fll~ )1. 

The only Sobolev spaces H m (A ) and H ;'(A ) C H m(A ) 
used in this paperareH I(A )andH 6(A). The norm and inner 
product in H I(A ) are written as 

IlfilLA = (1Ifll~ + itl !::I~ y. 
(g,f) l.A = (g,f) A + itl (::, , :: J' 

respectively. We will use the loose, but convenient notation 

(Vg,Vf)A = i (a
g 

,af) . i=l ax" ax" A 

L foe (A)(P;;;' I) is the Frechet space of (equivalence classes 
of) functionsfonA withflA (r)ELP(A (rll (rER+) and is 
equipped with a topology generated by the seminorms 

II·IIA Ir)' rEiR+. 

Here, A (r) = {xEA: Ix I < r}.L ~oc (.::1;A) is the Frechet space of 
functions fonA withflA (r),.::1fIA (r)EL 2(A (r)) (rElR+), 
whose topology is generated by the seminorms 

11'llu(A (rl)' rEiR+. 

We also need H Iloe (A), the Frechet space composed of 
functions fonA withflA (r),af laxi IA (r)E L 2(A (r)) (rElR+), 
its topology being generated by the seminorms 

\ \ • \ \ I,A IrI' rEiR + . 

Finally, H 6.loe (A) is a (closed) subspace of H Lc (A) obtained 
by completing CO' (A ) in the H ioc (A )-topology. 

In the symbols for the above Frechet spaces, A has been 
used to indicate integrability up to the boundary. 

APPENDIX B: SCATTERING BY AN IMPENETRABLE 
PLANE SURFACE 

Although quantum scattering of a free particle by a 
plane surface with the homogeneous Dirichlet condition 
poses a very simple problem, explicit expressions for the rel-
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evant MQlller wave operators are apparently not available in 
the accessible lieterature. We will state such expressions in 
this appendix and will use them to infer the desired proper
ties of the wave operators in question. 

As before, let H o and n° be defined by (2.1) and (3.15), 
respectively, where fl 0 = lRY 

- 1 X R+, and write 

Waf. = W ± (HO, Ho;fYJO) 

= L 2(fl 0) -lim exp (itH 0) [jJo exp ( - itHo), 
t- .. ± 00 

where the operator .0/0: £"(j = L 2(lR'}-+L 2(fl 0) is defined 
by (3.19). 

Lemma B.I: Wo± exist and are given by 

(W{~ f)(x) = ± lfx(xy), 

fE,'7('o, a.e. x = (x,x,.)EflO, (BI) 

where for each g:fl o-+C, g; (XEiRv 
- I) is the function on lR+ 

with valuesgjdx y ) = g(x,Xy)((x,xvlEfl 0), and ~ (resp. - ) is the 
Fourier (resp. sine Fourier) transform in L 2(lR) (resp. 
L 2(iR+)). 

Proof. It suffices to prove (B.l) whenf&.w'o is of the form 

f(x,x y ) = nx)nxy ), (B2) 

withflEL 2(RV - I) andf2EY(iR). In the respective representa
tions where L 2(lRv) = L 2(lRV - I) ® L 2(iR) and 
L 2(12 0) = L 2(1Rv- I) ®L 2(iR+), one has 

exp(itHo) = exp [ - it.::1 (RV - 1)] ® exp [ - it.::1 (iR)], (B3) 

exp(itHO) = exp[ - it.::1 (lRv
-

I
)] ®exp[ - itL1 D (R+)], (84) 

for tEiR, where.::1 (RV
- I), .::1lR, and .::1 v (R+) are the Laplacian 

operators in RY 
- I, iR, and lR+, respectively, the latter opera

tor corresponding to a zero boundary condition at OElR. Us
ing (83), (84), the fact that 

[exp (itL1 D (iR +))g nk ) = exp( - itk 2t )g(k ), 

gEL 2(lR+), tElR, a.e. kElR+, 

the one-dimensional form of(2.14), the pertinent definitions, 
and standard arguments, the first line of (81) follows for f's 
of the form (B2) .• 

Corollary: W()± have the properties 

(BS) 

WOt W O± * = IC1fl"l' (B6) 

where E + are projections from %'0 onto ,.w' +- [see (2.7)}. 
ProOf (BS) and (86) follow immediately from (B 1) using 

the unitarity of ~ and - . [Of course, (BS) is a special case of 
Theorem 2.1(b).]. 

APPENDIX C: MISCELLANEOUS LEMMAS 

The principal purpose of this appendix is to state and 
prove five lemmas which are needed in Secs. III, IV, and VII. 

Lemma C.l: The mapping 

ffi--.+H fJ (C 1) 

from :IJ into the set of self-adjoint operators in L 2((i)) is mea
surable, i.e., (g,(h + i)-I f) OJ: ,~-+C is measurable for all/, 
gEL 2((i)). 

Proof Consider the mapping 

ffi--.+h ~ = exp( - O.x)hoexp(iO.x) (C2l 
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from ~ into the set of self-adjoint operators in L 2(lU), where 
exp ( ± ie·x) denotes multiplication by the corresponding 
functions. For the present purpose, the advantage of the 
mapping (C2) over (CI) is that the domain of h 0 (OE~), say 
D, is independent of e. One readily shows thatD = D (ho), the 
set defined by (4.8) for e = 0, and that 

hof=(-IJ +we)f, 

OE~, fED, 
v-I 

where We = 2i I 0j(alaxj } + 10/ 2. 
j= 1 

(C3) 

Using (C3) and the easily provable fact that We is he-
bounded for each OE~ , one readily shows that 
(g, (h ~ + i) - , f) (U: ~ --C is continuous, and even real-ana
lytic, and hence that (C2) is measurable. Since 
h 0 = exp (ie·x)heexp ( - ie·x) (eE,'1) and since the map
pings O-+exp ( ± iO·x) from ~ into 2" (L 2(lU)} are measur
able, it therefore follows that (CI) is measurable .• 

Lemmas C.2-C.5 and the Corollary to Lemma C.3 be
low refer to an arbitrary, but fixed OE~. In these lemmas, the 
definitions (4.10) of De and (7.1) of De should be kept in 
mind. In this appendix, the symbol D (he) is only needed in 
the statement and proof of Lemma C.2, where it should be 
understood in the sense of(4.8}. The alternative characteriza
tion (4.14) of D (he) is not used in this appendix. Indeed, 
Lemma C.2 is used in Sec. IV to prove (4.14). 

Lemma C.2: LetfED (he) and letjbe the extension ofj 
defined by (4.8). ThenjEL ~oe(lJ;n). 

Proof It suffices to show that IJ j exists and is in 
L ~oc!lJ;n). We will show this by proving that 

(f,IJ¢)n = (g'¢}{l (C4) 

for all ¢EC O'(fl). whereg is the function on fl whose restric
tion.to the translate lUI of lU by each fEL [see (3.1)] equals 
IJ (fllUI) = IJf(l'EL 2(lU). In this proof, ifkEL 2(fl), we denote 
by k (II (/EL) a function with values k Iil(.i.xv) = k (x + I,xv ) 

for (x'~v )ElU. This definition of g is legitimate, since, for each 
IEL, f/lUIEL 2(IJ;lUI) and IJ (j/lU l ) = exp (il.O )lJf(· -I,.). 

Define t/JEC '" (lU) by 

1/1 = Iexp ( - if.B)¢ Iii, (C5) 
IEL 

whence I/1EDe. SincefED (he), we therefore conclude by (4.8) 
that 

(VI/1,V f),,, = (1/1, -lJf)(U· (C6) 

Using the above expression for IJ (jilUl) and (C5), we 
have 

(g'¢)[1 = I(g,¢ )"" 
IEL 

= I J. exp ( - if.B )IJ f(x,x y)¢ (x + I,xy) dx 
tEL cu 

= (1Jf,I/1)w' (C7) 

Similarly, 

(j,IJ¢){l = - (V f,VI/1)w' (C8) 

Equations (C4) now follows from (C6}-(C8) .• 
Lem~a C.3: LeyEEe = {kEL 2(IJ;lU) nH '(lU): k has an 

extension kEL foe (lJ;fl ) n H 6.loc (n) with Property (Pe)} and 
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letgEDe . Then 

<Vg,V f)", = (g, -lJf),v' (C9) 

Proof Analogous, but notationally more complicated, 
than the proof of a parallel result of Ref. 6.41 

• 

Corollary: Letfe.9C e andgEDe, and letg have bounded 
support. Then (C9) holds. 

Proof Letsupp g C lUa for some 0 <a < 00, wherelUa is 
as in (3.4). Let X be the restriction to lU of a C "'(RY) function 
whichdependsonlyonxv <;b, and vanishes for xy>b + l,for 
some finite b>a. ThenfxEEe by arguments of the same type 
as those used to prove Lemma 4.2. The present corollary 
now follows easily by applying (C9) withf replaced by X f • 

In the next lemma, we use the notations (3.4) and (7.2). 
Lemma C.4: LetfE9 e' 
(a) If l<;a < 00 and 0 <r< 00, then 

II filL. <;(2 + trlr) I I fll!." + IIIJ fl I;v. ,,' (ClO) 

(b) If I <;a < b < 00 and 0 < r < 00, then (C1O) holds with 
lUa and lUa + r replaced by lUa,band lUa _ r,b _ rt respectively. 

Proof Since it is similar to the proof of a parallel result 
in Ref, 35,42 we will be brief. Only the proof of (a) will be 
sketched; (b) can be proved by arguments of the same 
character. 

Let fE9 e and let PEC 1 (lU) be defined by 

{

I, xy<a, 

p(x,Xy) = sin2 [tr(a + r - Xv )/2r] , a<;xv <;a + r. 
0, Xv >a + r, 

(x,Xy)EUJ, (Cll) 

with a and r as in (a). One easily proves that p fEDe. Conse
quently, we have by applying the last corollary: 

IIV fll!. <;(PV f,V /)",<;1 (Vlpf),v f),vl + I <fVp,v f)wl 

= I (Pf,lJf)w I + I(fVp,V /)",1· (CI2) 

. Using (CII) and (C12) together with Schwarz's inequal-
Ity, the elementary inequality 

a/3<;(1I28)a2 +(812}/32, O<;a,/3<oo, 0<8<00, 

and O<;p(x)<; 1 and lap(x)/axy I <;(trlr)p!(x) (XElU), we obtain 
(C1O) .• 

Lemma C.5: Letf, gE9 e' Then 

{,(glJ f - flJg)(x,x y) dx 

= - g-- - f-L.. (x,a) dx, a.e. aE[ 1. 00). f(-af a- ) 
G axy aXy 

(Cl3) 
Proof Let {4> n }: = ICC 00 (lU) be a sequence of func

tions having the form 

4>n(x} = - a(xv) Wn (x y ), x = (x,xJEUJ, (CI4) 

for each n, where 

1 {"" Wn (y) = - exp( - u2
) du, YER, 

tr n (y - 01 
(CiS) 

and where (JEC ""(H) is such that 

a( y) = {I, y<;b, 
0, b + l,;;;;y< 00, 

(C16) 
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for some finite b > a. One readily shows that <I> n J, <I> ngE!iJ Ii 
for each n, and hence that 

L<I>n(gAI - lAg) dx 

-L [V(<I>ng)·V I - V(<I>n 1)·Vg] 

_ f a<l> n (g a I _ I ag ) dx 
J" ax" ax" ax" ' 

dx 

where we have used the Corollary to Lemma C.3. 

(C17) 

Using (C. 14)-(C. 16) and a classical theorem on the 
Weierstrass singular integral,43 it follows that 

1 a<l>n(X,Xv) 
lim F(x,,) dx v = F(a), 
n-·oo R ax" 

(CI8) 

:~L<I>n(X'XvlG(X,Xv) dx = {,G(X,Xv) dx, (C19) 

for a.e. QE[ 1,00) if FEL Ill'" (JR) and GEL !oc(w). Applying (CI8) 
and (CI9) with 

F(x) = JG axv axv {
f(g al -I ag )(X,Xv)dX, X,,;;;. I, a.e.x"E[I,oo), 

0, a.e.xvE( 00,1), 

G (x,x,,) = (gA 1- JAg)(x,xv)' (x,x" )Eu), 

and using (CI7) and Fubini's theorem, (CI3) follows .• 
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The radiative degrees of freedom of the gravitational field are isolated by analyzing the structure 
avai1abl~ at null ~nfinity,~ It is shown ~hay they are coded in certain equivalence classes (D 1 of 
connectIOns; all mformatIOn about gravitational radiation can be extracted from the curvature 
tensors of these c~nnections d!rectIy on f, without any reference to the interior of space-time. 
The ~pace of classICal vacua-I.e., of {D ) with trivial curvature-is analyzed. It is shown that the 
quotl~~t ST IT Of. the BMS supertranslation group by its translation subgroup acts simply and 
transitl.vely .on th~s space. The available structure is compared with that of gauge theories. Since 
the entire discussIOn can be carried out on f, without any reference to the interior, it suggests a 
new approach to quantum gravity. This approach will be presented in detail in a subsequent 
paper. 

PACS numbers: 04.20.Cu, 04.60. + n, 04.30. + n 

I. INTRODUCTION 

This is the first of two papers whose goal is to suggest a 
new approach to quantum gravity. The general ideas under
lying this approach were briefly summarized elsewhere. I 
Our purpose here is to provide a complete description. This 
include the proofs of the results quoted in Ref. 1 as well as of 
new results obtained since that presentation. 

Traditional attempts at obtaining a quantum theory of 
gravity may be divided into two broad classes2

: "covariant" 
approaches and "canonical" methods. In the first approach, 
one treats gravity in the spirit of other field theories and 
focuses on scattering processes involving gravitons, while, in 
the second, one emphasizes the geometrical nature of the 
gravitational field and attempts quantization via Hamilton
ian methods. Both avenues have led to a number of insights. 
However, they also have obvious limitations. In the covar
iant approach. for example. one begins by splitting the dual 
role played by the space-time metric gab' in general relativ
ity: One introduces a background metric 'YJab' usually chosen 
to be flat, which is to provide the "kinematic arena," and 
regards hab = gab -1]ab as the dynamical field. Thus, the 
geometrical role of gab is assigned to 'YJab , while the role of the 
gravitational potential is now played by hab • Einstein's equa
tion on gab provides a nonlinear field equation on hab • One 
first linearizes this equation and subjects the linear field to 
quantization following the usual rules of Minkowskian field 
theories. The resulting quanta are called gravitons. These are 
then subject to interactions dictated by the original nonlinear 
equation. While this procedure may seem to be a natural one 
from the field-theoretic viewpoint, it appears to be rather 
artificial from the standpoint of general relativity. For the 
dual role of the metric is a most essential feature of Einstein's 
theory and splitting of these roles violates the very spirit of 
the theory. Thus, it is unsettling to see the fictitious back
ground 1]ab playa significant role in the resulting theory: 
Notions such as the microcausality offield operators, 

'IAlfred P. Sloan Research Fellow. Supported in part by the National Sci. 
ence FoundatIon Grant PHY 80.08\55. 

asymptotoic regions for in and out states, spin and mass of 
the particles involved, all refer 'YJab' Indeed, the very name 
"covariant" refers to the Poincare covariance with respect to 
this flat background. Secondly, the fact that an essential use 
of the linearization procedure is made in the introduction of 
the basic notion of a graviton is also unappealing.3 Even if 
such aesthetic considerations are ignored, one is still faced 
with significant difficulties. These arise from the fact that, 
since the underlying manifold structure is required to be n4

, 

one cannot hope to encompass processes involving nontri
vial topologies such as the formation and evaporation of a 
black hole. And, presumably, it is precisely through such 
qualitatively new processes that quantum gravity will make 
its impact felt. Indeed, the detailed numerical predictions for 
scattering processes which have played a key role in the de
velopment of other field theories seem, at the moment, unin
teresting in the gravitational case, given the weakness of the 
coupling constant. The issues of immediate interest are, 
rather, the conceptual ones. And, it appears that covariant 
approaches avoid these very issues by imitating Minkows
kian quantum field theories. Canonical methods, on the oth
er hand, are better equipped to handle these questions. For, 
the emphasis is now on understanding, already at the classi
cal level, ways in which general relativity differs from other 
field theories due to the geometrical nature of the gravita
tional field. Here, one neither introduces a background met
ric nor a linearization of Einstein's equation. The first step in 
the program is to cast exact general relativity in the Hamil
tonian form. This was achieved a number of years ago and 
has shed much light on the geometrical significance of the 
constraints which must be satisfied by initial data on a space
like Cauchy surface. However, this program also has certain 
drawbacks. From an aesthetic point of view, the "3 + 1 split
ting" of Einstein's theory is somewhat unappealing. Also, in 
the work done so far, the underlying manifold structure has 
again been kept fixed, although, in principle, this restriction 
could be removed, thanks to an essentially exhaustive classi
fication of topologies admitted by 3-manifolds equipped 
with asymptotically flat positive definite metrics, which has 
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now become available.4 The more serious limitation of the 
program is the practical one: The constraints which arise in 
the Hamiltonian framework are so involved that, over the 
years, little progress has been made in their incorporation at 
the quantum level. Indeed, the state-of-the-art is such that 
even a kinematic framework giving the precise structure of 
the Hilbert space of quantum states and the algebra of obser
vables-or substitutes thereof-is yet to be constructed.5 It is 
therefore difficult even to formulate questions of physical 
interest. It is probably fair to say that the program is yet to 
"take off" ilLthe quantum domain. Thus, overall, one has the 
uneasy feeling that the covariant approaches are pragmatic 
but not sufficiently deep for the basic problems while the 
canonical methods are broader in their goal but not suffi
ciently supple to maneuver. 

The question naturally arises: can one place oneself "in 
between" the two schemes? 

The approach that we wish to present here aims at this 
possibility. As in the covariant schemes, the goal is to obtain 
a superscattering operator, while, as in the canonical meth
ods, the passage to quantum theory is via symplectic tech
niques. However, at no stage in the analysis do we introduce a 
background metric, a linearization 0/ Einstein's equation, or 
a 3 + 1 decomposition o/space-time. In particular, the un
derlying manifold structure is left arbitrary to a large extent. 
Despite this generality the resulting framework is quite rich 
in structure: We are able to introduce the Hilbert spaces of 
asymptotic quantum states, identify physically interesting 
operators such as energy-momentum and angular momen
tum, discuss the particle content of the theory, and compute 
spin and mass of these particles. 

To achieve this, one begins with the observation that for 
the Maxwell field one quantizes only the radiative degrees of 
freedom. One wishes to do the same in the gravitational case. 
Fortunately, there is available, since the early sixties, a rich 
mathematical framework describing gravitational radiation 
in exact general relativity. The idea is to use this framework 
as the point of departure for quantum gravity.!> Thus, it is 
only the asymptotic structure of the gravitational field at 
null infinity that enters the discussion directly. This fact en
ables one to avoid the fixation of the underlying manifold 
structure, the introduction of the flat background, and the 
3 + 1 splitting of Einstein's theory. Finally, the BMS group 
at null infinity provides the machinery essential for the intro
duction of familiar notions in terms of which one can pose 
questions of physical interest. Thus, for example, gravitons 
now arise as asymptotic notions in the exact theory rather 
than as exact notions in the linear theory, and their proper
ties such as spin and mass refer to the BMS group at null 
infinity rather than to the Poincare group of a flat back
ground space-time. More generally, one exploits the fact 
that, asymptotoically, Einstein's equation becomes "almost 
linear"; it is this simplification that enables a passage to 
quantum theory via symplectic techniques. Note, however, 
that these simplifications are not introduced by hand; the 
geometrical boundary conditions which must be imposed in 
oder that one can meaningfully talk about gravitational radi
ation in exact general relativity themselves imply that most 
nonlinearities of the exact theory are ironed out asymptoti-
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cally. Finally, traces of nonlinearities do persist even at in
fiity, and these lead to new features in quantum theory. 

The basic limitation of the approach arises from the 
very fact that it places itself "in between" the traditional 
schemes. Thus, for example, the approach is not likely to 
yield information on the quantum fluctuations at the Planck 
length except perhaps for the effect of such fluctuations on 
the superscattering operator. The approach is also unsuit
able in the cosmological contexts. Finally, at the present 
stage we only have a new kinematic framework; the investi
gation of the $ matrix has just begun. 

In this paper, we shall isolate the radiative modes of the 
gravitational field and investigate their properties. Section II 
contains certain mathematical preliminaries concerning null 
infinity. The radiative modes are isolated in Sec. III and 
properties of the" classical vacua" are discussed in Sec. IV. 
This discussion brings out the similiarity of the structure 
available in gravity with that in Yang-Mills theories. The 
first appendix discusses the relation between the mathemat
ical objects introduced in the main body of the paper and the 
various Newman-Penrose quantities and the second extends 
the entire analysis to the electrovac case. The next paper will 
deal with the problem of quantization of these radiative 
modes. 

ll. MATHEMATICAL PRELIMINARIES 

Definition: A space-time7 (M ,gab) will be said to be as
ymptotically empty and flat at null inifnitl if there"exists a 
space-time (M,gab) together with an imbedding of Minto M 
(by which we shall identify M with its image in M) and a 
function n on M such that: 

A 

(i) gab = n 2gab on M; 
>"< A A 

(ii) on I: = M - M, the boundary of Min M, n = 0, 
Van #0; 

(iii) I is topologically §2 X R and the restriction f!a to I of 
the vector field na=Van is complete; 

(iv) there exists a neighborhood N of I in M such that gab 
satisfies the vacuum9 Einstein's equation, Rab = 0, in 
NnM. 

Throughout this article, we restrict ourselves to space-
times which are asymptotically empty and flat in this sense. 
These conditions imply that the asymptotic structure of 
(M ,gab) resembles that of Minkowski space-time to a ~uffi
cient extent to enable the introduction of familiar notIOns 
such as the radiation field, peeling properties, energy-mo
mentum 4-vectors, and conservation laws. In this section, we 
recall lO how the necessary structure arises. 

Conditions (i), (ii), and (iv) imply that I II is a null 3-
surface with na as normal while (iii) implies that its topologi
cal structure i~ 52 X R. The integral curves of f!a will be called 
generators 0/1. The metric gab induces, via pullback, a de
generate metric q,ab on I which satisfies the condition 
q,ab,l = 0 iffl!.b is proportional to f!a. Thus, qab has signature 
(0 + +). Next, we note that there is a certain amount of 
"conformal freedom": If (M,gab) is a per~issible completion 
of (MJab) (so that the ~~ir (M,gab) a~d (A!,g~b) satis

2
fies the 

conditions in the defimtlon), then so 1S (M, gab = (j) gab)' 
where (j) is a nowhere vanishing smooth function on M. It is 
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easy to verify that one can always choose UI such that 
Va V Ji =Va V bUlfl = ° on I. We shall assume throughout 
that such a choice 0/ fl has been made. Then, the remaining 
or restricted conformal freedom is gab~gab = Ul

2 
gab' 

where 5!' nUl = ° on I; i.e., Va V bfl = ° on I if and only if 
Va V Ji =0 on 1. In these restricted conformal frames, we 
have2' ~ ~ab = ° on I; ~ab is the lift to I of a positive definite 
metric on the 2-sphere of generators. 

The derivative operator Va on (M, gab) induces a deriva
tive operator D a on I. Since Vag be = ° on M, Va n b = ° on I, 
and, since Va Vb = !2' Vgab + V [a Vb ] on M for any vector 
field va, we have, on I, 

l!..aqbe = 0, l!..a11;b = 0, 

and (1) 

I!..a ~b = !2' ~~ab + I!..[a Vb I if ~b11;b = ° on I, 

where ~e is any vector field on I such that ~c~be = ~b' (Note 
that, since qbe11;e = 0, we can add to ve any multiple of 11;e. 

However, since 2' n~ab = ° and qab11;b = 0, 2' V~ab is un
changed under such an addition.) To compute the curvature 
tensor Rabc d of D, we first note that the curvature tensor 
R"be dof Va has the form 

(2) 

at points on I, where Sab is related to the Ricci tensor 
Rab of gab via Sab = Rab - tRgab' This comes about because 
the Weyl tensor Cabe dof gab vanishes on I. Conditions (i), (ii), 
and (iv) imply that Sa b satisfies Sa bna ex: n b on I, whence it 
induces, "via pullback of the covariant index," a smooth 
field ~a b defined intrinsically on I. Finally, Eq. (2) and the 
fact that l!.. is induced by V imply 

~abe d = WI c[aSb ]d + ~[aOb Id), (3) 

where ~b = ~ mqmb is the pullback to I of Sab' Thus ~ b 

determines the curvature of D. The trace-free part of ~b in a 
conformal frame in which ~ab is a unit 2-sphere metric is the 
Bondi news l'!.ab which determines the fluxes of energy-mo
mentum and angular momentum carried away by gravita
tional waves. This l'!.ab satisfies 

l'!.ab = l'!.labl' l'!.ab11;b = 0, and l'!.abt
b = ° (4) 

and has, therefore, only two linearly independent compo
nents. [Here, ~ab is any tensor field satisfying 
qab~am ~bn = ~mn' Thus ~ab is determined only up to addition 
of terms of the form 11;(av b ). This ambiguity does not affect 
the last of Eqs. (4) becau;e Nab11;b = 0.)] 

Since the W ey I tensor C abed of gab vanishes on I, 
Kabed = fl - I Cabed admits smooth limits to I. Set K ab 

= Kambnnmnn and *Kab = *Kambnnmnn . Then, since 
Kabn b = *Kabnb = 0, by restriction to I, we obtain two 
fields, 1£ aband * If ab, defined within I. Both tensor fields are 
symmetric and trace-free and contain physically significant 
information. In stationary space-times, * K ab vanishes iden
tically while K ab determines the Bondi mass. Thus, one 
might say that * K ab contains information only about "radia
tive modes" whil~ 1£ ab contains information about "longitu
dinal modes" as well. Bianchi identities on (M,gab) imply 
that the two fields must satisfy 
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D *K ab = ° D K ab = ° _0 _ '_0_ ' 

(5) 

l!..[a~ / = ~bm *l£mc. 

These equations lead to the conservation law-often called 
the "balance equation"-relating the changes in the Bondi 4-
momentum to the Bondi news Nab' 

This exhausts the asymptotic structure relevant to the 
present series of papers. To conclude this section, we note the 
conformal behavior of various fields. Under the transforma
tion gab ~gab = Ul2g ab , we have 

- 2 :':"a -1 a 
qab = (l[ fjpb' !1.. = UI !L , 

i["l£b = l!..aIfb - 2UI- 1
If(al!..b)(l[ + (l[-I(l[ml£mfjpb' 

~ b = (l[-2~ b _ 2(l[- 3l!..a(l[b + 4(l[-4(l[bl!..a{J,! 

_ (l[-4r,d"Dm
fJJ..ti

a 
b, 

j{ab = (l[-SK ab. and *K-;'b = UI-S*Kab 
- -' - - ' 

(6) 

where {J,!m is the restriction to J of vmUl . (Note that, since 
2' nUl = ° on J, VmUl is automatically tangential to I and 
that {J,!m satisfies (J,!mqam = l!..a{J,!.) 

III. ISOLATION OF THE RADIATIVE MODES 

In the previous section, we fixed a space-time eM ,gab) 

and outlined the structure available at its null infinity. In this 
section, we wish to consider all space-times which satisfy the 
boundary conditions of the definition. To be able to deal with 
this collection, we must first introduce a "kinematical are
na" which will be common to all such space-times, i.e., 
which does not depend on the features which change from 
one space-time to another. In the case of nongravitational 
fields, the underlying space-time itself provides this arena. 
In the covariant approach to quantum gravity, the role is 
played by the "background space-time," topologically H4 
and equipped with a flat metric nab' while in the canonical 
approach, the 3-manifold which ultimately turns out to be a 
(spacelike) Cauchy surface serves this purpose. In the pre
sent approach, we wish to impose the minimal possible re
strictions on the global structures of permissible space
times. The emphasis on the quantization or radiative modes 
has led us to impose only boundary conditions at null infin
ity; the "interior" structure- including the topology-has re
mained pretty much unconstrained. 12 We wish to preserve 
theis feature. Therefore, we shall choose null infinityl3 itself 
as our kinematic arena. More precisely, we proceed as 
follows. 

Fix a 3-manifold J, topologically §2 X H, equipped 
with a collection of pairs (q ab' na) of nowhere vanishing 
fields, such that: (i) qab Vb = ° iff Vb is proportional to na; (ii) 
2' nqab = 0; (iii) pairs (qab' n

b
) and (qab ,nb) are in the collec

tion iff there exists a smooth function lU on J, such that 
qab = Ul 2qab and no = UI-

1 na; and (iv) the vector n a is com
plete and the manifold Y of its orbits is diffeomorphic to §2. 

[Note that (i), (ii), and (iii) imply that the function of UI of (iii) 
automatically satisfies 2' nUl = 0.] This is the required "kin
ematical arena." Note that J is introduced here abstractly; 
it is not the null infinity of any specific asymptotically flat 
space-time. 
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In Minkowskian field theories, the symmetry group of 
the kinematical arena is the Poincare group which then plays 
an important role in the entire theory. What is the corre
sponding group in the present case? The analysis of Schmidt, 
Walker, and Sommers 14 leads us to the following result: 

Lemma 1.1: The subgroup of the diffeomorphism 
group of of which preserves the given collection of pairs 
(qab' na) is precisely the BMS group. 

The fact that one obtains the BMS group rather than 
the Poincare group will play an important role in what fol
lows. For the present, we ~erely note that, given an asymp
totically fiat space-time (M, gab) and a completion thereof, 
there e~sts a",diffeomorphism Wbetween the null boundary 
of I = M - M of this space-time and of which preserves the 
preferred collection of pairs ("the universal structure") and 
that any two such diffeomorphisms are related by an element 
of the BMS group. 

Next, we introduce certain fields on our kinematical 
arena. Denote by C the collection of torsion-free connections 
D on of, satisfying 

(7a) 

for any pair (qab' na) in our collection. Since qab is degener
ate, Eq. (7a) fails to determine D uniquely. To see the avail
able freedom, we first note a consequence of Eq. (7a): 

Da Vb = D[a Vb I + ~2" Vqab if Vene = 0, (7b) 

where, as before, v e is any vector field on of such that 
Veqbe = Vb' Thus, becauseofEq.(7a), the action ofDor any 
covector field Ve satisfying Vene = ° is predetermined. 
Hence, to specify the action of D on any covector field-and 
therefore on arbitrary tensor fields- on of, we need to give 
only Dalb for a lb satisfying lbnb = l. This is the freedom 
available in the choice of D in any "conformal frame" 
(gab' na). Equation (7a) is clearly motivated by Eq. (1) on I. 
However, since of is not imbedded in any space-time, Eq. 
(7a) had just to be postulated; the derivation ofEq. (1) uses 
the properties of the space-time connection V. It will turn 
out, somewhat surprisingly, that one does not need to intro
duce additional restrictions: We shall see that the entire 
structure relevant to the gravitational radiation theory can 
be introduced starting only from connections D in C. 

Fix a connection D in C and denote its curvature by 
Rabe d, D[aDb IKe = !Rabe dKd • Then we have 

Lemma 1.2: There exists a tensor field Sa b on of satisfy
ing (i) Sa bna = (S - R ulna; (ii) Sa bqbe =Sae = S(ae); and, (iii) 
Rabe d = !(qc[aSb ]d + Sc[aOb I

d
), where S = Sa aand R ° is the 

lift to of of the scalar curvature of q ab on the manifold Y of 
orbits of n°. 

Proof We first note the algebraic symmetries of Rabe d. 
Since it is the curvature tensor of a torsion-free connection, 
we have 

Rabed=R[abl/ and R[abe]d=O 

while the second of Eqs. (7a) implies 

Next, consider any Ke such that Kene = 0. Equation (7b) 
implies that the action of any D in C on such a Kr is com-
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pletely expressible in terms of Lie and exterior derivatives 
and is independent of the particular choice of D. It therefore 
follows thae 5 

R abed : = Rabe mqmd = R °abed ' 

where R 0 abed is the lift to of of the Riemann tensor of qab on 
Y. Fix a point p of of. The algebraic properties of Rabe d 
imply that the restriction top of Riemann tensors of all con
nections D in C yields a five-dimensional affine space. De
note this space by dR' Next, consider, at p, the five-dimen
sional affine space cr/£ s of tensors Sa b satisfying 

(Sa b 
- SOab)na = ROna d S e S S an a q be =: ae = (ae) . 

Now, it is easy to verify that 

Sa b_-!(qe[aSb Id + Se[aOb I
d

) 

is an affine structure preserving mapping from d sinto dR' 
We now wish to show that the mapping is one-to-one and 
hence an isomorphism. Let us suppose that Sa band S ~ bare 
mapped to the same element of dR' Set 
4, b = Sa b - S ~ b. This Lla b must satisfy 

(Ll a b - Lloa b )na = 0, Llab = Ll(ab i' 

qc[aLlb]d + Lle[aodb I = 0. 

Transvecting the last equation with na and using the first 
equation, one obtains Llab = - Llqab' Substituting this re
sult back in the last equation, one has Lla b = Lloa b which is 
impossible since Ll = Lla a. Hence the mapping displayed 
above is an isomorphism. Thus, at any point p of of, the 
Riemann tensor Rabe d of any connection D in C is expressible 
as 

Rab/ = !(qe[aSb )d + SelaOb I
d

), 

where Sa b satisfies 

Sa bna = (S - R O)nb and Sab = S(ab)' o 
Remarks: (I) Lemma 1.2 follows only from the algebra

ic properties of Rabe d. Its differential properties, such as the 
second Bianchi identity, will give us differential equations on 
Sa b. (2) The result of Lemma 1.2 is analogous to the fact that 
the Ricci tensor of a Riemannian connection on a three
dimensional manifold suffices to determine the entire curva
ture tensor. Note, however, that the connections in Care not 
necessarily Riemannian since qab is degenerate. It is because 
of this that we needed both of Eq. (7) to prove Lemma 1.2. 
(3) In Sec. II, the derivative operator D was induced on I by 
the space-time derivative V and Eq. (3) relating Rab d and 
~ b followed from Eq. (2) relating the Riemann te;s~r Rabe d 
of V to its Ricci tensor. Thus, the previous derivation ofEq. 
(3) made a crucial use of the fact that I is imbedded in the 
completed space-time; one used, e.g., the fact that the Weyl 
tensor Cabe dof gab vanishes on I. It is therefore somewhat 
surprising that, on J, the analog of Eq. (3) follows directly 
from Eq. (7) without any reference to a space-time geometry. 
The basic properties of connections in C-Eqs. (7)-refer to a 
particular choice of "conformal frame" (qab' na) on J. We 
need to specify the transformation properties of D under res
calings (qab' na)-+(ijab' ii") = (W2qab' w-1na). The specifica
tion is subject to two constraints. First, the statement of the 
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transformation law can refer only to that structure which is 
available on f; we do not have access to a preferred space
time geometry. Second, given an imbedding of f into the 
completion (M ,gab) of an asymptotically flat space-time 
(M, gab )--or, more precisely, given a universal structure pre
serving diffeomorphism if! between the null infinity of I of 

A 

(M,gab) and f -the transformation properties specified on 
f should reduce to Eqs. (6) on I. Let us therefore first exam
ine Eqs. (6). Setting cu = 1 on I in these equations, we have, 
forqab' n°, andD, 

qab = qab' iF = n°, 
DaKb = DaKb + /qabnmKm' (8) 

where/is the function on I given by /nm = Vmcu. (Since cu is 
constant on I, Vmcu is necessarily proportional to nm there.) 
Thus, because the derivative operator D on I contains infor
mation about space-time geometry to "second order" while 
qab and na contain information only to "first order," D can be 
affected by changes in the space-time conformal factor to 
which qab is insensitive. In terms of f, on the other hand, we 
cannot distinguish between two conformal factors which 
agree on f; we do not have access to fields such as Vacu 
which refer to space-time. We therefore introduce the equiv
alence relation 

D'Z15 iff (15a - Da)Kb =/qabneKe (9) 
for some function of/on f, independently of one's choice of 
Ka, where D and 15 are connections satisfying Eqs. (7) in the 
conformal frame (qab' na). Denote by {D I the equivalence 
class to which D belongs. Then, {D I has a well-defined 
transformation property satisfying the two constraints: Un
der (qab' na)_(qab' ii") = (CU 2qab' cu-1na) we have 

{Do IKb = {Da IKb + 2uJ- 1K(a Db JCU' (10) 

where {Da IKb denotes the equivalence class of tensor fields 
obtained by operating on Kb various elements of {D I. It 
turns out that these equivalence classes, {D I, are the basic 
dynamical variables representing the radiative modes of the 
(exact, nonlinear) gravitational field. Transformations D-15 
where D and 15 are related by Eq. (9) will therefore be regard
ed as gauge transformations. Under such a change, we have 

Sa b_Sa b = Sa b - 2(DJ)nb. (11) 
Fix a conformal frame (qab' na) and consider connec

tions D satisfying Eqs. (7). Denote by r the space of equiv
alence classes {D I subject to the relations in Eq. (9). [Under a 
conformal rescaling, (q ab' na)_(qab' ii"), {D I is mapped to 
(D I according to Eq. (10). Hence, if we know r in one con
formal frame, we know it in any other.] This r is the space 0/ 
radiative modes. To show this, we proceed in two steps. First, 
we show that {D I has precisely two degrees of freedom. 

Lemma 1.3: The difference between any two elements 
{D I and {D' I of r can be completely characterized by a 
symmetric tensor field Yab on f satisfying Yabnb = 0 and 
yabqab = 0, where qab is any tensor field satisfying 

qabqamqbn = qmn' 

Proof Since D and D ' are torsion-free connections, we 
have (D' a - Da )Kb = Cab eKe for some tensor field Cab e sat
isfying C~b = Clab)' Since Daqbe = 0 = D 'a qbe , we have 
Cab e = ~abne for some symmetric tensor field Cab' Next, 
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since Danb = 0 = D ~nb, we have~abnb = O. Finally, Eq. (9) 
implies that D'ZD', i.e., {D I = {D' I, if and only if ~ab is 
proportional to q ab' Hence {D I - {D' I is completely char
acterized by Yab =.I ab - ~(~ mn qmn)q ab' which, by construc
tion, satisfies 

Yabnb = 0 and yabqab = O. 0 
The algebraic properties ofYab imply that it has precise

ly two independent components. These represent the radia
tive degrees offreedom of the gravitational field. 16 

The second and more important reason for regarding 
(D J as the fundamental dynamical variable representing ra· 
diative modes is that all the information about radiative as
pects of gravity can be extracted out of (D ). To show this, we 
begin by recalling the following result. 

Lemma 1.4: On f, there exists a unique symmetric 
tensor fieldpab satisfyingpabnb = O,pabqab = R ° and 
D[aPb Ie = 0, where R 0 is the pullback to f of the scalar 
curvature on (.Y, q ab) and D is any connection in C. 

Proof See Ref. 10, p. 34. 
Remark: Fix a conformal frame (qab ,na) on f such that 

q ab is a 2-sphere metric on .Y. [Such a (q ab ,na) will be called a 
Bondi conformal frame.] Pab is then given by Pab = !R °qab' 
In any other frame (qab' nb) = (CU 2qab' cu-1na) we have 

Pab =Pab - 2uJ- 1DaDbcu + 4cu- 2DacuDbcu 
- cu-2qab(qmnDmcuDncu). 

Using Sab and Pab we can now define the Bondi news 
Nab and the radiation field *K ab: 

Nab:=Sab -Pab' *Kab:=2f!'mnDmS n
b. (12) 

We shall first show that Nab and *Kab are gauge-invariant, 
i.e., that they depend only on equivalence classes {D ) in r 
rather than on individual connections D in C. 

Lemma 1.5: If D'ZD in the sense of Eq. (9), then 
N- = Nand *j{ab = *Kab ab ab . 

Proof Let D'ZD. Then there exists a function/ on f 
such that, for all Ka, (Da - Da )Kb = /qabneKe' From Eq. 
(11), we therefore have Sa b = Sa b - 2D Jn b and hence 
Sab = Sab' Sincepab is a fixed tensor field on f, independent 
of the choice of connection, we have Nab = Nab' Next, using 
the definition of * K ab, we have 

*j{ab = 2f!'mnD S b 
m n 

= 2f!'mnDmS n b _ 4f!'mn(DmDJ)nb = *Kab. 0 

Next, we show that Nab and *Kab, defined here using 
only equivalence classes (D ) have the same properties as the 
fields 1!.ab and *1£ ab induced on I by the various space-time 
fields. 

Lemma 1.6: Nab and *Kab satisfy 
N N. N bON ab 0 *K ab *K (ab) ab = (ab» ab n = , abq =, = , 

*Kabqab = 0, and Da *Kab = O. 
Proof By Lemma 1.2, Sab is symmetric and satisfied 

Sabnb = O. By Lemma 1.4,Pab has the same properties. 
Hence Nab = N(ab) and Nab nb = O. Using again the result 
Sa bna = (S - R O)nb of Lemma 1.2 and the fact that 
Sac = Sa bqbe , it is easy to verify that sabqab = R 0. Since 
pabqab = R 0, we have Nabqab = O. Next, consider *K ab. The 
Bianchi identity D[mRab Ie d = 0 together with the expression 
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of Rabe d in terms of Sa b and the definition of * K ab implies 
that *K lab lqea = O. Sinceqea V e = 0 only if Ve is proportion
al to ne, we have * K lab ] = O. The trace-free propertv of * K ab 
follows from its definition and the fact that Sab is SYh. :.:tric. 
Finally, by taking the divergence of * K ab, we obtain 

D *Kab = 2E"mnD D S b = E"mn(R PS b _ R bS P) 
a a m n amn p amp n 

= - !E"mn(qpaSm b + SpalJ", b )Sn p 
= - 41(E"mns S b - E"bns S P) = 0 0 nam pan. 

Finally, let us examme the effect of conformal rescal-
ings (qab' na)---->-(qab' il") on Nab and *Kab. Since these fields 
depend on equivalence classes [D J rather than on individual 
connections D, one expects that they will have well-defined 
transformation properties. This is indeed the case. A 
straightforward calculation yields 

{s: b} = aJ- 2{Sa b} = 2aJ- 3DaaJb 

+ 4aJ-4aJbDaaJ _ aJ-4aJmDmaJlJa b 

where {Sa b}is the equivalence class of tensors obtained 
from [D J and aJa is any covector field satisfying 
aJbqob = DoaJ. Hence, one has 

~b = Sob - 2aJ- 1DoDb aJ + 4aJ- 2Da aJDb aJ 

- aJ- 2qab(qmnDmaJDnaJ), 

Nab = Nab' *j{ab = aJ- 5 *Kab (13) 

Thus, although Nab and *K ab have been introduced on 
.1' using only the equivalent class ! D J, they automatically 
possess all the properties of the fields Nab and *K ab induced 
on the null infinity I of asymptotically flat space-times. That 
is, the discussion of this section demonstrates that the use of 
fields and equations from the interior of space-time, made in 
Ref. 10 to establish these properties, is for convenience only; 
the properties in fact stem directly from the structure avail
able on the equivalence class {D I defined intrinsically on .1'. 
Thus, we have 

Theorem 1: Let (lll, gab) be an asymptotically empty and 
flat space-time and (M, gab) any completion thereof. Fix a 
universal structure preserving diffeomorphism 1ft from the 
null infinity I of (M, gab) onto .1' and let D denote the image 
under 1ft of the connection D on I. Then, the fields 
Nab and * K ab defined directly on .1' by (D I are the images of 
the fields Nab and * K ab induced on I by the curvature tensor 
of gab' - -

Note that fields such as K ab cannot be introduced in 
terms of ! D ) alone; I D J does ~ot contain information about 
longitudinal modes. (This aspect will become transparent in 
the next section and Appendix A.) Hence the space r of all 
permissible I D I may indeed be regarded as the phase space 17 

of radiative modes in exact general relativity. Further sup
port in favor of this interpretation comes from the interac
tion of the BMS group with r. One can show that r admits a 
natural symplectic n and the BMS action on .1' induces 
canonical transformations on (r, n ); the symmetry group of 
the kinematical arena also preserves the phase space struc
ture of the dynamical variables. The corresponding generat
ing functions can be computed. These yield the expressions 
of fluxes of supermomenta and angular momenta through 
.1'.18 
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IV. CLASSICAL VACUA 

Following the terminology commonly used in gauge 
theories, we shall call an element! D J of r a classical vacuum 
if its cl!rvature t~nsor is trivial, 19 i.e., if the corresponding 
fields Nab and * K ab vanish identically. In this section, we 
shall investigate the structure available on the collection r v 
of these vacua and compare the situation with that in the 
Yang-Mills theory. The relevance of this structure to quan
tum theory will become clear in the next paper. 

Lemma 2.1: Fix a conformal frame (q ab' nb
) on .1' and 

an element D of C. Let ta be the lift to .1' of a co vector field ta 
on the space Y of generators. Then Datb is the lift to .1' of 
Da tb , where D is the connection on Y compatible withqab' 
the projection to Y of q ab . 

Proof Since ta is the lift to .1' of a covector field on Y, 
we have !.t' nta = 0 and nata = O. Hence, it follows that 
!.t' nDatb = (!.t' nDa - Da!.t' n )tb 

= nm(DmDa - DaDm )tb = nmR mab etc 

= ~nm(qb[mSco] +Sb[nlJ/])te =0; 

naDotb = 0 and nbDatb = O. HenceDa tb is also a lift to .1' of 
a covariant tensor field tab on .1'. Thus, the derivative opera
tor D on .1' provides us a mapping from covector fields ta to 
tensor fields tab on Y . This mapping is linear 
(tb---->-tab and Sb~Sab=?tb + Sb--+tab' + Sab) and satisfies the 
Liebnitz rule (tb--+tab=?ftb---->-ftab + tbDaffor all functions f 
on Y). Hence, there exists a torsion-free connection Da on 
Y such that tab = Datb' Finally, since Daqbc = 0 on f, it 
follows that D a qbc = O. Thus D a tb is the lift to.1' of Da tb , 

where D is the derivative operator on (Y, qab)' 0 
Lemma 2.2: Let (qab' na) be a Bondi conformal frame, 

i.e., let qab be a 2-sphere metric on Y. LetIab be a symmet
ric tensor field on .1' satisfying naIab = 0 and D[aIb]c = O. 
Then there exists a function! on .1' such that !.t' J = 0 and 
Iab = DaD,J + R O!qab where the constant R ° is the pull
back to .1' of the scalar curvature on (Y , qab)' 

Proof We have!.t' nIbe = naDaIbe = 2naD la I b]e = O. 
SinceIabnb also vanishes, Iab is the lift to .1' ofa tensor field 
I ab on Y. Hence, by Lemma 2.1, D a I be is the lift of D a I be 
whence D[aIb Jc = O. Thus, on the metric 2-sphere (Y, Q"b) 
we have a symmetric tensor fieldIab satisfying D[oIb Je = 0, 
where D is the derivative operator compatible with Q"b' 
Hence, there exists a function f on Y such that 
Iab = Da Dbf + R °fQ"b' Let!be the pullback to f of f. 
Then, by Lemma 2.1, DaD,J is the pullback ofDa D,J 
whenceIab =DaD,J+RO!qab' 0 

Using these two lemmas, we can now prove the main 
result concerning the structure of the space r v of classical 
vacua. 

Theorem 2: r v is an affince subspace of r on which the 
quotient group ST IT acts simply and transitively, where ST 
is the group of BMS supertranslations and T of BMS 
translations. 

Proof: Fix a Bondi conformal (rame (q ab' na) on .1' and 
consider an element !D l of r v' Since Nab vanishes, 
Sob = Pab=~R °qab for any connectionD in [D l, whereR °is 
the pullback to .1' of the scalar curvature of (Y, Q"b)' Hence 
Sa b = !R °Oa b + !a nb for some covector field!a. Since 
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• K ab = 0, D(aft, , = 0 whence};, = DJ for some function! 
Thus, Sa b = ~R °lia b + DJnb. Therefore, one can always 

" , b o£ b [ Eq find and element D of I D } for which Sa = ~ U a See . 
(11 )). Next, consider two elements I D } and I D' I o~ r v and 

" 'b 'b ° b ~ h letDandD'besuchthatSa =S:a =!~ lia .LetAJabc ar-
actenze the difference between D and D " i.e., let 
(D' - D lKb = i b nC K . i ab is symmetric20 and satisfies 

o a a a oC 0 0 0 

Iabn° = O. Next, since S/ = S' a b, D and D' have the same 
curvature. Hence, we have 

0= D '[aD'b [ - D[j)b ,IKc 

= D[aD' b ,Kc + ie(a nPD' b ]Kp - D(aDb ]Kc 

= D[aDb ]Kc + D[a(ib ]cnPKp) + ie[aD' b ]nPKp 

-D[aDb ,Ke =nPKpD(aib]C foranyKc ', , 

Hence, we have D[oIb]c = O. Thus, on (f, qab' nO, D), Iab 
fulfills the conditions of Lemma 2.2. Therefore, there must 
exist a function/ on f satisfying .Y ,J = 0 and 
iab = DaDJ + R o/qab' Conversely, it is easy to check (by, 
running the argument backwards) that, given a connection D 
with trivial curvature, D', defined by 
D 'aKb = DaKb + (DaDJ + jR °qab)nCKc is again an ele
ment of C with trivial curvature. Thus, the subspace of C 
consisting of connections with trivial curvatures is an affine 
space. Hence it follows that the space r v of classical vacua is 
an affine subspace of r. The tangent space within r v of any 
ID I is spanned by tensor fields Yab on f of the form 
Yab ~ iab ~ DaDJ, where/satisfies.Y ,J = 0 and where 
~ stands for "equal to the trace-free part of." 

Next, consider the action of a BMS supertranslation 
vector field,fna

, on r v' For any conneftion p with trivial 
curvature and any Kb, we have (2" anDa - Da.Y an lKb 
= (anmR °mabP + DaDb anP)Kp 

= (DaDba - !(S - R °/2)nPKp- Consider the one-param
eter family S (A ) ofBMS supertranslations generated by ana. 
Denote by S (A )0 I D I the images of a classical vacuum I D ). 
Then, Yab(A) characterizing S(A )OID } - ID J is given by 

Yab(A I ~ ADaDba. Since a satisfies 2" na = 0, it follows 

that the images S (A )0 I D J are again classical vacua. Thus, 

the action ofBMS supertranslations leaves rv invariant. 
Consider a supertranslation an° whose action leaves each 
element I D } of r v individually invariant. This is possible if 
and only if Yab (A ) = 0, i.e., ifand only if DaDba is propor
tional to q ab' Since q ab is a 2-sphere metric, this condition 
can hold if and only if a is a BMS translation. Thus, the 
supertranslations whose action on r v leaves each point of 
r v invariant are precisely the translations. Hence the group 
ST IT acts on r v and the action is simple; the only element of 
ST IT which maps each element of r v to itself is the identity. 

Finally, we show that the action is transitive. Fix any 
two classical vacua I D } and I D '}. Then, there exists a func
tion/on f suc~ that.Y uf = 0 and Yab ~ DaDJ, where Yab 
characterizes [ D '} - [ D }. Hence the supertranslation gen
erated by Ina for the parameter value A = 1 maps! D I to 
{D'). 0 

Intuitively, Theorem 2 may be interpreted as saying 
that there are "as many classical vacua I D } as there are 
elements of ST IT." Note, however, that there is no natural 
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isomorphism between r v and ST IT. Indeed, r v is an affine 
space while ST IT has a natural vector space structure. This 
situation is analogous to that w.r.t the Poincare subgroups of 
the BMS group: there are "as many Poincare subgroups of 
the BMS group as there are elements of ST IT", although 
there is no natural correspondence between the two. One 
might therefore suspect that a natural isomorphism may ex
ist between rv and the set Sp of Poincare subgroups. This is 
indeed the case: The addition of an arbitrarily chosen but 
fixed classical vacuum to the structure that must be pre
served by the asymptotic symmetry group causes a canonical 
reduction of the BMS group to the Poincare. Thus, we have 
the following result. 

Theorem 3: There is a natural isomorphism between r v 
andSp • 

Proof We shall explicitly exhibit the required isomor
phism. Fix a conformal frame (qab ,nal and a classical vacuum 
ID I, whereD satisfies Eq. (7a) w.r.t. (qab' na). We shall first 
show that the subgroup G of the BMS group which sends 

, .ll.. 

(qab' n°, {D I) to (iiab' no, I D J) iV Poincare group. (Here 
- 2 :=0 -I a d {D-}K qab = (J) qab' n = (J) n, an a b 
= {Da}Kb - Zw-1K(aDb ) (J) for some (J).) 

For convenience, let us work with the BMS Lie algebra 
rather than the BMS group. Fix a BMS vector field S a (so 
that 2" gqab = 2kqaband 2" gna = - Kna for some function 
k on f). For simplicity, let us suppose that there exists a 
Bondi frame (q' ab' '!,aj such that .Y gq' ab = 0 and 
2" gn,a = O. Fix a D I in the equivalence class {D' J. Now, a 
straightforward calculation yields 
(2"gD'a -D'a2"g)Kb = Iab neKc , where 
Iab =R,oS'bla -R'°(5cle)q'ab -lcD'aD'bSc, where 
S'b = Saq'ab and where Ic is any covector field on f such 
t~at lenc = 1. It is easy to verify that Iabnh = 0 and 
D '[aIb]e = O. Hence, by Lemma 2.2, there exists a function 
Ion f such that.Y ,./= 0 andIab = D 'aD 'J + R ,o/q'ah' 
~et t a = sa - Ina. Since t 0 - S a is a BMS supertranslation, 
S a is also a BMS vector field (satisfying 

.Y ~qab = 2kqab' 2" ~na = - kna). Furthermore, as shown 
in th~ pr?ofofTh~orem 2, (2"fnD'a - D'a 2"[n)Kb 
= (D'aD'J -lIS' - R °'/2) q'ab)neKc ' Hence, it follows 

that .Y ~ {D 'a I Kb = {D' a 1 X' ~Kb' Transforming this re
sult back to the conformal frame (qab' nO), we have 
X' ~{Da }Kh = {Da}.Y ~Kb - 2K(aDbpk. Thus, the one
parameter family of BMS transformations generated by t 
belongs to the group G. Since 

.Y an {D'a}Kb = {D'a}.Y anKh if and only ifana is a BMS 
translation vector field, t a + ana will also have this property 
if and only if ana is a translation. Thus, given any BMS vec
tor field S a, there exists a supertranslation Ina such that 
t a = Sa - Ina belongs to the Lie algebra of G and/n° is 
uniquely determined up to an addition of a BMS translation. 
Hence G is a Poincare subgroup of the BMS group. 

Thus, we have exhibited a mapping from rv into Sp. 
We now show that the mapping is one-to-one and onto. Fix a 
Bondi conformal frame (qah' na) and consider two distinct 
classical vacua [ D J and {if J. Then, there exists a function/ 
on f such t,hat.Y "f = 0 and Yab ~ DaDJ, where Yab char
acterizes [D J - [jj j. Denote by G and G the Poincare 
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groups sele<;ted by {D 1 and I D}. By definition, a BMS vec
tor field S a will belong to the Lie algebra of G if and only if it 
has th~ following property: If Y sqab

o 
= 2kqab' then 

Ys{Da}Kb = {Da IY sKb - 2K<aDb )k. It is easy to verify 
that S a satisfies this property if and only if t a = Sa - fna 
sati~fies the corresponding property w.r.t.W~ J.That is, Gis 
the Image of G under the inner automorphism generated on 
the BMS group by the supertranslationfna

• Hence G = G if 
and only iJ fis a translation, i.e., Yab = 0, whence 
ID I = \15}. Thus, the mapping is one-to-one. Finally, since 
any Poincare subgroup of the BMS group is the image of a 
fixed Poincare subgroup under the inner automorphism gen
erated by some supertranslation, the mapping is also onto. 0 

Remarks: (I) The explicit form of the isomorphism be
tween rv and Sp shows that it commutes with the action of 
ST/T which can be defined independently on the two sets. 

(2) Fix a stationary space-time which is asymptotically 
empty and flat at null infinity. Then, on null infinity, J, of 
this space-time, we have Nab = 0, *Kab = 0, and K ab 

= fnan b for some functior;/satisfying Y J = 0. Fix an uni
versal structure preserving isomorphism 1f; from I to 5. 
Then, by Theorem I, the image under ¢ of the connection on 
I has trivial curvature and thus defines a vacuum 11:> } in r. 
Note, however, that the precise vacuum (D I on 5 depends 
on the choice of "": Theorems 2 and 3 imply that one can 
obtain any desired vacuum by suitable choosing ¢. Thus, one 
cannot distinguish between two stationary space-times in 
terms of the imprint they leave in r. This is to be expected 
since r is the space of radiative modes which are absent in 
the stationary context. 

(3) This discussion also shows that the vacuum degener
acy is redundant. That is, unlike in the Yang-Mills theory, 
here all vacua are "trivial"; there does not exist a "topologi
cal quantum number" to distinguish between them. Rather, 
the situation is similar to (1 + 1 )-dimensional models such as 
the sine-Gordon field, where the vacuum degeneracy is 
again trivial. In the sine-Gordon case, classical vacua are 
¢ (x,t ) = ± mr and it is the field configuration ¢ (x,t ) (satisfy
ing Limx~", ¢ (x) = mr, Limx~", ¢ (x,t) = m1T", m '# n) con
necting two distinct vacua-rather than the individual vacua 
themselves-that lead to interesting structure in the quantum 
theory. Theorems 2 and 3 show that the enlargement of the 
Poincare group to the BMS occurs in classical general rela
tivity precisely because of the presence of physically interest
ing configurations I D l which tend to distinct classical vacua 
{D + } and {D _ } as the affine parameter u along na tends to 
± 00. We shall see in the next paper that the presence of 

these configurations intertwines the supertranslation ambi-
guities in the classical radiation theory with the infrared 
problems in the quantum theory. 

To conclude this discussion, let us compare and con
trast the structure available in the gravitational case with 
that of gauge theories.21 The broad analogy between the two 
is quite striking. In both cases, the basic dynamical variables 
are connections, and physical observables such as energy
momentum and angular momentum are constructed from 
the curvature tensors of these connections. Next, in both 
cases, there is vacuum degeneracy, i.e., there exist several 
distinct connections with trivial curvature. Indeed, if we re-
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stric~ ou.rselves to "trivial" vacua in the Yang-Mills case, the 
qu~htat1ve analogy extends to detailed mathematical prop
erttes. To see this, let us briefly recalf2 the situation in the 
Yang-Mills theory. Here, the action of any connection is 
completely specified by its action on a basis eO. where a is 
an internal index ("abstract" in the sense ofPen~~se2J) and u 
takes values between 1 and N =number of internal degrees of 
freedom. Given a connection D with zero curvature 
DraDb JK a -Fob a pK p = 0, there exists a basis field ~a in 
space-time such that D a eO = 0, and, if e17 and e' a:e two 
b

. ¥ $ 0 au 
ases which are constant III this sense w.r.t. D, then they 

differ by a global gauge transformation. Thus, there is a one
to-one correspondence between connections D with vanish
ing curvature and equivalence classes of basis fields where 
two are regarded as equivalent if they differ by a global gauge 
transformation. Consequently, it is the quotient GL/G of 
the local gauge group GL by the global gauge group G that 
acts simply and transitively on the collection of vacua D. In 
performing calculations, it is often more convenient to deal 
with tensor fields than derivative operators. One therefore 
fixes a classical vacuum D as the "origin" in the affine space 
of connections and lab:ls any other connection D by the field 
Aa 0. p given by (D a - D a )K a = Aa a 11K (3. However, because 
of the vacuum degeneracy, there is some freedom in the 
c~lOice of Aa a fJ: since any t~o vacua D and D.' are related by 

(D 'a - DalKo = (A -1)0. yDaA yp' whe~e A uJ3 relates the 
bases en ex and e'u "0 sel~cted by D and D " respectively, the 
change of origin f}..-..D' changes the label Aa a fJ by 
Aa utr--+A 'a 0(1 =Aa ap + (A -')"yDaA YfJ. Finally, one often 
wishes to deal with componentsAa a/3 = Aa u(1e'l"ef3 of 
Aa a (3, where ea 

0. is the basis selected by the "originAl D. Un
der change of origin, the basis also changes, whence we have 
the familiar property 
Aa "/3~A'a a/3 = A "..,,Aa Y1\A 1\/3 + (A -1)\Da A Y/3' Let us 
now compare this structure with that in the gravitational 
case. The analog of the Yang-Mills connection is the equiv
alence class {D ]. To specify a {D J, it is sufficient to give its 
action on a covector field la satisfying lana = 1, Dralb J = 0 
and !£ n la = 0. In this sense, the field la is the analog of a 
basis ea 

a' Geometrically, fa defines a foliation of 5 by a one
parameter family of 2-spheres-as a covector field, la is nor
mal to this family- which is mapped into itselfby na. Hence it 
follows that any two such la and I' a can be obtained from 
each other by a supertranslation. In this sense, the super
translation group ST is the analog of the local gauge group 
GI;' Next, it is easy to check that, given a classical vacuum 
(D I, there exists a la such thae4 {Da }/b = ° and that if la 
and /' a are two permissible fields satisfying this condition, 
then la and I' a are related by a translation. We are thus led to 
Theorem 2 in an alternate way: the quotient ST IT of super
translations by translations acts simply and transitively on 
the collection of classical vacua. Thus, Tplays the role ofthe 
global

o 
gauge group. Next, we can fix anyone classical vacu

um \D I andlabelpoint~ ID 1 o[rbytensorfieldsYab' Under 
the chang~o~ origin, ID l-\D 'J, we have Yah-Yah' 

= Yab + DaDJ where! D I and {D' I are related by the su
pertranslation Ina. 

Note, however, that the analogy is rather formal: The 
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bases ea a' the global gauge group G, and the local gauge 
group GL playa wide variety of roles in the Yang-Mills the
ory and only a few of these are played by the fields fa' the 
translation group T and the supertranslation group ST. 
Thus, for instance, the field fa cannot serve to reduce Yab to 
its components. More importantly, the detailed procedure 
by which one "gauges" field theories-i.e., passes from glo
bal gauge transformations to local ones, performed at each 
point of space-time-does not carryover. All these differ
ences are important: we shall see in the next paper that the 
quanta which emerge from connections I D 1 have spin 2, 
rather than 1, and so the two frameworks contain quite dif
ferent information. Despite this, the formal analogy is useful 
in several ways. From a mathematical viewpoint, for exam
ple, one can see that, since T is abelian, in the present frame
work, one cannot hope to find "nontrivial" vacua analogous 
to those carrying nonzero topological quantum numbers in 
the Yang-Mills theory. From a physical viewpoint, the anal
ogy adds an interesting facet to the enlargement of the trans
lation subgroup to the supertranslation one which occurs in 
presence of gravitational radiation. 
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APPENDIX A: RELATION TO THE NEWMAN-PENROSE 
FORMALISM 

Fix a space-time (M, gab) which is asymptotically empty 
and flat at null infinity. Consider a conformal completion 
(M, gab) such that the induced ~ab on I is the lift to I of a unit 
2-sphere metric on the space of generators. Then ~a gener
ates a BMS time translation. Fix a cross section of I and 
obtain a foliation of I by translating this cross section along 
n°. Introduce a coordinate u on I such that the one-param
eter family of cross sections is labelled by u = const. Thus, 
on I, u satisfies 51'" u = 1. Denote by I a the unique null vec
tor field on I, orthogonal to these cross sections, which satis
fiesgablan b = - 1. Finally, introduce a complex vector field 
rna, tangential to the cross sections, satisfying 51' n rna = 0, 
m·m = 0, andm·m = 1. Then, (na, la, rna, ma)gives us a null 
tetrad at any point of I. Set UO = mambVafb • (Uo is indepen
dent of the particular extension of Ib off I, chosen in its evalu
ation.) UO is the asymptotic shear. 51' nu°==.N is called the 
Bondi news function. Finally, the ten components of the as
ymptotic Weyl curvature, K abcd , are captured in five com
plex functions "'4°, "'3 0, "'2 0, "'1 0, and "'0 0. Five of these ten 
quantities are completely determined by the shear un: 

"'4 ° = - ao, "'3 ° = dU<>, 
2IM"'2 ° = 000.0 - uOUO + lJ2uO - d2OO, (AI) 

where the dot stands for n aaa' The remaining five compo
nents contain "longitudinal" information and are not cap
tured in aD alone. (For details, see Ref. 25). 

Consider the pull-back ~ to I of the covector field fa' Set 

rfJab = I!..a~ - iqpb~mnI!..m~· (Note that I!..a~ = I!..(a~1 and 
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that ~mn I!..m ~ is well-defined because ~mI!.m ~ = 0 on /.) 
Clearly, o! ab contains the same information as UO although it 
is independent of the choice of rna. We shall now show that, 
together with fa, <tab contains the same information as the 
element I D 1 of r. 0 

Define, on I, a symmetric connection D satisfying Eq. 
(7 a) and the condition D a f./) = O. From the discussion follow
ing Eq. (7a) it is clear that D is completely specified by these 
conditions. A direct calculation shows that D has trivial cur
vature whence I D 1 is a classical vacuum. r[he four-param
eter family of cross sections obtained from u = 0 by the ac
tion ofBMS translations is shear-free w.r.t. the connections 
in I D 1. As one might expect, the Poincare subgroup of the 
BMS group which leaves this family invariant is the same as 
that selected by I D I via Theorem 3.) Let us use this I D I as 
origin. Then, any element (D I of r can be labelled by-a 
tensor field Yab satisfying Yab- = Y(ab» Yabnb = 0, and 
yabqab = O. Consider the connection D induced on Iby V. 
We have (Da - Da)~=Da~ = ~abft~==2:ab' whence 
I D J - I D-) is characterized by the trace-free part of ~ab' 
Thus, I D 1 is labelled by tab defined by 

tab = I!..a ~ - ~~ab c[""I!.m ~ . Hence tab = Q"~b: I D } and Q"~b
or, equivalently, o!-contain identical information. Next, 
since N = 51'" un, it follows that N = mamb Nab' Finally, 
Eqs. (AI) are equivalent to Eqs. (3) and (5). 

Thus, by choosing a cross section of I, Newman and 
Penrose first introduce an origin in r and then, using this 
origin, represent the connections, news tensors, and asymp
totic curvatures in terms of spin and boost weighted scalars. 
The choice of origin, however, is not a natural one. For ex
ample, under a supertranslation, the origin is shifted and the 
scalars undergo transformations reflecting this change. In 
particular, the vector space structure that the space of shears 
appears to have is not a natural one: The notion of zero shear 
fails to be invariant under supertranslations. Hence, the 
choice of cross section is similar to the choice of a gauge in 
Yang-Mills theory; it simplifies many computations but 
complicates the analysis of conceptual issues since it intro
duces auxiliary structure which is not naturally available. 
(Thus, for example, the use of shears U O as the basic dynami
cal variable had led to an incorrect expression for the sym
plectic structure; it is rather easy to overlook the fact that the 
vector space structure on the space of shears is illusory.) 

In the framework presented in Sec. III, gauge makes its 
appearance via transformations D_D where 
DaKb = DaKb - fqabncKc' It is this freedom that led us to 
equivalence classes {D J. What is the status of this freedom in 
the Newman-Penrose formalism? Since this freedom arises 
from that of conformal rescalingsgab -a/gab (with UJ = 1 on 
Ibut VaUJ#O on I), it persists in the Newman-Penrose for
malism as we have summarized it here. However, it can be 
and often is eliminated by requiring that the conformal fac
tor {} be so chosen that not only should qab be a unit 2-sphere 
metric but fa be divergence free on I. One can use a similar 
technique on f. We could have fixed a covector field fa on 
f satisfying D la fb I = 0, .Sf' n fa = 0, and fa na = 1 and per
mitted only those connections D in C which satisfy 
(Da1b)qab = O. It is easy to verify that there exists one and 
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only one connection D in each equivalence I D I in r which 
satisfies this requirement. This "gauge-fixing" procedure 
was not used in the main body of the paper only for aesthetic 
reasons. 

APPENDIX B: EXTENSION TO ELECTROVAC SPACE
TIMES 

A 

A space-time (M, gab) will be said to be asymptotically 
electrovac and flat at null infinity ifit satisfies conditions (i), 
(ii), and (iii) of the definition in Sec. II, as well as the following 
weakened version of (iv): 

(iv') There exists a neighborhood N of I in M su£h gab 
satisfies the Einstein's equation with a Maxwell field Fab as a 

A 

source and Fab admits a smooth limit to 1. 
Conditions (i), (ii), (iii), (iv/) have the following conse

quences. Since Fab admits a limit to I, its stress-energy tensor 
vanishes to order four in the sense of Geroch. 10 Hence, I is 
again a null surface with the same universal structure as in 
Sec. II and the Weyl tensor Cabedof gab vanishes on I. Hence, 
we introduce the fields K aband • K ab on I in terms of 
K abed: = n - 1 C abed. Th~ connection V compatible with gab 
induces a connection D satisfying Eq. (1) and it Riemann 
tensor, R abcd ' is again given in terms of sa b by Eq. (3). Final
ly, we can introduce the news tensor Na: which satisfies Eq. 
(14). Because of presence of sources, however, the second of 
Eqs. (5) is modified. We have, instead, 

(Bl) 

where i:..",n i~the pullback}o I of 
4rrGn 2(F maFnb + • F ma • Fnb )i'b. [The first and third of Eqs. 
(5) remain unaltered.] In addition, via pull-back, we acquire 
two fields Fab and • Fab on I. These satisfy the equations 

(B2) 

F b - 1 mcd.F _ab n - - 2qam E _cd' 
[Note that, since the differential equations in (B2) involve 
only a curl, it is only Eq. (B 1) that exhibits the presence of a 
coupling between the gravitational and the electromagnetic 
fields on I.] Let us restrict ourselves to the situation in which 
there exists no magnetic charges in M. Then, one can intro
duce, in a neighborhood of I, a gl0!1.al vector potential Aa . 
Denote by Aa the pullback to I of Aa. The gauge freedom in 
~a can be partially eliminated by demanding that it satisfy 
A-fl n° = O. Consider equivalence classes {A J of such fields 
whereAa;::;;A 'aif A 'a -Aa = DJ with!t' J= O. Each 
{Aa} h~s two components which represent the two electro
magnetic radiative modes. Since ~b = ~fa~b J' {~b} deter
mines ~b' and hence, via Eq. (16), also ·1!..abnb. However, it 
fails to determine the component of • Fab carrying informa
tion about the "longitudinal mode." (Thus, {Aa} is analo
gous to !D J, Fab to ·Kaband ·Fabto Kab.) In terms of I, one 
can proceed as follows. The gravitational radiative modes 
can again be represented by equivalence classes I D I of con
nections which lead to the fields Nab and • K abo The algebraic 
and differential equations on these fields remain unaltered. 
The electromagnetic radiative modes can be represented by 
equivalence classes {A a} of covector fields on J. Denote the 
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space of these equivalence classes by r M' Then, flJr M re
presents the space of Einstein-Maxwell radiative modes. 
Thus, as far as the radiative degrees are concerned, a com
plete decoupling occurs on J. The situation is quite analo
gous in the Einstein-Yang-Mills case. Note, however, that 
the decoupling has not been introduced by hand; the classi
cal theory itself predicts the occurrence of this simplifica
tion. We shall see in the next paper that this simplification 
plays a key role in the quantization procedure. 
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It is shown that for a wide class of space-times the four coordinates may be chosen in a completely 
symmetric way. Such symmetric coordinates have the same causal nature in that they are all 
measured by the same type of prescription involving clocks and/or measuring rods. In these 
coordinate systems the metric tensor is invariant with respect to any permutation of the 
coordinate labels 0, 1,2,3. 

PACS numbers: 04.20.Cv 

1. INTRODUCTION 

The object of this present paper is to exhibit classes of 
symmetric coordinate systems applicable to a wide variety of 
metrics off oUT-dimensional Riemannian space-times of the 
usual signature. We focus attention initially, in Secs. 2-8, on 
the Minkowski space of special relativity, and then extend 
the results to general relativity in Sec. 9. 

In Minkowski space-time the usual coordinates xo, Xl, 

x 2
, x 3 display asymmetry between XO and the spatial varia

bles Xl, x 2
, x 3

• The latter three are similar in nature, being in 
principle obtained using meter sticks, but Xo is measured on 
clocks. The origin of the difference is of course the causal 
structure of space-time, timelike and spacelike intervals be
ing manifestly quite different. The subterfuge of taking an 
imaginary coordinate X4 = ixo does not remove the asymme
try-we cannot use a meter stick to measure X4 any more 
than we could xo! It is misleading to try to disguise the differ
ence between timelike and spacelike intervals which is en
demic to our world. However it is important to realize that it 
is precisely here, in the different nature of the two types of 
intervals, that the asymmetry belongs. The point of this pa
per is that the coordinates do not necessarily have to display 
that asymmetry but may be chosen in a completely symmet
ric way. 

In Sec. 2 we introduce coordinates 5 K which are real 
linear combinations of the Minkowski coordinates x K

• All 
four coordinates 5 K are of the same causal nature in the fol
lowing sense: Let each of the coordinates 5 K be incremented 
in turn to 5" + ds K leaving the other three coordinates un
changed. Then the fourintervals (5 D,S 1'5 2'5 3)tO(S 0 + dso, 
5 ',5 2,5 3).(5°,5 ',5 2,5 3)to(so,s 1+ ds 1,5 2'5 3),and so on, 
are all timelike, null or spacelike. (Which of the three possi
bilities occurs depends on the choice of two free parameters ~ 
and v in the transformation.) Further, any permutation of 
the new coordinate labels leaves the metric tensor un
changed. This is in contrast to the Minkowski coordinates 
where, for example, X'O = x I, x' I = x 2 , X,2 = xo, X,3 = x 3 is 
not a Lorentz transformation. Permutation symmetry is re
stricted to the three Minkowski spatial variables. 

The possibility of realization of our goal of coordinate 
symmetry is suggested by the recent results of Patera, Saint
Aubin, and Zassenhaus. I These authors show how to con
struct the finite subgroups of the generalized Lorentz groups 

O(p, q). In particular they list all the finite subgroups of the 
ordinary Lorentz group 0(3, 1) and prove the following sur
prising lemma: Every finite subgroup of 0(3, I) is an 0(3, I) 
conjugate of a subgroup of the orthogonal group 0(4). In 
other words, given a finite set of Lorentz matrices L. which 
together form a group under multiplication, then the;e exists 
a Lorentz matrix Y such that the matrices YLi Y - I consti
tute a subgroup of 0(4). The main result of Patera et al. 
which concerns us here is the existence of finite subgroups of 
0(3, I) which are isomorphic to the symmetric group S4, the 
group of permutations on four objects. These are the groups 
denoted by those authors ( ± R ; , R 3 ), (R ; Ell ( - 1), R » 
and ( - 14R ;, R ; ). Each of these groups is a set of 24 Lo
rentz matrices which is a faithful, though reducible, repre
sentation of S4' The group theoretical aspects will be elabo
rated in Secs. 6-8. 

2. SYMMETRIC COORDINATES IN SPECIAL 
RELATIVITY 

Our starting point is consideration of real symmetric 
4 X 4 matrices of the type 

g{~ ~ ~ ~, II) 

which have only two independent real elements, the diag
onal elements goo = gil = g22 = g33 = a and the offdiagonal 
elementsgo, =g02 =g03 =g12 =g23 =g31 = b. We seek to 
transform our Minkowski metric?] (diagonal elements I, 
- I, - 1, - 1) into the above form by a similarity 

transformation 

g= ST?]S, 

corresponding to a change of coordinates XK~S K; 

x=Ss· 

(2) 

(3) 

Here S is a real nonsingular 4 X 4 matrix with transpose S T, 

and x and 5 denote the column vectors constructed from x K 

and 5 K respectively. Clearly the transformation (2) is possible 
only ifg has the same signature as?], i.e., has one positive and 
three negative eigenvalues. By inspection, a complete linear
ly independent set of right eigenvectors of g is I eo, e I' e2, e3 ! 
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~~l[le,~{n 
e'~{~J e,~l [J (4) 

These are orthonormal with respect to the four-dimensional 
Euclidean metric. The corresponding eigenvalues are 
a + 3b, a - b, a - b, a-b. Hence for (2) to be possible we 
must confine ourselves to the domain a + 3b > 0, b > a. 

Let us write 

a = j(;2 - 3v), b = !(;2 + v), (5) 

so that the eigenvalues are; 2, - v, - v, - V. By defini
tion ; and v are taken real and nonzero, but allowed to be 
either positive or negative. We now define a symmetric or
thogonal matrix QEO(4), 

Q= [eOe.e2e3 ] 

~{ =: ~: ~~ -1 ' 

1 

and a diagonal matrix A, 

A{ -v -v J 
Clearly Q is its own inverse and diagonalizes g: 

QgQ =A17A . 

Thus we obtain (2) with the identification S = AQ. The 
change of coordinates (3) is then 

XO = ~; (S ° + S I + S 2 + S 3), 

Xl= -!v(SO+S·_g2_ S 3), 

X2 = - !v(g ° - S 1 + S 2 - S 3), 

X3= -~V(SO_SI-S2+S\ 

with inverse relations 

SO = ¥o/; _ ~(XI +X2 +X3)/V, 

s 1= !X0/; - !(x l - X2 - x3)1v, 

S2 = ¥o/; _!( _ Xl +x2 _ x3)1v, 

S3 = ¥o/; _!( _ Xl _x2 + x 3 )/v. 

The Jacobian determinant of the transformation is 

(6) 

(7) 

(8) 

(9) 

(10) 

IS I = ;v. (Note that Q is an improper rotation.) Hence if we 
wish to preserve the orientation of coordinates then; and v 
must be chosen of the same sign. 

To summarize, what we have established is the follow
ing. Given any two real nonzero numbers;, v, either positive 
or negative, the transformation of coordinates xl< -+S I< given 
by (9) and (10) transforms the metric tensor to the form (1) 
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with 

(11) 

The eigenvalues of the matrixg = [gAP] are;2, - V, - V, 
- V. The contravariant metric components are 

gAl' = A(; -2 - 3v- 2 ) if A = j.1, 

(12) 

3. CAUSAL NATURE OF THE COORDINATES S 
Let us introduce four basis vectors ula» a = 0, 1,2,3, 

whose contravariant components in the S-system are defined 
to be2 

IA <::A ula) = U a • (13) 

An increment of coordinate a keeping all other coordi
nates fixed then corresponds to a displacement vector pro
protional to ula)' We must distinguish five cases, according 
to the causal nature of the ula) : 

(i) ;> 3 1lvl, 
(ii) ; = 3 1lvl, 
(iii) - 31lvl <; < 3 11vl, 
(iv); = - 3 11vl, 
(v) ; < - 3 11vl, 

future timelike, 
future null, 
spacelike, 
past null, 
past timelike. 

Thus in case (i) allfour coordinates SA are future time
like, in case (ii) all are future null, in case (iii) all are spacelike 
and so on. Hence all four coordinates are to be measured by 
similar prescriptions, be it by clocks or meter sticks or com
binations of both types of device. An interesting implication 
of case (ii) is that any vector may be written as a linear super
position of four fixed future null vectors. 

Similar results with;-; -I, v-w- I pertain if we exam
ine the causal nature of vectors perpendicular to the hyper
planes 5 K = const. We are then considering the four vectors 
v la) whose covariant components in the s-system are 

(14) 

The results on the causal character of the basis vectors ula} 

and v la) are collated in Table I. 

TABLE 1. Columns two and three give the causal nature of the basis vectors 
ula) and vial for the various domains of the transformation parameters S, v. 

The vectors ula) and via), defined by (13) and (14), are proportional to dis
placements along the t axes, and perpendicular to the hyperplanes t· 
= const, respectively. 

Parameter domain 

s<-3'lvl 
s= - 3 'Ivl 
- 311vl <s < - 3 'Ivl 
;=-3'l v l 
-3 - 'Ivl<s<O 
0<;<3 -'lvl 
;=3- llvl 
3 -llvl<;<31Ivl 
s= 3'Ivl 
s>3 Jlvl 

past timelike 
past null 
spacelike 
spacelike 
spacelike 
spacelike 
spacelike 
spacelike 
future null 
future timelike 

spacelike 
spacelike 
spacelike 
past null 
past timelike 
future timelike 
future null 
spacelike 
spacelike 
spacelike 
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4. SPECIAL CASES 

In this section we consider four special cases which 
typify the parameter domains of Table 1. 

A. u(a) and vIa) both spacelike 

Of particular interest is the parameter set (; = v = 1, for 
with these values g = [gAil] and g-l = [gAil] take the same 
numerical values. 

g=g-l 

[

11 

=1 1 
1 

-1 1 

-1 
1] 1 
1 . 

-1 

B. u(a) spacelike and via) future null 

(;=1, v=3 l , 

g= 
1 - 2 [

12 ~2 1 

1 

:], 
-2 

_1_ 1[1 0 g -"3 1 

1 

1 

o 

C. u(a) future null, vIa) spacelike 

(; = 1, v = 3 -1. 

(15) 

(16) 

The metric tensor is as in (16) with g and g-I interchanged. 

D. u(a) future timelike, vIa) spacelike 

(;=(ll)!, v=l, 

g~U ~ ~ ], 

li
8 

3 
-1_ 1 

g - IT ~ 

3 

-s 
3 

3 

3 

3 

-S 
3 ~ 3 

3 . 

-S 

5. LORENTZ TRANSFORMATIONS 

( 17) 

If LEO(3, 1) we may pass from one inertial set of coordi
nates x K to another set X'K via x' = Lx. The corresponding 
change 5 K_S 'K, for a fixed choice of (;, v, will be 
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(IS) 

where M = QA -ILAQ. Clearly the set M({;, v) of all such 
matrices M is a group isomorphic to 0(3, 1). Alternatively 
M({;, v) is the group composed of all matrices M satisfying 

MTgM=g, (19) 

with g given by (11). 

6. PERMUTATION SYMMETRY 
A. Permutations of coordinates 

Let us consider the result of permuting the coordinate 
labels 0, 1,2, 3, in the s-coordinate system. We adopt the 
cycle notation for permutations. For example, (123) {SKj 
will mean the coordinate transformation 5 .0 = 5 °'5 .Z = 5 I, 

5.3 = 5 z,s >1 = 53. Itissufficienttoconsidertheeffectof,say, 
the two elements (01) and (123) since all 24 permutations of 
S4 may be generated as products with these two elements as 
factors. 

If PES4 , then the transformation PIs KJ leaves the met
ric tensor unchanged. It follows that there must be a finite 
subgroup of matrices MEM({;, v) which are a representation 
of S4' The correspondence is clearly 

IOI)_~ ~ : ]. 

1123{ : ~ ~, (20) 

and so on. If we now generate the Lorentz matrices corre
sponding to (02) and (123) by the prescription 
L = AQMQA -I we obtain the matrices designated - R ; 
and R 3 by Patera et al. 3 Thus the symmetry of our formal
ism under permutations of the coordinates 5 K corresponds to 
the finite subgroup of 0(3, 1) denoted by those authors 
( - R ;, R 3 >, which is isomorphic to S4' 

B. Symmetric functions of the coordinates 

It is instructive to examine the functions 
3 

Sn = I (sA)", n=1,2,3, ... , 
A=O 

which are completely symmetric in all four coordinates. Ex
pressed in terms of the Minkowski coordinates with the aid 
of (10) the first three such functions are 

SI = 2{; -IXO, 

Sz = {; -Z(XO)2 + v- 2?, 

S3 = ~{; -3(XO)3 + ~ -IV-ZXO? - 3V- 3X IX 2X 3, 

where 

? = (XI)Z + (X2
)2 + (x3f 

(21) 

Hence xO, rand X l X 2X 3 are completely symmetric functions 
of the 5 A. This result will be of significance in Sec. 9, where 
we extend out results to general relativity. 
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C. Coordinate functions belonging to the 
representations of 84 

The properties of the irreducible representations S4 are 
summarized in the Appendix. The five representations may 
be labelled according to the partitions of the number 4, [4], 
[31], [22], [211], [1111], having dimensions respectively, 1,3, 
2, 3, 1. The symmetric functions (21) belong to the symmetric 
representation [4J. We may also construct multinomials in 
the coordinates which belong to the rows of the other repre
sentations. Such functions, up to degree 2, are: 

(i) belonging to [31J: 

11=5°+5 1-5 2 -5 3= _2V- IXI, 

12=5°-5 1 +5 2-5 3= _2V- 1X2, 

13=5°-5 1 -52+5 3 = -2V- IX
3

; 

Ii = (So + 5 1)2 -1S 2 + 53)2 = - 4(;V)-lxOx l, 

I; =(S°+5 2)2_(5 3 +5 1)2= _4(;V)-IXOX2, 

Ii = ISO + e)2 - (S' + 52f = - 4(;V)-IXOX3; 

Ii' = (So - 5 1)2 - (52 - 5 3f = 4V- 2
X

2
X 3, 

I~ = (5° - 5 2f -1S 3 
- 5 1)2 = 4V-2

X 3X I, 

I~ = (50 _ 53)2 -IS 1_ 52)2 = 4v-2x'X2. 

(ii) belonging to [22]: 

gl = 3 -1[(5° - 5 2)(S' - 53) + (S° - 5 1)(5 1 
- 5 3)J, 

= v- 13 -l[(x'f + (X2)2 - 2(X3)2J, 

g2 = (5° - 5 3)(5 1_ 52) = V- 2[(XI)2 _ (X2)2]. 

To construct functions belonging to [211] and [1111], 
one has to go to multinomials of higher order. 

7. THE TRANSFORMED SPINOR MATRICES 

A. The Pauli matrices 

Consider the Pauli matrices aA, tr defined by 

aD = £r> = (~ ~), 
0.1 = _ (jl = (~ ~). 
t?=-az=e -I) 

o ' 

~= -~=(~ ~J 
They satisfy 

tr = E(aA)*Et, 

trd' + ifl"aA = 2rlJl, 

(22) 

(23) 

whereE=( 0 1).NoteEt =E- I = -E.Letustransform 
-10 

" 'A (.=I:A/O K) -x -'A to the 5-system by the prescnptlon 0- = u!> xu, 0-
analogously. These transformed Pauli matrices will then sat
isfy equations of the form (23) with 7JAJl replaced by gAJl. We 
find 
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0-,0 = !aD /; - 1(0-1 + t? + ~)/v, 
0-" = ~aD/; - ~(o-I - t? - ~)/v, 

u'2 = !dl/; - ~( - 0-1 + t? - ~)/v. 

0-'3 = !o-0/; -!( - 0-1 
- t? + ~)lv. 

(24) 

The matrices (j'A are obtained by replacing v by - v in (24). 
An interesting feature of d A and (j'A is that all eight 

matrices have the same eigenvalues 1(; - I ± 3 !v - I). This fol
lows readily by noting that (0-1 ± t? ± ~f = 30-°. Hence 
any pair of these matrices is related by a similarity transfor
mation. Contrast this symmetry with the situation in Min
kowski coordinates where 0-° has eigenvalues 1, 1 and 0-1

, t?, 
~ eigenvalues ± 1. . 

By explicit calculation, we find that the relevant simi
larity transformations are the representation matrices of the 
projective (doubly valued) representation r6 of S4 (see Ap
pendix). For a permutation P the result is 

Plo-'AI =r6(p)o-'Art(p) if Pis even, 

= r 6(PW'Ar!(p) if Pis odd. (25) 

Note that an odd permutation corresponds to an improper 
Lorentz transformation. 

The signature of the matrices 0-')., iJ'A is correlated with 
the causal nature ofv(a) given in Table I. The matrices are 
positive definite, negative definite, indefinite or singular ac
cording as the via) are future timelike, past timelike, spacelike 
or null respectively. 

B. The Paull angular momentum matrices 

The spinor infinitesimal generators for 0(3, 1) are 

s"" = M(trif - iJI'aA ), 

taking the values 

(S23, S31, S12) = _ i(SOI, S02, S03) = ~(0-1, t?, 0-'). 

The components in the 5-system, 

P'" = FW'AdJl _ (fJldA), 

are 

S'23 = ii(;v)-I(t? -~) + i V- 2(t? + ~), 
S,OI = F(;V)-l(t? +~) + iV - 2(t? - ~), 

with the other components being obtained by cyclic inter
change of 1,2,3. 

The eigenvalues of all the matrices S'A/' are 
± V-I[~(V-2 - t -2)] l which are purely real, zero or purely 

imaginary according as I; I ;;;. Ivl· This contrasts with the sit-
< 

uation for the Minkowski generators where s23, S31, and Sl2 

have the real eigenvalues ±! and SOl, S02, S03 the imaginary 
eigenvalues ± !i. Note that if It I = lvi, as in (15), then all 
eigenvalues of s''''Jl are zero so that the matrices cannot then 
be diagonalized. 

The permutation symmetry again involves r6: 

P Is'A./'} = r 6(p)s'A"r!(p). if P is even, 

= r 6(p)E(S'AJl)"EF!(p) if Pis odd. 
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In Sec. 7 we have focused attention on the contravar
iant components of the Pauli matrices. Similar results hold 
for the covariant components a~, ij~, s~" with ;~; -I, 

-I v-v. 

8. THE TRANSFORMED DIRAC MATRICES 

A. The matrices y A and a A 

Let us adopt the following representation for the Dirac 

matrices y\ a'" /3, partitioned into 2 X 2 submatrices: 

yD=/3=(~ ~I), 
t=(_°a" ~). k=I,2,3, 

~). 
~), k = I, 2, 3. 

They satisfy 

(Y' + Y'( = 2r/", 
(()t = /3(/3, 
(aA)t = a A = /3(. 

(26) 

If we transform ( and a A as if they were contravariant vec
tors then the transformed components y'A and a'A satisfy (26) 
with 1/"" replaced by 1-'". These matrices are 

10_1[ II; -(al+er+~)lv] 
y - 2 (al + er + ~)Iv - I I; , 

[ 
I I; - (al 

- er - ~)lV) y'l-1 
-:1 (a l 

- c? - ~Vv - I Is ' 

,0 [ I I; - (a l + er + ~)IV] a -I 
- 2 _ (al + er + ~)lv I I; , 

,I l[ I IS - (a
l 

- c? - ~)lv]. 
a = 2 _ (a l _ er _ ~)Iv I Is 

The other components may be obtained by cyclic inter
change of 1,2.3. 

The eigenvalues of all they'). are ± ~(; -2 - 3v- 2)1, and 
of a'). are !(S -I ± 3Iv- I

), each eigenvalue being doubly de
generate, By direct calculation, or by first expressing y'" and 
a'). in terms of a'). and ij'). and applying (25), we find the 
permutation behavior to be 

P [y').] =D(P)y'''Dt(P). 

with D(P) =r6(p)fI1r7(p), (27) 

and a similar result for a')., (See Appendix.) 

B. The Dirac angular momentum matrices 

The appropriate infinitesimal generators for 0(3, 1) are 
J).I" = !i((Y' - Y'(). taking the values 

23 (al 0) 01 ,(0 al
) 

J =! 0 aI' J = ~l a 1 ° ' 
and so on. The transformed components are 
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J'23 _ I[ (er + ~)lv 
- 4 i(er - ~)/(;v) 

J'OI = l[ (er - ~)/V 
4 i(er + ~)/(;v) 

i(er - ~)I(;V)] 
(er+~)/v ' 

i(er + ~)/(;V)] 
(a2-~)/V ' 

with the other components given by cyclic interchange. 
The eigenvalues of all the J '''I" are 

± v-l[Mv- Z - ; -Z)]l as forthes').I", except that each eigen
value is doubly degenerate. Under permutations the trans
formation law is analogous to (27). 

The eigenvalues of the covariant components y~ , a A , 
J AI" may be obtained by the replacement;~; - I, v-+v- I in 
the above. 

9. SYMMETRIC COORDINATES IN GENERAL 
RELATIVITY 

A. General isotropic metric 

Consider a metric of the isotropic type 

ds2 = A ZIt, r)dt 2 - B 2(t, r)(dx2 + dy2 + dzZ), (28) 

where A and B are arbitrary real functions of the "time" t 
and the "radial" coordinate r = (xZ + y2 + Z2)112. Let us de
fine new coordinates 1/K by analogy with (10): 

1/0 =!t I; - !(x + y + z)lv, 

1/ 1 = ~t/; - ~(x - y - z)/v, 

1/2 =;t I; - ~(-x + y -z)/v, 

1/3 =!t I?; - ~( - x - y + z)/v, 

(29) 

where?;, v may be any nonzero real numbers. Using (21), we 
see that t and r are completely symmetric functions of the 1/K

: 

t = ~;SI> r = V(S2 - !sn, 
SI = 1/0 + 1/ 1 + 1/2 + 1/3, (30) 

Sz = (1/0)2 + (1/ 1)2 + (1/2)2 + (1/3f 

With respect to the coordinates 1/K the metric components 
are 

g~1" = !(?;2A 2 - 3v2B2) if A =J.1.., 

= i(?; 2A 2 + v2B 2) if A #p. (31) 

This metric is now completely symmetric with respect to 
'permutations of the coordinates 1/K. Its eigenvalues are {; 2 A 2, 

_vB2, _VB2, _VB2. 

B. The Friedmann-Robertson-Walker metric 

As a special case we may consider the Friedmann-Rob
ertson-Walker metric4

•
5 

ds2 = dt 2 _ R 2(t)(1 + !kr)-2(dx2 + dyZ + dz2) 
=dt Z _ R 2(t )((1 _ k;:1)-ld;:2 + ;:2dfl 2], 

where r = r( 1 + !kr) - 1 and k may be ± 1, O. The transfor
mation (29) then yields the metric (31) with A = 1, 
B=R(t)(l +!k"zl-I. 

C. The Schwarzschild metric 
Another interesting special case is the Schwarzschild 

metric6 
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ds2 = (1 -!OM Irf(1 + !GM Ir)-2dt 2 

- (1 + ~GM Ir)4(dx2 + dy2 + dz2) 

=(1 - 2GM IT)dt 2 - (1 - 2GM IT)-'dr 2 - r 2dfl 2, 

where r= r(1 + !GM Irf. 
We now obtain (31) with 

A = (1 - !GM Ir)/(l -+- !GM Ir), B = (1 + !GM Irf 
Note that the transformation (29) is only applicable out

side the Schwarzschild radius r = 2GM or r = !GM. If 
I; I < 3 II vi then the coordinates 1J K are spacelike for all 
r> !GM, but if I; I > 3 II vi then there will exist a value of rat 
which the 1JK change from being spacelike to timelike as r 
increases through this value. 

10. DISCUSSION 

Merely changing from one set of coordinates to an
other, as we have done in this paper, will not alter the predic
tions of any satisfactory physical theory. Nevertheless the 
adoption of the coordinates S K does lead to some curious 
features. Consider, for example, a solution of the Klein
Gordon equation p/'l-'a2r/!1 as ).asl-' + ,(2r/! = 0 in the plane 
wave form exp( - ik).s).). We havep/'l-'k).kJi =,(2 which 
may be solved for ko to give (ifgoo;i:O) 

ko = (gOO) - , [ _ gOp k p ± {(g0PgOq _ goog"'l)kp kq + goo,(2 }112 ], 
(32) 

wherep, q are summed over 1, 2, 3. When gOO = 0, i.e.,when 
; 2 = V 13, (32) must be replaced by 

ko = (,(2 - g"qkpkq)/(2gosks) 

= (yrv - k,k2 - k2k3 - k3k,)/(k, + k2 + k3)' (33) 

The two values of ko in (32) correspond to the two sheets of 
the momentum hyperboloidp/'I-'k).k =,(2. However when 

2 ~2 . Ji 
; = v 13 we obtam only the one value (33) for ko' In this 
case the two sheets of the hyperboloid are distinguished by 
whether k, + k2 + k3 is positive or negative. 

We turn now to the transformed Dirac equation 

ia').ar/!Ias). = K/3r/!, 
or equivalently 

ia,oar/!Iaso = - ia'par/!lasP + K/3r/!. (34) 

Let us restrict our attention to the parameter range 
0<; < 3 ~ Iv. All the eigenvalues of a'). are then positive and 
we can find a positive definite Hermitian matrix T satisfying 
T -2 = a'o. Whence (34) takes the form 

iat/J las 0 = Ht/J, 
where 

t/J= T-Jr/!, 

H = - iTa'PTa las p + KT/3T. 
In this case the sO-development of t/J is generated by the Her
mitian operator H which acts on the space of square-integra
ble 4-spinors t/J(5 Pl. For this range of the parameters,;, v, the 
coordinates S \ and in particular S 0, are spacelike but the 
hyperplanes 5 K = const have timelike normals. The selec
tion of 5 ° as the "time" coordinate for Hamiltonian develop
ment is of course quite arbitrary. 5 " S 2, or 5 3 would serve 
equally well. 
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Finally we may speculate on a possible application of 
our formalism to General Relativity. Metrics of the form (28) 
playa special role in Cosmology. We note that A and Bare 
functions of t, r, or equivalently using (30), of the two sim
plest symmetric functions formed from 1JK, viz. s" S2' The 
next simplest symmetric function is S3' or equivalently xyz. 
Perhaps it might be fruitful to examine metrics of a form 
similar to (28) except that At B would be taken functions of 
the three variabless" S2' S3' or equivalently, oft, r, xyz. Such 
metrics would in general be neither homogeneous or isotrop
ic but would retain complete symmetry under permutations 
of the coordinates 1JK. 

APPENDIX: THE REPRESENTATIONS OF THE 
SYMMETRIC GROUP 54 

The 24 permutations of S4 may be grouped into five 
classes of conjugate elements 7 

~ 1 = {(OIl, 

~ 2 = [(012), (023), (031), (021), (032), (013), (123), (132)J, 

~ 3 = [(01)(23), (02)(31), (03)(12)1. 

~4 = [(0123), (0231), (0312), (0132), (0213), (0321)j, 

~ 5 = [(01), (02), (03), (23), (31), (12)}. 

The five irreducible representations are labelled according to 
the partitions of the number 4, [4J, [31], [221, [211J, [1111J 
and have dimensions 1, 3,2, 3, 1 respectively. It is sufficient 
to give the representation matrices for, say, the two elements 
(01) and (123) since any of the 24 permutations may be »Tit
ten as products with these elements as factors. We adopt the 
representations given by Corn wellS: 

[4] (OIl-I, (123)...-1; 

[31] IOI)->~ 0 

0 

-1 

11231 0 

~; 0 

( -! ~ 31
) 

[22] (OIl- 131 " 
2 i 

(123)..._ ( - ~ PI); _pl _! 

~J 

[211J As for [31] with a change in sign for odd 
permutations; 

[1111J (OIl- - 1, (123)..._1. 

S4 also possesses three projective representations, r 6 , 

r7, rs satisfying r (PIl r (P2 ) = ± r (P,P2). These are true 
reEres~ntations of the 48 element double ochtahedral group9 
C? whlch.hasa2-1 homomorphism on toS4. Therepresenta
bon matnces for the projective representations are given by 
Onodera and Okazaki. \0 We need only r6 and r7: 
r6 (OIl- - 2 -\ i(a2 + dl), 

(1231-!(1 - i(lT' + a2 + dl)], 
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with the Pauli matrices given by (22); 

r7 As for r6 with a change of sign for (01), with (123) 
unchanged. 

IJ. Patera, Y. Saint-Aubin, and H. Zassenhaus, J. Math. Phys. 21, 234 
\1980). 

2In general a prime will be used to distinguish tensor components referred 
to the S-system from the Minkowski components (unprimed). An excep
tion is the metric tensor, whose components are denoted g,!" and 1/,!", 

respectively. 
3Reference I, Sees. IlIA and IlIB. Note that the symbol - R 2 of Sec. lIlB 
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means the 4 X 4 matrix I Ell ( - IJR 2) constructed from the 3 X 3 matrix 
R 2 of Sec. IIlA(d). 

4A. Einstein, The Meaning 0/ Relativity (Methuen. London, 19561. pp. 104-
111. 

58. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). p. 412. 
6Ref. 5, pp. 179-82. 
7H. Boerner, Representations o/Groups (North-Holland, Amsterdam, 
1963), pp. 102-25, 184-2\3. 

• J. F. Cornwell, Group Theory and Electronic Energy Bands in Solids 
(North-Holland, Amsterdam, 1969), pp. 21-5,229-35. Identify 
(OI)-.ICze> (123)-.C;6 '. 

"Ref. 8, pp. 247-50. 
lOY. Onodera and M. Okazaki, J. Phys. Soc. Japan 21, 2400 (19661; Identify 

(OI)--C ;[011], (l23)-.C3[111j. 
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Memory function approach to nonlinear deterministic systems: An exact 
linear equation 

T akeo Nishigori 
Department 0/ Nuclear Engineering. Osaka University. Suita. Osaka 565. Japan 

(Received 23 February 1981; accepted for publication 25 June 1981) 

A set ofnonIinear evolution equations is cast into an exact linear non-Markovian equation with 
the memory kernel reflecting the nonlinearity and coupling with irrelevant variables. The 
equation is deterministic in contrast to the generalized Langevin equation derived in a similar 
way. The solution to the nonlinear equations is expressed by a sum of exponential functions. A 
simple illustrative example is treated to show the effectiveness of the present approach. 

PACS numbers: 05.20.Dd, 02.90. + P 

1. INTRODUCTION 

This paper is concerned with a system described by a set 
of coupled nonlinear evolution equations 

{ 

x(t) = f(x(t ),y.(t ), ... ,yn (t )), 

~,(t) = g,(x(t ),y.(t ), ... ,yn (t ))" 

Yn (t) = gn (x(t ),y,(t ), ... ,yn (t)) 

subject to given (i.e., fixed) initial condition 

x(O) = a#O, 

Yi(O) = b,., I..;;i..;;n, 

(Ia) 

(Ib) 

and aims at deriving from Eqs. (Ia) and (Ib) an exact linear 
non-Markovian equation of the following form: 

x(t) = (i)x(t) + fA (t - t ')x(t ') dt '. (2) 

Here, x is the variable whose evolution is of interest to us, 
Y.""'Yn are state variables necessary for the Markovian de
scription (Ia), and the overdot implies differentiation with 
respect to t. 

The possibility of such an exact linearization has been 
suggested from our recent study on generalized Langevin 
equations. • We have shown that a set of coupled equations of 
motion can be converted into a linear non-Markovian Lan
gevin equation; the stochastic nature of the equation arises 
from the fact that the initial values are not specified but sta
tistically distributed. For the deterministic system (Ia) with 
completely prescribed initial condition (I b), we shall show in 
the present paper that the stochastic force disappears and the 
generalized Langevin equation reduces to the deterministic 
Eq. (2). 

The memory function A (t ) in Eq. (2) takes account of the 
nonlinearity and the coupling of x with the irrelevant varia
bles Y., ... ,Yn' which have been eliminated in deriving Eq. (2); 
i.e., the memory function reflects all the complexity of the 
problem. Thus, the exact linear Eq. (2) does not imply that 
the exact solution to the nonlinear Eqs. (ta) is obtainable, 
and its usefullness depends entirely on an approximation 
made to the memory function. It is our expectation and the 
motivation of the present work that we can approximate the 
memory function more easily thanx(t ) itself to obtain a result 
of the same quality. For instance, in a decaying system where 
x(t )~O as t~ 00, the memory function will decay more rapid-

ly than x(t ), and is expected to be less sensitive to approxima
tion. Such is indeed the case with the successful memory 
function approach in kinetic theory of classical liquids. 2 

Once the memory functionA (t) is determined, the linear 
Eq. (2) is readily solved to yield 

(3) 

where cl" are the residues at poles AI" of the Laplace trans
form x(z)/a, i.e., 

(4) 

The solution (3) seems to indicate that its usefulness will not 
be limited to the decaying systems mentioned above, where 
all the AI"s have a negative real part. 

In Sec. 2 we shall consider a single-variable case to illus
trate the essential feature of our approach. Considerable 
simplification is made by introducing an assumption on the 
nonlinearity, and the memory function is found to be an 
infinite continued fraction, quite similar to that obtained by 
Mori in physical equilibrium systems. 3 

.• When the assump
tion is not valid, the memory function is given by a compli
cated combination of infinite continued fractions. Section 3 
discusses the system of several variables described by Eqs. 
(ta) and (I b). We introduce an expansion of an analytic func
tion of several variables in terms of different orders at a zero, 
and derive a general formula for the memory function A (t ). 
Section 4 analyzes a heavily damped anharmonic oscillator 
as a simple illustrative example. Each successive memory 
function is seen to decay on a shorter time scale, and we 
approximate a higher-order memory function by a delta 
function (an instantaneous decay) to obtain a result in excel
lent agreement with the exact solution. The final section is 
devoted to some concluding remarks. 

2. A SINGLE-VARIABLE CASE 

Let us begin with a simple system described by a first
order ordinary differential equation 

x(t) = f(x(t )), 

x(O) = a#O, 

(5a) 

(5b) 

where the functionf(x) is arbitrarily nonlinear in x. The ini
tial value is assumed to be non vanishing for the reason to be 
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mentioned below. 
In accordance with the theory of generalized Langevin 

equations,l we extract from the nonlinear functionf(x) a 
linear part so that the remainder is orthogonal at t = ° to x; 
i.e., 

fix) = (uX + XI' 

(x dO),x(O)) = 0. 

(6) 

(7) 

The inner product is defined in Ref. 1 by the average over a 
statistical distribution of the initial value x(O), and in the 
present case the distribution function is a delta function 
{j (x(O) - a) corresponding to the fixed initial value (Sb). 
Thus, Eq. (7) becomes xl(Oja = 0, where xl(O) is a nonlinear 
function of a, and since a=lO, we have 

XI(O)=o. 

This defines cu in Eq. (6) as 

cu =f(a)/a, 

(8) 

(9) 

in terms of which the nonlinear part x I is now defined by 

Xl = fIx) - cux, (10) 

and the evolution equation (Sa) becomes 

X(t) = cux(t) + xl(t). (11) 

Note that the condition (8) implies that the nonlinearity dis
appears in Eq. (11) at t = 0. The initial nonlinearity is fully 
included in the "renormalized" frequency cu defined by Eq. 
(9). Note also that, if x(O) = 0, the condition (8) implies 
X(O) = 0, which is not the case in general. This is the reason 
that we have assumed X(O) =10 in Eq. (Sb).4 

The essential point of the present approach is to treat 
xl(t), which is a nonlinear function ofx(t \, as a new variable, 
and to consider the nonlinear equation (11) for x(t ) as a linear 
equation for x(t) and xl(t). 

The evolution equation for the variable X 1 (t ) is found as 
follows: We assume6 for simplicity that X I is of first order at 
the zero a, i.e., 

Xl = (X - a)4>I(x), 4>1(a)=l0. (12) 

Then, using Eq. (11) for X, we have 

Xl = [4>I(X) + (X - a)4>I'(x)](CUx + Xl) =fl(X)' (13) 

As in Eq. (6) we extract from this function a linear term a IX, 
where 

(14) 

The remainder]l(x) = fl(x) - alx is of first order at the zero 
a. Hence, we extract XI from]1 so that]1 = CUIX I + x2• Ifwe 
require that cu I be a constant and that X2 be of higher order at 
a than XI' then CUI is uniquely determined by 

(UI = lim [fl(X) - alx]lx l · ( 15) 
x-... a 

The proof is obvious by noting that X2/XZ--~O as X-+(J. The 
residual X 2 is also uniquely determined by 

X2 =fl(x) - alx - CUlX I· 

The evolution equation (13) is now 

XI(/) = atx(t) + UiIXI(t) + x2(t), 

which is linear in the variables x, x I, and x 2 • 

2904 J. Math. Phys .• Vol. 22. No. 12. December 1981 

(16) 

(17) 

We repeat this procedure. The variable x 2 is of second 
or higher order at a; we assume for simplicity that it is of 
second order, i.e., 

(18) 

Then, x2 is of first order and no longer contains a term linear 
in X; i.e., the variable X2 is coupled only with X I' x 2• and a new 
higher-order variable X3' In general we assume that 

xn = (x - a)"4>n(x), 4>,,(a)=l 0. (19) 

Then. since 

xn = (x - at~ I [n4>n(x) + (x - a)4> ~(X)](UiX + XI) 

=~M (~ 

is of order n - 1, we extract as in Eqs. (14) and (IS)xn _ I and 
Xn fromfn with the coefficients 

(21) 
x~a 

(22) 

and define a new higher-order variable 

(23) 

to obtain a linear evolution equation 

xn(t) = a"xn ~ I (t) + cu"x,,(t) + xn + I (t). (24a) 

Instead ofa single nonlinear equation (Sa). we now have 
an infinite chain of linear equations (24a) with n = 0,1,2 ..... 
where Xo = x. ao = 0, and Uio = Ui. The initial condition is 

x(O) = a=lO, 
(24b) 

Xn(O) =0, n>1. 

By virtue ofthe linearity, the solution to Eq. (24a) is readily 
obtained. In terms of the Laplace transforms x" (z), we have 

x,,(z) = -="(z)a"x,, ~ I (z), (25) 

where 

-=n(z) = (z - Uin - -=n+ I (z)an + I ]~I. (26) 

The lowest-order equation (II) then takes the form ofEq. (2) 
with the memory function given by A (t) = -=I(t )a l• where 
-=I(t ), normalized at t = 0, is the inverse Laplace transform of 
an infinite continued fraction 

(27) 

The nonlinear effect can thus be converted exactly into 
the linear memory effect. and we have now the solution (3). 
Our problem is therefore reduced to the calculation of -=1 (z), 
which in turn is reduced to the calculation of -=2 (z). and so on. 
We expect that the memory function -=" becomes easily ame
nable to approximation with increasing order n. An example 
will be seen in Sec. 4. 

Let us note here the formal similarity of the present 
results to the generalized Langevin equation.3

•
1 The general

ized Langevin equation reduces to the deterministic equa
tion (2) since the random force. which is given by a linear 
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combination of the initial higher-order variables, I identical
ly vanishes in the present case. We note also that the memory 
function (27) is identical in form to Mori's one. 3 Our system 
is, however, nonstationary and may even by nonphysical, 
while Mori has discussed physical equilibrium systems. The 
similarity of the memory function is therefore accidental and 
due entirely to the simplifying assumption (19). When this 
assumption does not hold, the variablexn is coupled not only 
with Xn _ I ,Xn, andxn + I' but also withxn _ 2 '''''XI' andx, as 
will be seen in the next section. The simple memory function 
(27) then becomes a complicated combination of infinite con
tinued fractions. Including such a single-variable system as a 
special case. we now proceed to a several-variable case to 
find a general formula of the memory function. 

3. SEVERAL-VARIABLE CASE 

One of the key points of the preceding section is to de
compose nonlinear functions into several terms of different 
orders at a zero; see Eq. (24a). To extend this formalism to 
the system of several variables described by Eqs. (1 a) and 
(1 b). we need some theorems on functions of several 
variables. 

A. Decomposition into terms of different orders 

We shall consider in this section complex-valued 
functions. 

Definition I: We say that a function/(z) of n complex 
variables z = (z I>""z n)' analytic in a neighborhood of a zero 
(let it be z = 0). is 0/ order v = (vl, ... ,vn) at the zero if/is 
expressed by 

/(z) = ZV tP (z); tP (0) =1= 0, 

where ZV = Zl v' ... zn v",vi are nonnegative integers, not all 
zero, and tP is analytic in a neighborhood of z = O. 

(28) 

Contrary to the single-variable case, an analytic func
tion/(z) does not necessarily take the form (28), even ifit has a 
zero at z = O. Our task is now to decompose a given function 
into terms of different orders. 

Theorem 1: Given an order v = (vI, ... ,vn ). then for ev
ery function/(z) analytic in a neighborhood of the origin 
there exist functionsg(z) and h (z) both analytic in a neighbor
hood of the origin such that 

/(z) = zVg(z) + h (z). (29) 

The functions g(z) and h (z) are uniquely determined by Eq. 
(29) together with the requirement that h consist of terms 
containing a lower power than those in ZV in at least one of 
the variables z 1, ... ,Zn' 

Proof We repeatedly apply Spath's theorem. 7 First. we 
divide/by Zlv, to obtain 

v -1 

/(z)=zll"gdz)+ I h 1dz2' .. ·.zn)z7, 
k~O 

where g I and hI k are analytic in a neighborhood of the origin. 
Next, we divide gl by Z2 l', to define analytic functions g2(Z) 
and h2k (ZI,Z" ... ,zn)' 0.;;;h;;;v2 - 1; i.e., in general 

2905 

gi _ I (z) = Zi v'gi (z) 
V,- J 

+ I hik (z I "",Zi - I ,Zi + I , .. ·,zn Jz7 
k~O 
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for i = 2, ... ,n, wheregi and hik are all analytic in a neighbor
hood of the origin. Equation (29) then follows with 

g(z) = gn (z), (30) 
n 

h (z) = IZlv,,,,z~~; 
i=1 

v/-l 

X I hik (ZI, .. ·,Zi_I,Zi+I"",znJz7, (31) 
k~O 

where Z I v, ... z~'::; = 1 for i = 1. It is obvious that g and hare 
analytic in a neighborhood of the origin. The uniqueness of g 
and h follows from the uniqueness of the power series expan
sion of/(z) and from the fact that no term in h contains ZV. 

Remark: If g(O) = D j(O)/v! =1=0. we may call ZVg(z) the 
vth-order component off 

Corollary: Let a function/(z) analytic in a neighborhood 
of a zero, z = 0, be given. Let all the orders Vi = (Vii , ... , V~ ) be 
arranged in a certain sequence V I ,V2," . Then. correspond
ing to the sequence I Vi 1, the function/(z) is decomposed into 
several (N) terms of different orders at the zero as follows: 

N 

/(z) = IZ";gi(Z), gi(O) =1=0. (32) 
i= 1 

wherelli = (.u\ , .. ·,Il~) are orders ofwhich/(z) has a nonvan
ishing component and gi are analytic in a neighborhood of 
z=o. 

Proof Apply Theorem 1 with v = VI' then with V = V2, 
and so on. If the first non vanishing component is of order 

Vj = Ill' then we have/(z) = zi"gl(z) + h,(z) with gl(O) =1=0. 
where gland h I are analytic in a neighborhood of the origin. 
We further apply Theorem 1 to the function hl(z) with 
v = Vj + I' Vj + 2 ..... Denoting the number of non vanishing 
components by N (which may possibly be infinite). we obtain 
Eq. (32). 

Remark: An example of the sequence of the orders is 

VI = (1.0, .... 0). v2 = (0.1,0 .... ,0) ..... or. in terms ofz''', 

(33) 

If. instead, a "higher" -order Vi precedes a "lower" one vi" 
i.e., v~;;;.t{.l .;;;k';;;n, for some i < i', then a term of higher
order Vi is separated from that of lower-order Vi' in the de
composition (32). and thus N increases. 

Theorem 2: Given L functions, of different orders at a 
zero, z = 0, 

u,(z) = Zl',tP, (z), tP/(O) =1=0, l.;;;k,L, (34) 

then for every function/(z) analytic in a neighborhood of the 
origin there exist L constants CI and a function g(z) analytic 
in a neighborhood of the origin such that 

L 

/(z) = Ic,u,(z) +g(z). (35) 
,~ I 

If we require that D "g(O) = 0 for every I, i.e., if g(z) has no 
term of the same powers as VI' then the constants c I' 
then the constants CI , and hence the function g. are uniquely 
determined. 

Proof Expand both sides ofEq. (35) in powers of 
Z = (ZI, ... ,Zn)' We assume without any loss of generality that 
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the L functions u/ have been numbered such that the power 
series expansion of u / does not contain terms proportional to 
ZV[, 1 ""I' ""I - 1; i.e., D V['u/(o) = 0. Then 

L 

u/(z) = z\6/(0) + 2: all,zv[ + g/(z), (36) 
/'=/+ I 

where D V'g/(O) = 0, 1 <I' ""L. Also, 
L 

I(z) = 2: J;zv, + g(z) (37) 
/= I 

with D V[g(O) = 0, 1"" 1 <L. Denoting that 

U = (UI ... U L(, z = (zv' ... ZVL)T, g = (gl ... gL(, f = (/I"'/L(' 
e = (CI ... CL)T, and 

A = ('¢l10(0) ~;~) :~: :~: ), (38) 

(h (0) 

where the superscript Timplies transposition, we rewrite 
Eq. (35) as 

fTZ + g = eTAz + eTg + g. 

Since the monomials zv[ are linearly independent, we have 
fT = eTA, and since A is nonsingular, we have a unique 
solution 

(39) 

Remark: The functions U/ are linearly independent of 
each other, as is easily verified. We shall call c/u/ the u/ 
component off 

Theorem 3: Given L functions (34) and a sequence of all 
the orders, V I,V2"", then for every function/(z) analytic in a 
neighborhood of a zero, z = 0, there exist L unique constants 
C/ and functions UL + I (z), ... ,uN(z) such that 

L N 

I(z) = L c/u/(z) + L u/(z), (40) 
/= I /=L+ I 

where all the terms are of different orders at the zero. 
Proof: Apply Theorem 2 to determine the constants C/ 

and a residual g(z). Then apply Corollary to Theorem I to the 
function g(z) to find U / ,L + 1"" 1 ""N. 

Remark: We have in mind the case that the expansion 
(40) terminates at a relatively small N. Then the expansion is 
useful for practical purpose in contrast to, e.g., the Taylor 
series expansion, in which an infinite number of terms may 
arise. 

B. Nonlinear system of several variables 

Let us now turn to the system described by Eqs. (la) and 
(1 b), and express the nonlinear effect and the effect of cou
pling with the irrelevant variables y = (YI···y")T as a linear 
memory effect. 

As before we extract from/(x,y) a linear term illX such 
that the residualf - illX vanishes at t = 0; i.e., 

ill =f(a,b)/a, (41) 

where b = (bl ... b" )T. Since the functionf - (i)X vanishes at 
X = x - a = 0 and Y = y - b = 0, we apply the Corollary 
to Theorem 1 to decompose it into several (Nd terms of dif-
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ferent orders at the zero, (X,Y) = O. Thus, 
N 

I(x,y) - (i)X = 'i,J3ix l i> 

i=l 

(42) 

(43) 

wherelLli = (jL:i'''.'IL~i) and ylL stands for Y~' ... Y~". In Eq. 
(42) we have introduced numerical factors /3; for conve
nience, although they can be included in '¢l1i' Our first equa
tion is now 

N 

x(t) = (i)x(t) + I/3iX\i(t), (44) 
;=1 

which we regard as a linear equation for X,X 11"",x IN , not a 
nonlinear equation for x and y. ' 

Let us construct evolution equations for 
x, = (x"'''X'N, )T. We obtain from Eqs. (43) and (la) 

xl(t) = fl(x(t ),y(t)) (45) 

and extract from f, a linear term a,x; the coefficient is de
fined as in Eq. (41) by 

(46) 

so that the remaining term denoted by f,(x,y) = fl(x,y) 
- a,x vanishesatx = a andy = h. We then apply Theorem 
3 to each element off l to extract the x ll - , ... ,. and X IN,
components and to define N2 new variables 
X2 = (X 21 • .. X 2N,f, 

x 2j = X V
2JYIL2J4>2j(X,Y), 

4>2j(0,0) #0, 1 <j""N2 (47) 

such that 

xl(t) = a,x(t) + nlxl(t) + B lx2(t). (48) 

Here .0 1 is an NI XN, matrix whose jth row is 

( Ii Ii IIi fli (i)1 .. ·(i)N,)=( II'" IN,) 

I )_1 alN, 

aiN 

">N, ;01 

a: 2 a: 3 

4> dO) ai3 

(49) 

wheref::, is the coefficient ofX v "'YI'I; in the expansion of the 
jth element of iI' and a it is that in the expansion of x Ii' The 
N, X N 2 matrix B, = (j3 J i) consists of numerical factors /3 J i 
involved in the x 2j -term in the jth element off l . If two ele
ments ofi\ have a same order term of the form (47) with 
different 4>2j' then we define x 2j by one of them and apply 
Theorem 3 to the other to extract the x 2j - and other 
components. 

Continuing in this way, we introduce a sequence ofvar
iables Xn = (Xnl ... xnN,,(,n = 1,2, ... , and construct evolution 
equations for them. The difference from the simple case of 
Sec. 2 is that, besides the multidimensionality, there is no 
reason that the variable x" is coupled only with x" _ I 'Xn , 

and Xn + I . We therefore write 
,,-1 

x,,(t) = L A"mxm(t) + nnx"(t) + B"x" + I (t), 
m =0 

n = 0,1,2, ... , (50a) 
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where, for n = 0, Xo = x, Aom = 0, no = m, and 
Bo = (j31 ... (3N,)· The Nn X 1 matrix Ano is defined by 
AnO = xn(O)/a = an' and theNn XNm matrixAnm = (a:!:j) 
and the square matrix n n = (m~;) are determined by applying 
Theorem 3 to in; - an;x with 
lul, ... ,ULJ = IXII, ... ,xIN" ... ,xnl, ... ,xnN.J. The matrix 
B n = (j3 Z;) consists of extra numerical factors of new varia
bles Xn + Ik' 1 .;;;;h;;Nn + I' Instead of the original equations 
(Ia) and the initial condition (Ib) we now have the infinite set 
of coupled linear Eqs. (SOa), which are subject to the initial 
condition 

X(O) = a:fO, 
(SOb) 

Xn(O) = 0, n:>l. 

A closed equation for x(t ) can be derived by eliminating 
the variables X I,X2, ... from the coupled equations (SOa). The 
Laplace transform in time leads to 

n-I 
xn(z) = L Anm(z)xm(z), 

m=O 

Anm(z) = [zI-nn -BnAn+ln(z)]-1 

X [Anm + BnAn + Im(Z)], 

(SI) 

(S2) 

where I is an identity matrix. Combining this result for n = 1 
with the first equation in Eqs. (SOa), we arrive at Eq. (2) with 
the memory function given by 

N 

A (t) = !(3;A;(t), (S3) 
;= I 

whereA;(t) is theith element oftheNI Xl matrix A lO(t). The 
Laplace-transformed memory function is therefore given by 
the following complicated combination of infinite continued 
fractions: 

A IO(Z) = EI(z)!AIO + B IE2(z)[A 2o + B2E3(Z)(A30 + ... )11, 

En(z) = [zI-nn -BnAn+ln(Z)]-I. (S4) 

4. A SIMPLE EXAMPLE 

Before applying the general formula (S4) of the memory 
function to practical problems, let us apply the results of Sec. 

1.0 2.0 

time 

2 to a simple illustrative example to see the effectiveness of 
our approach. Consider a damped anharmonic oscillator de
scribed by mq + rq = - [kq + bq3], q(O) = qo#O, where q 
is the coordinate, m the mass, r the damping constant, and 
the right-hand side represents a restoring force. For simplic
ity we confine ourselves to a heavily damped case, where the 
mij term can be discarded. s We then have 

dx/dr = - [x + (3x3], 

x(O) = 1 

in terms of dimensionless quantities 

x = q/qo' r = (k /r)t, (3 = bq~/k. 

(SSa) 

(55b) 

(S6) 

Starting withfo(x) = - (x + (3x3
), we repeat the calculation 

from Eq. (20) to Eq. (24a). The higher-order variables 

(57) 

satisfy the assumption (19), and the results of Sec. 2 can ap
ply. The memory function is given by Eq. (27), where 

mn = - (4n + 1)(3 - (2n + 1), 

an = 2n(2n - 1)(3(1 +(3). (58) 

In the present dissipative system we expect that a higher
order memory function decays on a shorter time scale than 
those of the lower-order ones. In fact, it is seen from Eqs. (26) 
and (58) that En(r) = -Imn IEn(r) + ... and ImNI < Imn-+ II 
for (3) - 0.5. Let us therefore approximate3 

En + I (t )~58(r). (59) 

It then follows from Eq. (26) that 

Em(z) 

a m + I 
Z - mm - --------.::.~~-----

z -mm+ I - '-. 

1.0 2.0 

time 

FIG. I. Solutionx(rl and memory functions Em(rl for a heavily damped cubic anharmonic oscillator atp = 1.0 in the approximation (591 with n = I and 4. 
The dotted line represents the exact solution (631. The numerals refer to the order m of the memory functions Em (rl. 
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1.0 

. 
\ 
\ .. 

'-, 
-- , 

... '. 

fJ =10.0 n = 1 

-- ... _-- .. _---

1.0 2.0 

time 

FIG. 2. Same as for Fig. 1 except that /3 = 10.0 (a strongly nonlinear case). 

for m = 1,2, ... ,n, in terms of which we have the solution 

1 
x(z)=-----

Z -li) - El(z)a l 
(61) 

We determine the unknown parameter S so that the solution 
(61) gives the correct value of the relaxation time defined by 

70 = x(z = 0) = L"X(7)d7, (62) 

which is assumed to be given. 
The exact solution to Eqs. (SSa) and (SSb), on the other 

hand, is 

X(7) = [(1 + fJ )e2T 
- fJ ] -1/2. (63) 

The relaxation time is given by 

~fJ -l/2arcsin[fJ /(1 + fJ)]l/2,fJ>0, 

70 = 1 (-In- lI2In! [1 + (_fJ)l/2]1(1 +fJ)l/2j, 
- 1 <fJ<O. (64) 

For fJ < - 1, X(7) increases with time, and the relax
ation time (62) is meaningless. 

We have made numerical calculations of x( 7), as well as 
the sequence of the memory functions, in the approximation 
(59), and compared the result with the exact solution (63). In 

1.0 2.0 

time 

{3 = 10.0 n = 10 

1.0 2.0 

time 

the present approximation the memory function En + 1 (7) is 
the delta function, En (7) is a single exponential, Em (7), 
m = n - 1, ... ,1, are a sum of n - m + 1 exponentials, and 
X(7) consists of n + 1 exponentials. For IfJl -( 1 the nonlinear 
effect is unimportant; we are not concerned with this trivial 
case. The result for fJ = 1.0 is shown in Fig. 1. A remarkably 
good agreement of our solution with the exact one is seen 
even in a simple approximation (59) with n = 1. They be
come indistinguishable in the figure at n = 4. For a strongly 
nonlinear case of fJ = 10.0, the agreement is worse (Fig. 2); 
however, a close agreement is obtained by taking account of 
ten memory functions [and the eleventh oneEll(7) a:. {j (7) not 
plotted in the figure]. When fJ is negative, oscillatory mem
ory functions appear corresponding to complex poles of 
Em (z). Figure 3 shows the results atfJ = - 0.5; again, an 
excellent agreement is seen at n = 8. 

Figures 1-3 show that a higher-order memory function 
decays more rapidly than the lower-order ones. The memory 
function approach is obviously useful in this case. The use
fulness will, however, not be restricted to such a case, as 
mentioned in the Introduction. Indeed, for - 1O<fJ < - 1, 
where X(7) and the memory functions are not bounded, we 
have made a preliminary calculation by simply putting 
En + 1 ",0 and obtained reasonably good results. 

fJ = - 0.5 n = 8 

2.0 

time 

FIG. 3. Same as for Fig. 1 except that /3 = - 0.5. Oscillatory memory functions appear for /3 < O. 
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5. CONCLUDING REMARKS 

The exact linear Eq. (2) does not imply that the linear 
superposition law can apply to the nonlinear problems. 
When Xa (t) and xb(t) are solutions to the linear Eq. (2) with 
givenUJandA (t), asumxa(t) + xb(t ) is of course a solution to 
Eq. (2) with the same UJ and A (t). However, the parameter UJ 
and those inA (t ) depend on the initial values (Ib), and hence, 
even if xa(t) is the solution to Eqs. (Ia) and (Ib), xb(t) and 
xa(t) + xb(t) are not. 

There exist several theories in which exact linear equa
tions are constructed. An example is the Mori formalism for 
linear generalized Langevin equation. 3 We have also a well
known example in the quantum-statistical theory, where 
nonlinear equations of motion are cast into an infinite hierar
chy oflinear inhomogeneous equations for two-time Green's 
functions. 9 In contrast to the higher-order Green's func
tions, our "higher-order" variables xn are coupled with the 
lower-order ones. This makes it possible to express xn exact
ly in terms of the lower-order variables as in Eq. (51), and to 
obtain the closed equation (2). Another example, which is 
more closely related to the present approach, is that based on 
the Carleman linearization procedure, 10 in which a finite set 
of nonlinear rate equations is converted into an infinite set of 
linear equations. 11.12 In this approach, too, a variable is not 
coupled with the lower-order ones, i.e., the lower-order com
ponents are not extracted from higher-order variables. 
Hence, the higher-order variables wi1I be sensitive to 
approximation. 

The results derived in Sec. 3 for general nonlinear sys
tems are rather complicated, and it will become increasingly 
difficult to calculate higher-order variables. Many of the 
nonlinear systems are, however, quadratic '2- '5; in this case 
we can find simple formulas and recursion relations, which 
enable us to make any higher-order calculation. Such a study 
is now in progress. 

It should be noted that Eq. (Ia) describes also the fol
lowing cases: 

1. When a system is described by a second-order differ
ential equation, we take the derivative x as Y, to obtain the 
first-order equations (Ia). 

2. For a spatially inhomogeneous case, we take spatial 
derivatives of x as variables Yn + ,,'" . The parameters 
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Anm ,n n' and Bn then depend on the spatial coordinates. 
3. When evolution equations depend explicitly on t, we 

putYn(t) = t in Eq. (Ia).5 
Thus the present formalism is applicable to a variety of 

nonlinear problems such as the Van der Pol equation,S the 
Lotka-Volterra model, 13 nonlinear interaction of plasma 
waves, 14 nonlinear kinetics in phosphorescence decay, 15 etc. 
We hope to discuss in later papers the usefulness of the pre
sent approach in these practical problems. 
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The first order phase transition in an infinite system of gravitating fermions is analyzed in the 
canonical ensemble. Except for the question of nonmonotonicity of the mass distribution as a 
function of the chemical potential, we give an analytical proof for the existence of the phase 
transition. A single phase region is shown to exist for temperatures high compared to the 
gravitational energy. 

PACS numbers: OS.30.Fk, OS.70.Fh, 31.20.Lr 

I. INTRODUCTION 

Due to negative specific heat, instabilities occur in clas
sical models for particles interacting mutually with gravita
tional forces (see, e.g., Ref. 1). In the presence of a heat bath, 
in the canonical ensemble, the instabilities will be bridged by 
a phase transition. 1.2 Thirring2 noticed that it will be the 
negative specific heat region which is replaced by the phase 
transition in a suitably truncated classical model. For fer
mions, due to the Pauli principle, a modification of the gravi
tational potential is not necessary. The analysis can start 
from the first principles of Newton's theory of gravitation 
and from quantum mechanics. From this basis some results 
have been obtained with complete mathematical rigor. For 
example, Hertel and Thirring3 proved the exact validity of 
the Thomas-Fermi equation for the canonical ensemble in 
an appropriate thermodynamic limit. The existence of a 
gravitational phase transition is, however, not established 
with similar mathematical rigor, i.e., by a completely analyt
ical proof. The existence of the phase transition is known 
from detailed numerical studies of the Thomas-Fermi equa
tion.4 Also in this paper we have not succeeded in giving an 
entirely analytical proof for the existence of a first order 
phase transition in the gravitating fermion model. At one 
point in the chain of arguments we use the nonmonotonicity 
of the mass distribution as a function of the chemical poten
tial. This has been demonstrated only numerically but in a 
very painstaking and reliable analysis by Hertel. 

Gravitating fermions are a model for a quantum con
tinuous system, described formally for a finite particle num
ber by the Hamiltonian 

N -..1.. KM2 
HN = I--- I ' (1.1) 

i~l 2M Idd<.;N!X j -xj ! 

with Dirichlet boundary conditions on the antisymmetrized 
subspace of 51' z(A N), where A C lR3 denotes either a cube of 
length I or a ball of radius R. The infinite system is obtained 
by taking an appropriate scaling and letting N tend to infin
ity whereas A is kept fixed. This limit might be called the 
"thermodynamic Thomas-Fermi limit", because one of the 
first rigorous results on the gravitating fermion model claims 
the existence of this limit and the exact validity of the tem
perature-dependent Thomas-Fermi equation for the limit 
system.3 

The rigorous results about the gravitating fermion 

model following the quoted first achievement should be 
briefly mentioned: Existence of the thermodynamic Thom
as-Fermi limit for the thermodynamic functions was proved 
for the microcanonical and canonical ensembles and for the 
grand canonical ensemble.6 (The ensembles are nonequiva
lent). The existence of the thermodynamic Thomas-Fermi 
limit was proved for the correlation functions 7 and for the 
thermodynamic states on a so-called hydro-local C *-alge
bra.8 Recently an infinite configuration space was consid
ered,9 and the (classical) Vlasov hydrodynamics was derived 
from the microscopic dynamics of a quantum mechanical 
model with regularized interactions. 10 

The Thomas-Fermi equation (for the canonical ensem
ble) is written for given 1,f3. n, A l as 

p(xl = fd)J3{1 + exp[f3(L + W(xl - ILl]} - I, (1.2) 
(217') 2M 

W(X) = -KM21 ~d3y, (1.3) 
A Ix-yl 

f!(X) d 3X = n, (1.4) 

with the additional important requirement that the solutions 
of the self-consistency equations [( 1.2).( 1.3),( 1.4)] have to 
minimize the free energy functional. 

We study here the existence and uniqueness of solutions 
of the Thomas-Fermi equation, and we shall prove-with 
the help of the above-mentioned numerical result, but other
wise analytically-the existence of at least two solutions, 
both minimizing the free energy functional. In addition, we 
give a high temperature domain of the thermodynamic pa
rameters, where uniqueness of the solutions holds. 

II. THOMAS-FERMI THEORY FOR GRAVITATING 
FERMIONS 

In what follows we presuppose the canonical ensemble 
and spherical symmetric boundary conditions, i.e., A C JR.3 
is a ball of radius R centered at the origin. 

Definition 2.1: Given the inverse temperature f3 > 0, the 
radius R, and n > O. For y E lR let 

g(f3~)=Jd3p(1 +eP(P'+Yi)-I. (2.1) 
, (217')3 

For gravitating fermions the potential generated by the mass 
distribution pEn with the positive cone n = !p E .Y dA ), 
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p;;;;'Ol is 

W[p](x) = - f!lY) Ix - yl-I d
3
y. (2.2) 

The Thomas-Fermi functional on n is given by the two 
conditions 

Tfp](x) = g(/3, Wfp](x) - ,ufp]), 

1 T [p] (x) d 3X = n. 

(2.3) 

(2.4) 

The following self-consistency equation is called the n
equation: 

pix) = Tfp](x) for pEn. (2.5) 

Possible solutions in n are always uniquely continued to R3 
by 

pIx) = 0 for x eA. (2.6) 

Remark 2.2: Equation (2.3) gives Tfp] in terms of the 
functional,ufp]. Sinceg(,B,.) is monotonic and continuous the 
functional,ufpJ is uniquely determined by condition (2.4) for 
each pEn. Thus, for given pEn, T is a uniquely determined 
functional. 

Remark 2.3: We have used the following units: Fermion 
mass M = !, gravitational constant K = 4, and Ii = 1. For 
convenience the spin s of the fermions is set equal to zero 
because it shows up only in a trivial factor 2s + 1. This is no 
unphysical convention in nonrelativistic quantum statistics. 

Definition 2.4: GivenP > 0, R > 0, and,uE R, the follow
ing self-consistency equation is called the ,u-equation: 

pix) = TJL[p](x) = g(,B,W[p](x) -,u) forpEfl. (2.7) 

Definition 2.5: Givenp> 0, R >0, and AeR, the follow
ing self-consistency equation is called the A-equation: 

pix) = GJ. [p](x) = g(,B,w[p] (x) +,1.) (2.8) 

withpen = nn.if',(A,/x/- ' d
3x) and 

w[p](x) = W[p](x) - W[p](O). (2.9) 

Remark 2.6: The n-equation can be also equivalently 
defined by the foUowinJ two conditions: Given P > 0, R > 0, 
and n > 0, then for pEn: 

pix) = G [p ](x) = g(f3,w[p ](x) + X [p)), (2.10) 

(2.11) 

Again X fp] is uniquely determined by (2.11). 
Definition 2.7: po is a solution of the (temperature-de

pendent) Thomas-Fermi equation if and only if 

(i) po is solution of the n-equation, 

(ii) 4>=infFp[p] =F [pO]. 
pEn p 

Thefree energy functional is 

Fp[p] = -u[p] +n,u[p] -p-'id3Xf[d3p/(217')3] 

Xln(l + e-P(p'+ W[p](XI - J7 [pJ)) (2.12) 

with 

u[p] =!l d 3xp(x)W[p](x). (2.13) 

2911 J. Math. Phys .• Vol. 22. No. 12. December 1981 

Fp ['] is bounded from below on all of n. 
Definition 2.8: IffA~R withf(Dx) = fix) holds for all 

xEA andDeSO(3), then wedefinej [O,R ]~RbyJ(!xl) = fix). 

Let nn = [pen, f!(X) d 3X = n l, and 

let for each (1) 0, R > 0, and n > 0 
n~.k.n = [pEflnn.if'q(A) forq<2 with 

(i) p(Dx) = pix) for all xEA, DeSO(3), 

(ii) I!pl!q';;; dq(,B,R,n) = d q if q < 2, 

(iii) p(x)<g(f3,R,n) = g for all xEA, 

(iv) Ip(x)_p(x')I<g(1_e-MgIX-X'i) 

for all x,x'EA l. (2.14) 

where for q < 2 

d = {_11_ P -312 + _1_ P -1/2[;}(417' ))/qR 3/q 

q 12~ 4~ 3 

+ ~ - 1f2n (~))/qR 31q- 1 + _1_ 
4r 3-q 6~ 

x{ n( 3 ~1T~r/3qR 21q-1 +,u( 4; Yl3Q

R 2/q} 312,(2.15) 

with,u = ,u(f3,R,n) defined uniquely by 

n/IA I =g(f3, - (n/R +,11)), (2.16) 

where IA I is the ball volume. Furthermore, 

g = g(f3, - (cpdq +,11)) (2.17) 

withp-' + q-I = 1,2 <p < 3, ~ < q < 2, and for p < 3 

cp = " 1I1xlii p = [ [41T/(3 - p)]R 3 -PlIIP. (2.18) 

Lemma 2.9: Givenp>O, R >0, and n >0, ifpEfln is a 
solution of the Thomas-Fermi equation, then pEfl ~.k.n' 

Proof (2.14) (i) is a consequence of Baumgartner's theo
rem. 7 (2.14) (ii) follows from inequality (25) in Ref. 7 and the 
fact that fornegative,u[p)'s the estimate (2.14) (ii) holds with 
,11 replaced by zero in (2.15), whereas for positive,u[p]'s it 
follows from Lemma 2.11 and (2.16) thatji[p]<,u. (2.14) (iii) 
is an immediate consequence (Ref. 7, Eqs. (28), (29)). Finally 
(2.14) (iv) holds by elementary calculations.o 

Remark 2.10: If pEfl n is a solution of the n-equation for 
eacE. P > 0, R > 0, and n > ° with pEfl n' then necessarily 
pEfl ~.~,n' which is the set n ~.k.n without the spherical sym
metry requirement (2.14) (i). 

Lemma 2.11: Let pEfln with p(Dx) = p(x) for all xEA 
and DeSO(3); then 

(i) ~[p](Dx) = W[p](x) for all xEA, DeSO(3), 
(ii) ~[p](lxl) is monotonic increasing in Ixle (O,R), 
(iii) W[p](R ) = - n/R, 
(iv) T(p](Dx) = T[p](x), ~L [p ](Dx) = TiL [p](x) for all 

xEA, DeSO(3), 

(v) T[p](lxl) and TJL [p ](Ixl) are monotonic decreasing 

in Ixle(O,R ), 
(vi) w[p](lxl) is monotonic increa~ing in Ixle(O,R ), 

(vii)G[p](Dx) = G[p](x),GJ.[p](Dx) = GA[p](x)foralI 

xEA, De SO(3), 
(viii) G [p](lxl) and GJ. [p](Ixl ) are monotonic decreasing 
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in IxlE (O,R). 

Proof: (i) is well-known, (ii) follows from elementary cal
culations, (iii) is Newton's theorem, (iv) and (v) are direct 
consequences of (i), (ii), and the definitions of T [p), Tf' [p). 
(vi) follows trivially from (ii). (vii) and (viii) are immediate.D 

Lemma 2.12: Given /3 > 0 and R > 0: 
(i) For each n > 0, there exists at least one solutionpEfln 

of the Thomas-Fermi equation. 
(ii)For each n > 0, there exists at least one solution 

pEn ~.IR.n of the n-equation. 
(iii) For each AER, there exists a unique solution 

pEn ~.~'A of the A-equation. 
Proof: (i) follows from the fact that the Thomas-Fermi 

equation is asymptotically exact: It has been proven in Refs. 
3,4, and 5 that the free energy F N of a N-particle system of 
gravitating fermions has a limit l/> if F N is properly rescaled 
and N-+oo, i.e., the thermodynamic Thomas-Fermi limit 
exists. The limit point r:p is expressed by a one-particle densi
ty pIx), which fulfills the Thomas-Fermi equation, i.e., the 
existence of a global minimum of the free energy functional 
Fp [p), pEfln has been proven for each n > O. 

(ii) is a trivial consequence of (i), Definition 2.7, and 
Lemma 2.9. 

(ii) can be proved without recourse to (i) by using the 
argumentation in the proof of Lemma 2.15 (ii) and the 
Lemma 2.16. Analogously, using the same arguments for a 
set of p's slightly different from n ~.k.n and Schauder's fix 
point theorem, Lemma 2.12 (ii) can be proved when the re
presentation (2.10) and (2.11) of the n-equation is used. 

In (iii) the set n ~~.A is defined by 
n ~.IR.A = (pEfl with 

(i) p(Dx) = pIx) for all xEA, DESO(3), 
(ii) pIx) ,.;; gA = gl/3.A ) for all xEA, 
(iii) \p(x) - p(x')I,.;;gA (1 - e -,8cig"lx-x'l\ for all 

x,x'EA l. (2.19) 

Again every spherical symmetric solutionpEfl of the ,1-

equation is necessarily element of n ~IR." • 
(iii) has first been proved in Ref. 4 by using the equiv

alence of the A-equation to Poisson's differential equation for 
a potential U(s) [denoted as W(s) in Ref. 4), S = /3 -1(4\X\ 
with the initial conditions U (0) = 0 and U '(0) = /3,1, and then 
applying standard theorems for ordinary differential equa
tions. It has been proved a second time in Ref. 11 by rewrit
ing the A-equation, resp. Poisson's equation, as an integral 
equationp = K" [p] and showing that K" is a contraction 
map on a complete topological space with a suitable 
metric.o 

The .u-equation is equivalent to Poisson's differential 
equationforthepotentia1 U(s ) [denoted as W(s ) in Ref. 4) -as 
stated in (3.2) of Ref. 4 -but as a boundary value problem 
with U(O) = 0 and U'(j3 -1/ 4R) = - /3.u. Therefore, one 
cannot expect to obtain a simple statement on the existence 
or uniqueness of solutions. 

Definition 2.13: For each /3 > 0, R > 0, and k > 0 we 
define 
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n ~.IR.k = [pEfl with 
(i) p(Dx) = pIx) for all xEA, DESO(3), 
(ii) pIx) ,.;; k for all xEA, 
(iii) Ip(x) -p(x')I< k(1_e-13C~klx-X'I) 

for all x,x'EA l. (2.20) 
Remark 2.14: n ~k.k is nonempty. 

The characteristic functions aXlO,R I are in n ~.IR.k if 
O";;a,.;;k. 

Lemma 2.15: Given /3 > 0, R > 0, and .uER. 
(i) If.u > .uo' where.uo =.uo (j3,R ) is the unique solution 

of 

(2.21) 

then there exists no solution of the .u-equation in n. 
(ii) For every /3> 0, R > 0, and k > 0 there exists a 

.u I =.u 1 (/3,R ,k ) uniquely defined by 

gl/3, - (clk + .ul)) = k (2.22) 

such that for each.u <.u I there exists at least one solution of 
the .u-equation in the set n ~,IR.k' 

(iii) If k/3c t < 1 and if (j3,R,k,.u) is in the domain indicat
ed in (ii), then there exists a unique solution ofthe.u-equation 

in n ~,k,k' 
Proof: (i) With Lemma 2.11 we find a lower bound 

/3J(2gl/3, W [p 1(x) -.ul 
f -j3W[p!lxl 

>(217')-2)0 d17 V 17 (1 + e'l + 13 Wlp\(xl- 131")-1 

>(6r)-I(n/3IR)3(2(1 +e- 13/'T\ (2.23) 

with n = f fIx) d 3X < 00, because pEfl. Assuming the exis

tence of a solution of the .u-equation turns (2.23) in an upper 
bound for n: 

n,.;; 361T4R 3 \A \-2{1 +e- 13I'f, (2.24) 

which contradicts the lower bound 

n> \A I g(j3, -.u) (2.25) 

for.u >.uo· 
(ii) The set n ii,IR.k endowed with the 2:' "" -topology is 

convex and compact: It is a set of equicontinuous functions, 
such that (p(x), pEfl ~!R.k \ is compact for each xEA by the 
Lebesgue-Borel theorem. With the theorem of Arzela-As
coli we conclude that n ~;R.k is precompact, but it is also 
\\·\Loo -closed. The functional Tf' ['),.u <.ul' mapsn iIb into 
n ~.IR.k and is continuous in the \H\ "" -topology. Applying the 
fix point theorem of Schauder and Tychonoff concludes the 
proof. The lemma is also valid in case A is an open, bounded, 
Lebesgue-measurable region in R3

, and if n ~.~.k is not re
stricted to spherical symmetric functions. 

(iii) If k/3c l < 1, then the inequality 

II T" [PI] - T" [P2] II 00 ,.;; k (1 - e -.j3e,llp, -p,II~) (2.26) 

fOrpt,P2ED ~.IR.k turns T" [. ):2" 00 (A )----Y 00 (A) into acon
traction map on the complete topological space n ~.IR.k' 0 

Lemma 2.16: For every /3 > 0, R > 0, n > 0, and xEA the 
functionals W [. )(x),.u [-), and T [. )(x) are strongly continuous 
on (n ~.IR.n' 1\·\\ 00 ). 
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Proof: For W continuity follows from the trivial 
inequality 

I W [PI](X) - W [P2](x)l.;;;cIIIPI - P211 00' (2.27) 

where C 1 is given by (2.18). 
Let pjEfJ ~,k,n ,jEN, converge strongly to Po, then, be

cause n ~,)R,n is closed, PoEfJ ~,)R,n' The possible values of the 
chemical potential are bounded, 

J1.;;;,iifpj ]';;;P, (2.28) 

where 

(2.29) 

with p and q chosen as in (2.17). Let Po be any accumulation 
point of (i7fpj ],jENl, and (PJi' iENJ a subsequence of (Pj, 
JEN J, such thati7[,oji ] converges to PO' Sinceg(fi,·) is continu
ous andg( (3, Wfpj] - i7[Pj]) .;;; g(fi,R,n), it follows by Lebes
gue/s convergence theorem that 

n = lim { T [,oj; ](x) d 3X = ( g(fi, W [Po] (x) - Po) d 3X , 
1_00 ).1 JA 

from which Po = i7Loo] can be inferred jJy monotonicity of 
g(fi,.). Continuity of T[.](x) is a consequence of continuity of 
g(fi,.), W[.](x), and,ii[.].D 

Corollary 2.17: For every {3 > 0, R > 0, and n > ° the free 
energy functional Fp [.] attains its infimum and supremum 
on n ~,k,n and is strongly continuous on (n ~,L, /I." 00 ). 

Proof: Continuity can be immediately concluded from 
Lemma 2.16 and (2.12). Compactness of n ~,k.n with respect 
to the ~ 00 -topology concludes the proof.D 

For theA-representation of the n-equation, described in 
Remark 2.6, one obtains analogous results: With 

n/iA I = g(fi,A ) (2.30) 

and 
n/iA I = g(fi,2cp dq + i), (2.31) 

where p and q are chosen as in (2.17), the numbers 
J = J (fi,R,n)andi = i (fi,R,n) are uniquely defined, and for 
eachpEii 

(2.32) 

If n ~!R,n is defined as {J ~!R,kn '?,.n with k replaced by g(fi,i), 
then, foreachxEA, G [.](x) and A [.] are continuous function
als on n ~~,n in the ~ 00 -topology. For each xEA, G [.](x) 
leaves n ~~,n invariant. Given {3 > 0, R > 0, and n > 0, if 
pEnn is a solution of the Thomas-Fermi equation, then 
pEfJ~)R,n' 

For each solutionpn E Ii of the n-equation there exists a 
unique solutionp;. En of the A-equation withpn = P;. (and 

lp;. (x) d 3X = n). This holds because of Lemma 2.12(iii) and 
A _ 

with A = A Lon]' which is a unique number. 
Definition 2.18: Given (3 > 0, R > 0, and A E R. Let P;. be 

the (unique) solution of the A-equation; then 

n(A) = J!;.(X) d 3x = ig(fi,wfp;. ](x) +..1,) d 3x. (2.33) 

Remark 2.19: If the n-equation has several different so
lutions Pn,j E ii, then there exist several different 
Aj = i fpn,j ] with n(Aj) = n, i.e., n(A ) is a nonmonotonic 
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function. Eachpn,t =P;.,' 
Lemma 2.20: Given (3 > ° and R > 0: 
(i) If Al - A2>c I g(fi,A 2 ), then n(Ad.;;;n(A 2 ). 

(ii) n(A ) is strictly monotonic decreasing for all A> ..1,0 
with 2{3c Ig(fi,A,o) = I. 

Proof: (i) The inequality 

wfp;., ] + AI>wfp;,,] + ..1,2 (2.34) 
follows from the estimate 

wfp;.,] - wfp;,,]> - Clg(fi,A,2)' 

(ii) From the inequality 

IlwfpA, J - w [P;" J" 00 ';;;C I{3g(fi,A,2l! 1..1,1 - ..1,21 

+ IIwfp;.,] - wfp;., ]1100 J 

follows for C/3g(fi,A,2) < 112: 

II w fpA, ] - wfpA,]1I < 1..1,1 - ..1,21, 

which implies n(A d < n(A ) if ..1,\ > ..1,2.0 
Theorem 2.21: The set 

jV' = (( (3,R,n) E R3+ I 2{3c lg(j3"J.) < 1 \ 

has the following properties: 
(i) JI/ is not empty. 

(2.35) 

(2.36) 

(ii) For each element of JI/ there exists the solution of 
the Thomas-Fermi equation and it is unique. 

(iii) I[(/J,R,n) EJI/, then ~(3nIR <~. 
Proof: (i) Let q and p be chosen as in (2.17), and 

niiA I = g(j3,2cpd ~ + ..1,/), (2.37) 

with d ~being dq with,u replaced by p/, and 

niiA I = g(j3, - p'), (2.38) 

which implies,u.;;;p', dq.;;;d~, and/bA /. Keep{3andnlA I-I 
fixed, but choose R sufficiently small; then the inequality 
defining J1I~ can be validated. 

(ii) Let Pn,l and Pn,2 be two solutions of the Thomas
Fermi equation. Then Pn,l ~ ~~,n' p,.n,2 EfJ ~~.n· !-et (j3,R,,!) 
EJI/. Furthermore, Al = A fpn,l ]>..1, andA2 = A fpn,2 ]>..1,. 
According to Lemma 2.20, n(A ) is strictly monotonic de
creasing for all A >1. Thus n = n(Aj) has the unique solution 
Al = ..1,2 and consequently Pn,l = P;., = P;" = Pn,2' 

(iii) This inequality, describing the high temperature do
main, where the temperature is compared to the gravitation
al energy, is a result of 

g( /3,1 »g( (3,2cp dq + i) = n/iA 1.0 
Lemma 2.22: LetPA, En andp;.. Eii be solutions of the 

A-equation, then ' 
(i)Ad:A2 if and onlyifp;., ¥-P;., and 
(ii) A I = ..1,2 if and only if PA, = PA,' 
Proof: Sincep;." i = 1,2, are solutions of the A-equation, 

they are elements of n ~~';'i and continuous functions. The 
lemma follows from 

with 

and C(A I,A2»O for allA I,A,2 E R. 0 

Proposition 2.23: LetpA be the (unique) solution of the 
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A-equation for given AER, /3> 0, and R > O. Then the func

tion A-+n(A ) = 1p.A. (x) d 3X has the following properties: 

(i) A-+n(A ) is an entire real analytic function. 
(ii) For each/3 > 0, R > 0 there exists A I such that, for alI 

A > A I' n(A ) is strictly monotonic decreasing. 

(iii) lim n(A) = co. 
)~-"---oo ---

(iv) n(A )< IA Ig(j3,A ). 
Proof (i) The A-equation can be equivalently written as 

Poisson's differential equation for a renormalized potential 

S -IV(S) = /3w(j3 1/4S) (2.41) 

in the variable S = /3 -1/4Ixl. Instead of A we choose the new 
variable v = /3,1,. The A-equation is now written, similar to 
Ref. 4, where U(s) = v(s) + VS [denoted as W(s) in Ref. 4] 
has been used, as 

v; (s) = v2(S) = F I(s,V I,V2 ,V), 

v; (S) = f(vl,s,v) = F2(s,V\>V2,v), 

(2.42) 

(2.43) 

where v; (i = 1,2) denotes differentiation with respect to S, 
and 

f(v,s,v) = (S hT){" dT/ 1/"1 (1 + e'1+S 'V+V)-I. (2.44) 

With the initial conditions 

(2.45) 

this system of first order ordinary differential equations be
comes equivalent to the A-equation. It has a global unique 
solution.4 This fact is also visible in the equivalent integral 
equation. II We prove first that this solution is analytic in S 
and v. Notice that inFI andF2 the VI' V 2,S, and v are indepen
dent variables. From (2.42) and (2.43) we infer that if S E (O,R ) 
and v E PvC R (P v is an open interval), then 

(2.46) 

and 

(2.47) 

with 

C=C(V)=(lhT)f"dT/ 1/"1(1 +e,,+")-I. 

Thus it suffice~ to prove analyticity on the set Is XH~2IXPv 
with Is = (O,R )CR+, H~~I = (O,v l )X(O,v2 )CR2+ , Pv 
= (,1,,11 open in R, contajning the origin. Hereby is VI = t 
Xc(v)R 3 and v2 = !c(v)R 2. Clearly FI and 
(1 + e'1 + •.. 'u, + v)-I are analytic on Is XH~2IXPv (for fixed "I 

E R).f(v\>S,v) is analytic on I. XHf'xp" because 
(1 + e'1 + s 'v, + V) - I is analytic, and there exists "10 E R+ such 
that 

max e'1121D ~D ';D ~ h (1],S,v,v) I 
1JER, 

= e'I
,,I

2
ID ~D ';D Sh (1]o,S,v,v) I (2.48) 

withh (1],S,v,v) = (1 + e'l +. - 'u+ V)-I.Da denotes partialdif
ferentiation with respect to the variable a. (2.48) permits the 
application of Lebesgue's convergence theorem in inter
changing of summation (of the power series) with 
integration. 
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With the multiple index} and with z = (S,v I>V2' v) and 
fo(z) = 1TS - If(z), we conclude 

fo(z) = 100 

1/T/dT/ lim f ~D~h (1],zo)(z - zoY, (2.49) 
o N-~oo j j1 

fo(z) = lim f~{ roo 1/1]dT/ D~h (T/,Zo)}(Z - zoy. (2.50) 
N~oo j j1 Jo 

[lim~j( l/j1)D~h (T/,zo)(z - zoy converges absolutely to h (1],z) 
for every 1]ER+]. In (2.50) the right-hand side converges ab
solutely tofo(z) because of (2.48) and 

100 

d1] 1/T/(l/j1)ID~h (T/,z) I 

<{f" dT/ 1/T/e-('1-'1")/2}(1/j1)ID~h(T/o,z)I. (2.51) 

ThusfandF2 are analytic on Is xHf1xP". To verify (2.48) 
we note that by induction 

I Cijkh -k(e'1+· 'V+V),+j 

DnDmD' h = i+Hk<N (2.52) 
5 v " h -IN + II 

with N = 2n + m +, - 1. Thus - e'112D '/;D '; D ~h decays 
proportional to e - (1)121, and since h (T/,S,v,v) is analytic in 
T/ER+ for fixed (s,v,v) E Is XH~2IXPv, the maximum in 
(2.48) is attained at T/oE[O,1] I] for "I I sufficiently large (but 
finite). 

(2.42)-(2.45) is a system of hoi om orphic differential 
equations of first order with a unique global solution. There
fore, this solution, vJ!S,v) and v2(S,v), is analytic on Is XP" by 
standard theorems. The analyticity of n(A ) is now an immedi
ate consequence of 

R 2(~ w(r,A )) = n(A ). 
dr r~ R 

(2.53) 

Here and in what follows we indicate the dependence ofv j (S) 
(i = 1,2) and w(r)(r = Ixl) on the parameters v orA by writing 
vj(S,v) and w(r,A) respectively. 

(ii) To each f3> 0 and R > 0 choose 2{3C lg(f3,AI) = 1. 
Then (ii) follows from Lemma 2.20 (ii). 

(iii) By (iv), n(A ) is bounded from above by IA Ig(j3,A ). 
Suppose there exists no> 0 such that n(A )<no for alI AER. 
With Lemma 2.12 (ii) for each f3 > 0 and R > ° and n = 2no 
there exists a solution Po of the n-equation such that, with 
,1,0 = X~o]ER, P"''' is a solution of the A-equation with 
n(Ao) = 2no> no. Continuity of n(A ) concludes the proof. 

(iv) follows trivially from w~J~O and (2.33).0 
Remark 2.23 (v): Under the conditions of Proposition 

2.23 thereexista/3o>O and aRo>OandA2,A3 (,1,2 <,1,3 <Ad 
such that n(A ) is strictly monotonic increasing for alI 
AE[A 2,A3]' 

An analytical proof of this statement is not known up to 
now. We present however a convincing argument based on 
numerical calculations by Hertel. I I The A-equation can be 
expressed as integral equation for the renormalized potential 
w(r,A), r= Ixl ll

: 

w(r,A) = 1'S-2 ds f41T1 2 g(,B,A + w(t,A)) dt. (2.54) 

w(r,A ) is analytic on (O,Lo) X ( - A4,A4)' where Lo, ,1,4 > 0 are 
arbitrary. If n(A ) is monotonic decreasing for each r, then 
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also W(r,A. ) is monotonic decreasing for each r, because 

(2.55) 

Here with n(..i,s) the dependence of n(..i ) on the radius s is 
indicated explicitly. Hertel I I observed that iterating Eq. 
(2.54) leads to a sequence of alternating bounds if one starts 
with an upper or lower bound to w. Numerical analysis of the 
iteration shows that a monotonic decreasing renormalized 
potential is incompatible with the obtained bounds. "From it 
upper and lower bounds to n(..i ) can be calculated which al
ready after five iterations forbid a monotonic n(..i ). In these 
computations the numerical approximations were carefully 
done so that bounds really remained bounds" (quoted from 
Hertel I I). 

III. EXISTENCE OF A GRAVITATIONAL PHASE 
TRANSITION 

In Sec. II we developed tools and results in the general 
Thomas-Fermi theory of a gravitational Fermi system, most 
of which enable us to prove in this section the appearance of 
at least two solutions in the Thomas-Fermi equation. For 
this purpose the properties of the temperature as function of 
the parameter v are studied first, using results from Proposi
tion 2.23. 

Definition 3.1: Given the radius R > 0, the normaliza
tion constant n > 0, and a parameter veR, the function 
p:(R,n,v)-tJ(v) ER+ is defined implicitly by 

P(vl~ "'R 

n=p(v)-3/41 417"S 2g(1,s-l v(s)+v)ds (3.1) 

and v(s) = vl(S,v) is the solution of the ..i-equation (2.42)
(2.45). 

Remark 3.2: The roles of P and n are now exchanged. 
Always R > ° and n > ° is fixed from the beginning. We can 
speak of a p-equation instead of the n-equation. If this n- or 
p-equation has several different solutions P; (n,/3,R ) 
Efl (i = 1,2, ... ), then there exist several different 
v; = v[p;(n,/3,R)] (with v =P..i and v=pi) such that 
P (v;) = P, i.e., P (v) is a nonmonotonic function. Each 

. p;(n,/3,R) =Pv;' 
Lemma 3.3: Given R > 0, n > 0, and let veR. Then the 

function v-tJ (v) has the following properties: 
(i) v-tJ -I(V) is an entire real analytic function. 
(ii)P 3/2(v)<i(R 3In)g(1,v). 
Proof: (i) The function 

¢(y,v) = n - y3R -3 f41Tt2g(1,t -IV(t,V) + v) dt (3.2) 

is analytic in (y,v)E(O,Lo) X( - v4'v4) for arbitrary Lo, V4 > 0, 
because 

and v is analytic in (O,Lo) X ( - v4'v4 ) by the proof of Proposi
tion 2.23(i). Furthermore a lay¢( y,v)#O for all (y,v) 
E(O,LoIX( - V4,V4). Therefore, v-tJ -I(V) is analytic by the 
implicit function theorem and (3.1) (y = P - 1/4R ). 

(ii) follows trivially from v(s ):;;.0 and (3.1).0 
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Remark 3.3 (iii): Under the conditions of Lemma 3.3 
there exist Ro > 0, no> ° such that v_P (v) is not monotonic. 

The proof relies on Remark 2.23(v) and is therefore not 
completely analytic: 

By analyticityofn(v),p -I(V), and v(S,v) and with Lebes
gue's theorem, differentiation of(3.1) with respect to 
ve( - v4'v4 ) leads to 

(J'x a 
-n(v,/3(v),R ) =A.--::--t3(v) 
av av 

(3.3) 

with 

A = ~P -I(v)·n + 17"p -512(v)R 3 g( 1,e(v,R,n), (3.4) 

e(v,R,n) =P 1/4(V)R -I vIP -1/4(V)R,v) + v, (3.5) 

and with 
x (3-1/ 4R 

~n(v,/3,R ) = P -314 f ds 417"S 2 

av Jo 

Xg'(l,S -IV(S,V) + vl( 1 + S -I ! V(s,V)) (3.6) 

denoting the partial derivative ofn(v,/3 (v),R ) with respect to 
the explicit dependence on v only. 

By Remark 2.23(v) there exist Po > 0, Ro > 0, and 
VoE( - v4'v4 ) with 

(J'x 
-n(vo,/3o,Ro) > 0. 
av 

If no = n(vo,/3o,Ro) is chosen, then P (vo) = Po by (3.1) and 
(2.33) and monotonicity of n(v,/3,R ) as a function of P -I. 
Therefore there exist Ro > 0, no> 0, and Vo > 0, and 

:/1(V)!v=vo >0 

by A> ° and (3.3). But P (v) cannot be everywhere strictly 
monotonic increasing because of Lemma 3.3 (ii).o 

Remark 3.4: It is not sufficient to know only properties 
of v_n(v), but we had to infer from them the behavior of 
v-tJ (v), in order to draw conclusions from the p-depen
dence of the free energy. From the basic principles of quan
tum statistics and the fact that the free energy (/) is a limit of 
rescaled usual local free energies,3,5 it is known (Ref . 
12,2.1.3,2.2.6,1.2.15,1.2.14) that the free energy function 
P-P(/) ( p,R,n) (see Definition 2.7) is concave in PE(O, 00 ). 

Therefore the free energy (/) ( p,R,n) is continuous inpE(O, 00 ). 

Lemma 3.5: Given n > 0, R > 0, and a sequence 
!P; J iEN , Pi E(O, 00 ), of inverse temperatures converging to 

PoE(O,oo ) for i_ 00. Let !p!P;) LEN' p!P;)Efl ~/'R.n' be a se
quence of solutions of the n-equation such that the strong 
limit (with respect to the .!f "" -topology) of p!P;) (i_ 00 ) ex-

ists and is equal to PoEfl ~:R.n = u 11 ~i~R,n . 
iEN 

Then 

Proof: The first and second summand of the free energy 
functional (2.12) are stongly continuous functions on 
(11 ~!R,n ,11·11 "") by a straightforward generalization of Lemma 
2.16. Only the third summand in (2.12) 

J. Messer 2915 



                                                                                                                                    

F3 [p](/3) =/3 -I ( d 3xfd
3p 

p JA (217')3 

Xln(1 + e-/3(P'+ W[pIlXI-ji[P])) (3.8) 

depends explicitly on /3. By partial integration 

F! [ p] ( /3 ) = (1I6r) 1R 41Tl·2 dr 1'0 €3/2d€ 

X (1 + ef31<+ IV [pllrJ- it[p]))- I. 

(3.9) 

Let the smallest closed interval in (0,00 ), which contains (al
most) all of the elements of the above sequence !/3; J ;EN' be 
denoted by B. B is a compact set inside of(O, 00 ). Clearly there 
exist go > ° and i1o,floER such that, for each 
pEfl ~:R.n' O<p(x)<go and i1o<,il[p] <flo. The estimate 

IF! [PI]( /31) - F! [P2]( /32) I 

< 1/31 - /321 c + D I clllpl - P211 "" + l,il[ PI] -,il[ P2] I J 

(3.10) 

for /31 ,/32ED and P I ,P2En ~:R.n with 

D = (/34/6r) 1R 417'rdr L'" €3/2dd (€), 

J(€) = (1 + e/3,E-/3,lc,go+Pol)-I, 

C = E + (clgo + flo)/34 -ID, 

E = (1I6r)1
R 

417'r dr 1"" e/2 d€ J(€), 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

and continuity of ,il[.] on n ~:R.n concludes the proof. Here ° </33 </34 have been chosen such that B = [/33./34].0 
Lemma 3.6: Given n > 0, R > 0, and a sequence 

1/3; I ;EN' /3;E(O, 00), of inverse temperatures converging to 

/3oE(O, 00 ) for i--+ 00. Let !p(j3;) J ;EN , pEn ~,k.n be a sequence 

of solutions of the n-equation and let V; = /3; i [P(j3;)]. Sup-

pose that lim V; = Vo exists, then on (n ~:R.n ,11,11"" ) 

s-lim Pv,. /3, = PVo '/30 
i "00 

(3.15) 

exists, wherepv,/3 denotes the (uniqu<:l solution oftheA-equa
tion for temperature/3 -I and v = /3..1, [0(/3)], and B is defined 
as in Lemma 3.5. 

Proof Let us denote/3; w(r)(/3;,vj!R) = u\(r). Then the 
A-equation is equivalent to the integral equation (2.54): 

w(r) = (Kw)(r) = /3 -1/2 1'S-2 ds Edt 417't 2 g( 1, v + w(t)). 

(3.16) 

On the cone 'lr of positive, bounded, continuous functions 
R--+R+ we introduce the metric II 

d U(x,y) = sup e - ur I x(r) - y(r) I (3.17) . 
O<-;;r<R 

for x,y E ')Y' and a> 0. ('lP',d a) is a metric space for all a > 0. 
Note that 

dU(Kw;,Kwo)< 1/3;- 112 - /3 0- 112ldU(Kw;,O) 

+/30- 112d U(KwjCwo) (3.18) 
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with Kw =/3 1/2 Kw and d U(KwjjKwo) </3 !/21j17'go with 
c:5EIO,I] and/34,g0 as in Lemma 3.5. 

In particular the limit superior 
I-I 1-) I-I 
d ~ = lim d U(K w; ,c:5K wo) exists. The second term in 

i_oo 

(3.18) has the following upper bound: 

d U (Kw;,Kwo)«lIa2)J;1 Iv; - vol +dU(Kwj!Kwo)J· 
(3.19) 

By Lebesgue's theorem and bounded ness of I v; J and 1/3;] 
CB we can expressJ; = J(v;,/3;,vo,/3o) as 

(3.20) 

Jo = (1117')1"" d€ II € e<+ Vo + /30121T/3 Igo/( 1 + e<+ vo)2. 

(3.21) 

If a is chosen such thatJo/3o -1/2 /a 2 = €I < 1, then it follows 
from (3.18) and (3.19) that 

df<€ldf<€~df (3.22) 

for all kEN. Consequently, from (3.22) 

O<dflim(I-~)=df<O. (3.23) 
k~"" 

WithPv,/3 = /3 -3/2 g(l,v + w) we estimate 

II - II..:: 1/3 -3/2 - /3 - 312
1 A ,Pv,,/3, Pvo./3o "" ""; 0 go 

+ (1I417')/30- 312J;1 Iv; -vol + IIKw; -Kwoll"" J. 
(3.24) 

The relations 

dU(Kw;,Kwo»e-aRIIKw, -Kwoll"" , 

(3.23), and (3.24) lead finally to (3.15).0 

(3.25) 

Remark 3.7: From now on we assume that for each 
/3 > 0, R > 0, and n > ° there exists a unique solution PTF of 
the Thomas-Fermi equation. By definition let VTF (/3 ) 
= /3 i [PTF (j3 ) ]. This map /3--+VTF becomes a function be

cause of the uniqueness of PTF . 
Lemma 3.8: There exists a/3o E (0,00) and subsequences 

1/3, ]JE. N' /3; E(O, 00 ), and 1/3; J kEN' /3; E (0,00 ) converging to /30 
J} k k 

such that 

(3.26) 

Proof Let JI denote the set of all local maxima of 
v-/3 (v) and rn the set of all local minima of v--+/3 (v). Then 
JI =1= '/) and rn =1= '/) by the nonmonotonicity and analyticity of 
v--+/3 (v). Since v--+/3 (v) is analytic, the extrema are isolated 
and have no accumulation points. The number of extrema is 
finite if v is restricted to a compact set. Therefore, we can 
choose a local minimum and its neighboring local maxi
mum. This pair can be chosen in a way such that there is no 
local minimum or local maximum between them. We can 
restrict our attention to the case where the local minimum is 
at vbll and the local maximum at v~1 > vblJ' because, other
wise, when the local minimum is at v~l, the slope d/3 /dv 
cannot stay always positive for v > v~J because of Lemma 3.3 
(ii), and there exists a local maximum at v~J > v~1 being next 
to the assumed local minimum at v~). Note that /3 (v)--+O 
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when V-oo and thatp' (v)-oo when v-- - 00, because for 
each {3ER. + there has to exist a VER. such that {3 = (3 (v), as in 
Proposition 2.23 (iii). For v's nearby to vb1),v~) the domain of 
the map /3, /3 -I(V) [i.e., (30/3_, = id I (0, ~)] has necessarily 
at least three elements. One of them, V,E{3_I(V), is VI = VTF 
(f3rl with {3 (vrl = {31' because to each (31 > ° there exists a 
(unique) VTF with/31 = (3(vTF )· Now we assume 

(3-VTF (f3) is continuous for each (3E(O, (0). (3.27) 

We distinguish three cases: First case: VTF(f3tl < vbl). By con
tinuity we can reach vb'1 with VTF(f3 (vbll)) = Vbli . Ifwe contin
ue to values V > vbll, then{3 (v) >{3 (Vbll) and themap{3---+vTF (f3) 
would be multi valued, which contradicts the fact that 
{3-VTF (f3) is a function (Remark 3.7). Therefore, the func
tion{3---+vTF (f3) has to jump at (3 (vbl

)) to some value v > v~1 
which contradicts (3.27). Second and third case: Assume 
vb'l < VTF (f3I) < v~l; then the same argument as in the first 
case applies continuing either to vb'1 or to V~I. In case 
v~1 < vTF (f3 Jl we have to continue to v~). The contradictions 
to (3.27) obtained in all three cases prove Lemma 3.8 by anal
yticity of v---+(3 (v) and the properties proved in Lemma 3.3, 
i.e .. the discontinuity can only be a finite jump.o 

Theorem 3.9: There exist {3 > 0, R > 0, and n > 0, such 
that the temperature-dependent Thomas-Fermi equation for 
gravitating fermions (Definition 2.7) has at least two 
solutions. 

Proof By Lemma 3.8 there exist a (30 > ° and subse
que~ces l{3i

j 
tEN' (3~ E(O, (0), l{3i

k 
J kENcfl ,(3i, E(O, (0), con

vergmg to{3o such that with Lemma 3.5, Lemma 3.6, Lemma 
3.8, and Remark 3.4: 

1~~~Fp (pvn l{3),{3i,l/3i)] = Fp [s - i~~Pvnl{3.),{3i, ]1/30) 

= Fp fp ",,{3n ] (f30) = lim <P (f3i
j

) = <P ((30) = lim <P (f3i,) 
l,~.= ik--oo 

= Fp [Pv, '(3. ](f30)' (3,28) 
With Lemma 2,22 there exist two solutions of the Thomas
Fermi equation, This contradicts the assumption, made in 
Remark 3.7, thatpTF is unique for each (3) 0, R >0, and 
n>O.o 

As is well-known, the free energy <P for gravitating fer
mions has special scaling properties,3-5 Therefore, the point 
of phase transition (nonuniqueness of the solutions of the 
Thomas-Fermi equation) occurs not only at one point 
(f3o,Roono) but at a line where only two ofthe three thermody
namic parameters need to be fixed, For example, if(f3o,Ro,no) 
is a point where a phase transition occurs, then this phase 
transition shows up also at (y-4/3{30,y-I/3Ro, yno) for all 
y> 0. That the non uniqueness of solutions of the Thomas
Fermi equation is connnected to a phase transition, and the 
nature of this phase transition can be seen from considering 
derivatives of the free energy <p, If PTF is unique then the first 
derivative: 

Pfp~F ] = ~ <P (n,{3,R ) (3,29) 

. 4 I eXIsts, n case of two solutions PT and P A we have "" F.I TF." 
:: = Fp fpTF.1 J = Fp fpTF.2] but with Lemma 2.22 

J.-L fpTF:I ] ¥!IfpTF.2 ], Therefore the derivative in (3.29) can
not eXISt. Consequently, the nonuniqueness of the solutions 
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of the Tho~~s-Fermi equation is equivalent to an Ehrenfest 
phas~ transIt~on of the first kind in a system of gravitating 
fermions. ThIS feature can also be observed by considering 
the mechanical pressure4 

a 
P [p] = - -<p (n (3 R ) av " , (3.30) 

with V = IA I = ~1TR 3. Since4 

pep] =~f d 3p
p2(1 +e!3(P'-nIR-it [pll)-1 

3 (21T)3 ' 
(3.31) 

the pressure becomes discontinuous and the derivative (3,30) 
does not exist at the phase transition point. 

This phase transition has a remarkable nature, it is ac
companied by an implosion or explosion respectively. In the 
framework of Thomas-Fermi theory of realistic matter 
models, the gravitating particles are the only ones to show a 
phase transition in the theory. For the ground-state Thom
as-Fermi equation of ordinary matter, consisting of elec
trons (fermions) and nuclei (with infinite mass) interacting by 
Coulomb forces the solution is unique. 13, 14 Uniqueness of 
the solutions holds also for the temperature-dependent 
Thomas-Fermi equation of ordinary matter. 15016 

Note added in proof In the meantime an analytical 
proof of the nonmonotonicity of the mass distribution as a 
function of the chemical potential was given. This closes our 
gap indicated at Remark 2.23(v). See J. Messer, "Non-Mon
otonicity of the Mass Distribution and Existence of the 
Gravitational Phase Transition," Phys, Lett. A 83,304 
(1981 ). 
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Ph. de Smedt a) and G. Stragier a) 

Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium 

(Received 10 March 1981; accepted for publication 5 June 1981) 

We prove that the KMS condition for the infinite ideal Bose gas at any temperature 11/3 and 
chemical potentialll";;;O implies regularity under certain conditions on the test function space. 
Also, explicitly irregular solutions are constructed indicating the difference between the KMS 
condition and Gibbs states. 

PACS numbers: OS.30.Jp 

Let EiJ be the set of complex infinitely differentiable 
functions with compact support in R". 

Define the one-parameter group (T, I teR of mappings: 

T,:EiJ-fiJ, 

f-TJ=ei'j, 

where 

E(k) = k 2/Z -Il, 1l";;;0. 

Let H by any T, - invariant linear subspace of EiJ. We con
sider the CCR-C ·-algebra:.J (H,u) over the test function 
space (H,u), with CT(f, g) = Im(f,g), where C.) denotes the 
usual L 2-scalar product. 

The algebra is generated by the Weyl operators 

lW(/)lfEHj 

with product and involution: 

W(/) WIg) = W(/ + g)e - io1/.g)/2, 

W(/)· = W( -f), Vf,gEH. 

(For more details see Ref. 1). 
In this note, we consider the free Bose gas for which the 

time evolution is given by the one-parameter group (at) teR 

of· - automorphisms on.J (H,u): 

a,(W(/)) = WIT J), VfER, VtER. (1) 
Definition (Ref. 2): A state cu on a C·-algebra .r;ff satis

fies the KMS condition at inverse temperature 11/3 with re
spect to a one parameter group (a, )'ER of .-automorphisms 
on .if if, Vx, YEd there exists a function 

Fx •y : a-a 
bounded and continuous on the strip {ZEa 10..;;; 1m z..;;;/3j and 
analytic inside this strip, with boundary conditions 

Fx.y(t) = cu(xa,(Y)), 

Fx.y(t + i/3) = cu(a,(y)x). 

In a well known paper,3 Rocca, Sirugue, and Testard solved 
the KMS equation for quasi free evolutions, satisfying a 
number of conditions. (See also Ref. 4). They restricted the 
set of states to the so-called regular states in the sense of 
Segal, i.e., the set of states cu for which the map 

AER-w( W (AJ) W (g))E<2' 

is continuous for allf, g E H. 
Then it is well known that, if (11' OJ ,JY OJ' n OJ) is the G NS 

triplet induced by the state cu, and if the state cu is regular, 

"'Aspirant NFWO, Belgium. 

there exists a field q; OJ' i.e., a map of H into the self-adjoint 
operators on the representation space JY "" such that I 

11'",(W(/)) = /"I,)1"l, VJE H. 

One can ask the question whether the KMS condition al
ready implies the regularity condition, such that the restric
tion made in Ref. 3 is unnecessary. One is tempted to con· 
clude this question positively from the apparent analogy 
between the continuity of the function 

AER-w(W(AJ + g)) 

and the analyticity of the function 

tER-w( W (T J + g)), 

which follows from the KMS condition, as we prove in the 
next proposition. 

Proposition 1: If cu is a KMS state at inverse temperature 
/3 on .J (H, u) with respect to the one-parameter group 
I a, J teR defined in Ref. 1, then the mapping 

tER-w(W(T J + g)) is analytic 

for all tER and for allf, g E H. 

Proof We note that for allf, g E H 

cu( W (I) W (T,g)) = cu( W (T,g) W (I))e - ia((, Tg) 

= cu(W(Ttg)W(f)) 

X [exp - (lIZ)( ((.eil€g) - (eitEg/»)]. 

Define 

Gf,g(z) = FWifl.W(gl(z)exp(~(((.e;Z£g) - (g,e - ;z'i»)), 

where F Wifl,W(g) is the analytic function as given by Defini
tion 1, Furthermore define 

Ff,g(z) = FWif1.W(g)(z) ifO<Imz..;;;/3 

= GJ;g (z - i/3) if /3 < 1m z<,Z/3. 

By construction this function is continuous in the strip 
! zE<2' 10<,Im z<,2f3 ) and analytic inside the strip: 
~E<2' 10 < 1m Z </3 ) U I ZE<2' 1/3 < 1m z < Z/3), This implies that 
Ff,g(z) is analytic in ! zE<2' 10 < 1m Z < 2f3J,_In particular, the 
map tER-Ff,g (t + i/3 ) is analytic. Using F (t + i/3 ) 
= cu( W (T J) W (g)) and the commutation relations, we get the 
desired result.o 

Although, Proposition 1 suggests that the KMS condi
tion implies regularity in general, the situation is a bit more 
subtle. First, we take for H the following subspace of EiJ: 

H = IiJ if Il < ° } 
orH=!fEIiJIOEl'suppfJ if 1l=0 . (Z) 
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The idea of the next proposition is already contained in Ref. 
3. 

Proposition 2: If H is as in (2) and if OJ is a KMS state of 
.:::1 (H,a") at temperature lI,Bwith respect to the one-parameter 
group defined in (1), then 3 CP:H---+C such that for allJ,g E H: 

(i) OJ( W(f)) = cP (/) 

Xexp! -! f If(k W coth( ,B(k 2/2 - }1)/2)d nk J, 

(ii) cP (T J + g) = cP (f + g) 'v'tER 
Proof Let OJ, be the linear functional of.:::1 (H,a) defined 

by 

OJ,(W(/)) = exp! -!J V(kWcoth(,B(k 2/2 -}1)/2)d nk). 

It is easily verified that OJ, is a KMS state of.:::1 (H,a). 
Define 

CP(/) = OJ(W(f)). 
OJ,(W(/)) 

(3) 

This is well defined since OJ,(W(f))#O, 'v'fEB. 
As OJ and OJ, are both KMS states and because of the special 
form of OJ" it follows that 

(a) cP (T J + g) allows an analytic extension ,:p (z) inside 
the strip O<Im z<,B, which is continuous on the strip, 

(b) ,:p (z) is bounded on this strip. 
(c) ,:p (t + i,B) = ,:p (t). 

Hence ,:p (z) can be extended to a bounded function which is 
analytic on all ri, and hence by Liouville's theorem, ,:p (z) is 
constant or 

CP(TJ+g) = CP(f+g), 'v'f,gEB, 'v'tER • 
Now we prove the main result about regularity. 

Theorem 3: If the test function space His taken as in (2), 
every KMS state of A (H,a) for the free Bose gas at tempera
ture lIfJ is regular and hence assures the existence of a Bose 
field. 

Proof From Proposition 2, we have 

cP (T J - f) = cP (0) = 1, 'v'fEB, 'v'tER, (4) 

where cP (0) = 1, since OJ must be a state. 
For all gEB, define the function g, by 

g,(k)= eit'lk,~(~L_l 

with 0 < t, < 1T • 
2max[ k 2/2 - }1l kESUppfJ 

One checks that g, is well defined and that g ,EB. 
Take t = t, and! = g, in (4), then 

cP ((T" - 1)g\) = cP (g) = 1, 'v'gEB. 

Thus, the unique KMS state on.:::1 (H,ff) at temperature lIfJ is 

OJ(W(/)) = exp! -! f V(kWcoth(fJ( ~2 -}1 )j2)d nk J, 

which is regular. • 
Remark: One easily sees how this result can be general

ized to other quasifree evolutions. 
Consider a time evolution of the a,(W(/)) 

= W(T J), where (T J)(k) = eioJlk)f(k) and with OJ an infi
nitely differentiable function. Let A = ! kERnlOJ(k )<0) and 
H = lfE9IsuppfCR"\A ). Then, every KMS state of 
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.:::1 (H,ff) for this quasifree evolution is regular. 
Now we consider further the situation,u = O. We re

strict our discussions to dimension n;;;.3. With minor 
changes the cases n < 3 can be handled in the same way. We 
still have the possibility of choosing the test function space 
H: 
Consider the following cases. 

(a) H = !i! . In this case it is easy to prove that there exist 
solutions of the KMS condition which are not regular. We 
give two examples: 

The state OJ, of.:::1 (,£tl ,ff) given by 

OJ,(W(/))=expl-! f V(kWcoth((3k 2/4)d nk 1 

if Re frO) is rational, 

= 0 if Ref(O) is irrational. 

This is indeed verified to be a KMS state. However, it is 
easily seen to be not regular. Indeed takefE!i! such that 
Ref(O) # 0, then AER---+OJ( W (Af)) is not continuous. 
Another irregular state OJ 2 is given by fEg; , 

OJAW(/)) = £5fIO).oexpl -!f V(k Wcoth((3k 2/4)d"k J, 

where t) is the Kronecker symbol. 
Here the discontinuity of 

AER---+OJ2( W(Af)) 

is alA = O. 
For these examples, it is clear that the irregularity shows up 
for allfE,qJ such that Ref(O)#O. It is well known that this 
quantity also describes the amount of condensation in the 
equilibrium statesS and one may have the impression that 
condensation is responsible for the irregularity. This is not 
true, as follows from the next case. 

(b) H = lfE!i! V(O) = 0 J. Let OJ) be the following state: 

OJ3(W(/)) = £5f'(o),o exp! -! f V(k Wcoth({3k 2/4jd nk J, 

where 

, Jf(k)! f (0) = -- and k = (k" .. "k n ). 
Jk, k=O 

In the notations of Proposition 2, 

cP (f) = £5 f'(OI.O . 

Again it is easily checked that the state OJ is a KMS state but 
not a regular one. Takefsuch that!'(O) #0, then 

A---+OJ3 ( W (f)) is not continuous in A = 0, 

The existence of irregular solutions indicates that for the 
ideal Bose gas the KMS condition allows more solutions 
then the ones obtained from limit Gibbs states, which are 
easily shown to be regular. 
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We investigate the dynamics of an infinite Bose system in C·-algebraic description. The free time 
development is constructed under some conditions which are natural from a physical point of 
view. The properties of locally perturbed dynamics are discussed. 

PACS numbers; 05.30.Jp, 02.10. + w 

INTRODUCTION 

Let ~ be a physical system (infinite) and d a quasilocal 

algebra associated with it. Thus d = U A d A , where d A 
represents the algebra of A-local observables. We shall also 
assume that each dAis equipped with a one-parameter 
group of automorphisms 7'(;.(2/11. -d A and that this group 
descibes the time evolution for the region A. 

It seems that one of the most important problems in 
nonrelativistic quantum statistical mechanics is the question 
of general conditions for the existence of the following limit: 
limA 7'(A, AEU", d A and also the general characterization of 
this limit. The above limit procedure usually depends 
strongly on the physical properties of the system, e.g., the 
topology under which the limit can exist. If the above limit 
exists, in some sense, we shall say that the infinite system ~ 
has a time development. 

At present, the question of description of the time devel
opment for continuous system is known only in exceptional 
cases, e.g., Bose systems have well described dynamics, in 
above sense for Gibbs states. 1 

The objective of the present paper is to study the de
scription of the time development of an infinite Bose system 
for distinguished family of states. We recall that not each 
state on CCR algebra ~rN has a continuous time evolution. 
This paper splits naturally into several parts. In Sec. 1 details 
of our model and formulation of the main assumptions are 
presented. Section 2 is devoted to the description of the free 
time development. The main result of this section is that a 
free time development exists for primary, gauge invariant, 
locally normal states. Finally, in the last section we discuss 
the perturbations of time evolution and present some conclu
sions. It is shown that a bounded perturbed dynamics does 
not have "good behavior" with respect to quasilocal struc
ture. This result is to be expected since we consider the non
relativistic time evolution. 

1. THE MODEL 

Let (N,(.,.)) be a pre-Hilbert space; then the equation 
(T(f,g) = im(f,g),f,gEN defines a nondegenerate symplectic 
bilinear form on N. By ~N we will denote the C·-algebra 
generated by nonzero elements W(f),fEN, satisfying 

alOn leave of absence from Institute of Physics, Gdansk University, 
Gdansk, Poland. 

W( - f) = W(f)· and W(f)W(g) = exp{ ..:.! i(T(f,g)/ 
W (f + g). Let M be a subspace of 'y2(R V) formed by the 
functions with compact support. If A is a bounded open set 
ofRv and ~'" is the C·-subalgebra of~M generated by 
[W(/);/E'y2(A)J then (~M {~A JACRY) forms a quasilocal 
algebra. (For an orientation on this subject we refer to Chap
ters II and V of the Bratteli, Robinson book.2) In order to 
describe the free evolution we must introduce the one-parti
cle free Hamiltonian for each region A. Let H be the usual 
self-adjoint Laplacian operator (Ht/J )(x) = - V;t/J (x). Next 
for each bounded open set A C RV let H", denote any self
adjoint extension of H restricted to the infinitely differentia
ble functions with support in A. There are many such exten
sions each of which corresponds to a choice of boundary 
conditions. The one parameter group eiHA

' represents the 
one-particle free time evolution for the region A in the 
Schrodinger picture. Moreover, one can deduce that the net 

of unitary groups [e iHA
'} converges strongly to the group 

eiHI
•
3 

Since unitary operator is also a symplectic one (for our 
definition of the symplectic form) the multiparticle free time 
evolution, for the region A, will be defined as follows: 
W(/HAlf) = 7'(W(f),JEy2(A). The mapping 7'((.) can be 
extended to ~A and in fact the extension 7'((.) is a one-param
eter group of automorphisms but this group is not strongly 
continuous. Both statements are valid for each A. 

Now let us fix for a moment an arbitrary region A C RV 

and consider a statewA (.) of~A' It will be assumed that 
(i) w'" (.) is normal w.r.t. the Fock representation, i.e., 

wA(A) = Tr:JF\A)(pAn1(A H, where (JY'(A ).n1(A ),n1) de
notes the G NS triple associated with the Fock state4 w~ (.) for 
the region A and pA is a density matrix on JY'(A ). It should be 
remarked that each such state has a well-defined time evolu
tion, e.g., the function R 3 t~ A (7'((A )) AE~A is a continu
ous one. This normality condition essentially means that 
each bounded region of the space has a well-defined number 
of particles. Without this restriction the time evolution can 
exhibit strange phenomena.5 

Next let us consider two regions A and A • such that 
A • ~A and corresponding states W A (,),wA ' (.). It will be as
sumed that: 

(ii)w",,(A) =wA(A )foranAE~A(A '>A). The meaning 
of this isotony condition is that the state of the infinite sys
tem is determined by a net {pA I of density matrices satisfy
ing the compatibility conditionspA = Trw \11. ',A )pA '. It gives 
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the possibility of definition of the state on the quasi-local 
algebra, i.e., lU(·) = limA_~oo lUA H exists on uA NA and has a 

unique continuous extension to uA d A = N. The condi
tions (i) and (ii) are however still too weak to give a time 
development for the Bose system. Therefore we add the 
following: 

(iii) lU(·) = limlUA (.) is a primary state [i.e.llw(~rM)" is a 
A 

factor]. 
(iv) lU(·) is a gauge invariant state, i.e., lU(·) is invariant 

under the group of gauge transformations: 

[O,21T] 30-Te(W(f)) = W(ei~) fEM. 

The physical sense of the condition (iii) is that the system is in 
a pure thermodynamic phase (since each such state has a 
trivial algebra of infinity). One can consider that the gauge 
group represents inner symmetries of individual particles 
and one expects gauge-group dependent quantities to be ma
croscopically unobservable. This explains the reason for 
condition (iv). 

2. FREE TIME DEVELOPMENT 

The aim of this section is to prove the following 
theorem. 

Theorem: If a state lU(.) of an infinite bose system I satis
fies conditions (i), ... ,(iv) (described in Sec. 1), then the system I 
has well-defined free time development as a one-parameter 
weakly continuous group of automorphisms of the von Neu
mann algebra ll",(NM)". 

Before starting with the proof we need some definitions 
and lemmas. Let us consider the state lU A (.),A eY = ! A;A is 
an open bounded subset ofRV). By assumption (i) 
lUA (A) = Tr£-(A IpAll1(A) AeNA. Hence there must exist a 
unitary operator W A such that 

WA :cW"'wA - Span !N.ofl1(A )r/;AeNA }::=% A ~N.~(A), 

where we use the following: (JIr''''A,llwJ),.o",J is the GNS 
triple associated with the state 
lU A (.),N.~(A ) = 6l iE. ,- JIr'(A ),pA = l:i 7]1 ® ii1

6 

with 
7]1eJ1r'(A ) and l:i 117]111 2 < 00, N.ofl1(A )S A = (11 ill 1(A )S 1 
for any S AeN.~(A ). We also need the following mappings: 

(1)VA'A(N.ofl1(A )7],.1) = N.ofl1'(A )7],.1, 

(2) VA'A(ll~(A )11",) = ll~'(A )11"" ll~==llwk, 

(3) ¢J A 'A (N.JI 1(A )) = N.Jl1'(A ), 
- A A' llA_ll \ (4) CPA 'A (ll w(A)) = II w (A), ,,,= ,,, ~(,,' 

where in all the above definitions Ae~A' A ';;;.A and 
A ',A eY Moreover, cW"'~ will denote the following subspace: 

cW"'~ = span !ll~(A )l1w; Ae~A I, 

Lemma 1: The following inductive limits exist: 

(i) lim !%A;VA'A;A ';;;'A;A ',AeYj = %. 
,.1-00 

(ii) lim !JIr'~;VA'A;A ';;;.A;A ',AeYj =JIr'w' 
,.1-00 
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(iii) lim !N.Jl}(~A);c/JA'A;A ';;;'A;A ',AeY) = ll(~M)' 
,.1_00 

(iv) lim !ll~(NA)iA'A;A ';;;.A;A ',AeY} =llw(~M)' 
A--+~ 

Moreover (%, II (NM)) is unitary equivalent to 
(JIr'w,ilw(NM))· 

Proof: The mapping VA 'A satisfies 

VA "A VA 'A = VA"A' A ";;;'A ';;;.A 

and it is an isometric embeding of %,.1 into %,1' (A ';;;.A ). 
Thus (i) follows from standard arguments ofinductive limits. 
The analogous arguments give (ii), (iii), and (iv). 

Next let us observe that JIr'~ is unitary equivalent to 
% A' (UA(llw(A ).ow) = N.Jl1(A )7],.1; AeNA) and moreover 
the unitary mappings UA satisfy compatibility conditions 
with mappings VA 'A and VA 'A , i.e., 
VA 'A UA = UA, VA 'A; A ';;;.A. Thus, there exists a unitary 
mapping U from JIr' w onto %. Similar considerations and 
GNS representation theory give the last statement of 
Lemma 1. 

Remark: We will denote by VA (CPA , ... ,etc) the canoni
cal embending of %,.1 into %,(N.Jl1(~A) into 
II (~M ), ... ,etc.). Moreover the explicit construction ofinduc
tive limits give the identification of II (~M ) as a subset of 
B (%)[Thesamefor(JIr'w,ll"'(~M))'] Also, for simplicity, we 
will denote ll(W(f)) by W1T (f). 

Lemma 2: The following function 

M::Jy2(A )3f-W1T(f)Ell(NM)~ &8(%) 

is continuous one when y2(A ) is taken with the topology in
duced by the norm 11·112"'(,.1 I == IHI whereas &8(%) is 
equipped with the strong operator topology. 

Proof: First we observe that for an arbitrary AeYand 
j,g,hey2(A) II [ll}(W(f)) - ll}(W(g))] ll1(W(h)) 

xn:II"llf-gll IIhIl/4+llf-gll Ilf II 14 
+ 2( 1- expl - !Ilf - gI12]]. Hence, iffa-f then 
II 1(W(fc,))-ll1 (W(f)). Now consider N.oll}H Lets A be 
in%A; then 

IIN.oll:(W(fa))S'A - N.Jl1(W(f))SA 1\2 

= II (11 [ll1(W(fa))S? - ll;(W(f))sllI1 2 

i 

= 2:11ll1(W(fu))s1- ll1(W(f))S'1112. 
i 

But by construction one can find, for each E > 0, an integer m 
such that 

f \Ill 1(W (fa))S 1112 < ; 
i=m+ 1 

and 

f IIll ;(WU))t111 2 <; 
i=m+l 

uniformly infu and! This result and the estimation for 
s 

ll1(·) imply that KJl;(W(full-N.Jl;(W(f)) iffa-f for 

fa' fin 'y2(A ). Finally we estimate the following expression 
lI[ll(W(f))·- ll(W(g)))xll, wheref,geM, and 
XEU! VA Span! N.Jl1(A )7]A;Ae~rA j );i.e., 

A 
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XEVA,Span{NoflA'F(A )1]A',AEmA, J forsomeA I • LetAEY 
and suppose A contains A "==suppf,A '=suppgandA I; then 

lI[il(W(f)) - il(W(g))]xll 

II[I,6A' Nofl: "(W(f)) -I,6A' Nofl:-(W(g))] 

x VA, Nofl:I(A )1]A'11 

= II [I,6A Noll:(W(f)) -I,6A Nofl:(W(g))] 

X VA Noll :(A )1]A II 

= II VA [Nofl:(W(f)) - Nofl:(W(g))]Noll:(A )1]A II 

= II [Nofl:(W(f)) - Nofl:(W(g))]Noll1(A )1]A II, 

where we used the properties of inductive limits. In particu
lar, the third equality follows from the compatibility in con
struction of inductive limits for % and il (mM ). The last 
estimation proves Lemma 2 because of the properties al
ready established for Nofl1(·). 

Lemma 3: il",(mM )" contains a representation of the 
CCR algebra over ~2 (RV) by the family of unitary Weyl 
operators. 

Proof Now we equip the space M with the topology 
induced by the norm 11·1L.2"2(R") =11'11· It is easy to check that 
the assumptions of Theorem 2.6.10 in the book of Bratteli, 
Robinson 7 are also satisfied in our model [It is enough to 
study the lim {Nofl1(mA)", I,6A 'A;A ';;;:'A;A ',AEY), the 
mapping 7:'T(il 1(A )) = Nofl1(A ) for AEmA and to use 
Lemma 2.] 

Therefore since by assumption liJ(') is a primary state 
one can infer from the above cited theorem that for given Ao 
and E> 0, there exists a A ' such that 

IliJ(AB) - liJ(A )liJ(B)1 <EllA IIIIB II (*) 

for all A Ell," (mA.l" ' all BElI",(m,.1)" and all X disjoint with 
A '. Let us define for eachfEM the following net fA = x~f, 
where A EY-, 

1 {O, xEA 
XA = .1.,' 1, X\!:/l 

{W1T (fA )==il",( W(fA))} is contained in the unit ball of 
:J?J (J¥' "') and this ball is weakly compact. It implies that there 
exists a subnet { W1T (f,d J weakly convergentto,u 1 (since the 
algebra at infinity is trivial). But then the condition (*) means 
for given AoEY and E> ° there exists an index A. ' such that 
IlEA. W1T UtlIJ", - ,uIJ", II < EforallA. >A. '. (EA. is theprojec-

tor on the subspace Span {il",(A )IJ",;AEmA• J.) This implies 
the strong convergence of {W1T UdIJ", J and hence l,ul = 1. 
Moreover, by the gauge invariance of liJ('), 

liJ(W(f,J = liJ(W(ei1Tf.)) = liJ(W( - f,d) = liJ( W(f,,J)-,u. 

Thus,u is a real number with absolute value 1. We must 
exclude the case,u = - 1. For this purpose let us observe 
that ± 1 are unitary operators. This enables us to use prop
erties of weak and strong operator topologies since these to
pologies coincide on the set of unitary operators. Let us as
sume that W1T(f.)- - 1 and consider W1T ((lIm)f.) where 
m is a large positive integer. Let us take a subnet of 
W1T (( lIm)f,,J which we denote by W1T ((lImlfa), such that 
W1T ((lImlfa)' is convergent [This is possible because 
{ W1T ((lImlfa) J is contained in the unit ball of:J?J (J¥') ",.] 
Our assumption, the equality 
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W
1T

(fa) = W((lImlfa)· .. W((lImlfa) and the coincidence 
strong and weak convergence of unitaries to a unitary limit 
exclude the possibility W1T ((lImlfa)-1. The second case 
W

1T
((lImlfa)- - 1 is impossible one since liJ(') is a regular 

s 

stateS and liJ(W(O)) = + 1. Therefore W1TUtl- + 1. Now 

let us consider the following inequality (for an arbitrary 1/1): 

II(W1T (fA) - 1)1/111< II(W1T(f,tl- 11/111 

+ II(W1T (fA) - W1T (f.))I/III, 

where { W1T Ud J indicates a subnet of { W (fA) J and 
A.;;;:. A;;;:.A. ' ( the last inequalities follow from the definition of 
subnet). From the construction off A , 

A---.--./Xi A'-co 

IlfA 11'y2(R") - ° so that IlfA -fA IL""2(R") - 0. 

Moreover,f. -fA is a function defined on a bounded re
gion. Thus the convergence of{ W1T if<)) and Lemma 2 imply 

S 

W1T (fA )-1. To end the proof of Lemma 3 let us take an 

arbitrary JEM with II fll.Y2/R") < E. 

One can decomposejin the following way: 
j = jA + jA 1, where jA = X Aj JA 1 = X A J (r A is a charac
teristic function of the region A ). It is clear that 
II jIl22(R") ;;;:.11 jll'y1(A)' thus application of the previous argu
ments to the functionjA 1 and application of Lemma 2 to the 
functionjA completes the proof of Lemma 3. 

Proof of theorem: Let us define the following mapping: 

7?(W1T (f)) = W1T (e iH1) forfEM. (**) 

In general, due to instantaneous wave-spreading phenom
ena, eiH1E~2(RV). Lemma 3 however allows such a defini
tion in il",(mM )". Let us denote by Sif I (resp.Sf I) the unit ball 
in Sif = {~~ C; W1T (J:);/;EM,c;ECj (in 
,#, = Sif" = il," (mM I"). For each AESf I define 

7,(A) = strong*lim7?(ta; W1T (J:)). 
w here ~ 7 a; W 1T (/; )ESif I is chosen to con verge to A. (This is 
possible by Kaplansky's theorem.) The extension of 7, (.), by 
linearity, to Sf will be denoted by the same symbol. Since the 
strong*-topology is compatible with the algebraic structure 
on the unit ball it is evident that 7,(·) is a one parameter 
family of *-homomorphisms. Let us denote by ker7, the ker
nel of 7,(.) It is two sided ideal in d. Let us take the strong* 
(or equivalently weak) closure. We will denote this closure by -- ---
ker7, . Thus ker7, is weak-closed two-sided ideal in von 

Neumann algebra. Hence ker7, = Sfz, where z is a central 
projection. Since liJ(.) is a primary state ZE{ 0, I). Therefore 
the assumption that ker7, # {OJ implies that the kemeI7,(') 
is strong* dense in Sf. Let us assume this case, i.e. ker 7, 
# {O J, and take an arbitrary AESf I' The assumption (ii) im
plies that dis O'-finite von Neumann algebra acting on sep
arable Hilbert space. Thus the strong*-topology on the d I is 
metrizable.9 But Kaplansky's theorem there exists a se-

s· 

quenceA n Eker7,nSf I such that An-A. On the other hand, 

also by Kaplansky's theorem, there exists for each n a 
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sequence 

s· 

such that Bn,mE.sf I and Bn,m~An' Since the strong*-topol-

ogy is given by metricp(.) (on the unit ball) it is possible to 
s· 

pick the special subsequence B ni,mi such that B ni,mi ~ and for 

large enough indices (ni,m i) ABn"m, is arbitrarily close toAn,. 
But it implies that p(7, (A ),0) is an arbitrarily small number 
and hence AEker1"" Thus de ker7, what is not possible 
since, for example, W1T (f) and W1T (e iH1) are unitary opera
tors. Therefore ker7, = [0 J and 1", (.) is a one-parame~r fam
ily of aut om or ph isms of the von Neumann algebra.sf, Ap
plication of the fact that each automorphism of a von 
Neumann algebra is strong*-continuous on the unit ball lO 

gives the result that 1",(') is one-parameter group of aut om or-

phisms. Finally, eiHA
' ~iH', and Lemma 3 gives an explana

tion of the name free time development. 

3. PERTURBED TIME DEVELOPMENT 

In this section we consider locally perturbed time devel
opments 1" p on ~1r (~M)'" These evolutions are defined by the 
following formula: 

r,'(A) = 7,(A) + L/ r dsl· .. dsn 
n>1 JO<'SI""'<Sn<t 

X [7sJP), ... [1"S I (P),7,(A )] ... ] 

for t;>O, P = P*; A,PEllO)(~M)'" Analogous formulas hold 
for negative times. In this definition, the integrals are defined 
in the strong topology so they give elements in von Neumann 
algebranO)(~M)'" Moreover, one can easily check thatr,'(·) is 
a one-parameter group of automorphisms of nO)(~M)" .11 In 
particular 

r,'(A) = EXPrU;iP(S) dS)1",(A )EXP1U; - iP(s) dS)' 

where 

EXPr( (';iP(S) dS) = Ir (' dt\ ... ('.~ ldtn 1",JP)'''7,. (P). 
\)0 n;;.O Jo Jo 

Exp/ r';iP(s) dS) = Iinl' dtl .. ·l'·_ldtn 1",,(P)"'7,.(P). 
\)0 n;>O 0 0 

and 

EXPr(i';iP(S) dS)* = EXP1(l'; - iP(s) dS)' 

Let us consider the following problem: Is it possible to 
define a locally perturbed evolution which preserves the C *
algebraic structure? In other words. can one find r,'(.) with 
the property that r,'(nO)(~M)) = nO)(~M)' This question 
seems to be too general and a serious hint can be extracted 
from Kadison's corollary 4.6. 12 Namely let us define a w*
unimorphism to be an affine isomorphism continuous with 
respect to the w*-uniform structure, acting on convex com
pact uniform space S. [The w*-uniform structure is indu~ed 
by weak*-topology since seX * in our problem where X IS a 
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Banach space. In this section weak topology means u(X * .x ) 
topology in the sense of Banach space language]. 

The mapping r,'(.) has the desirable property if and only 
if the dual map (r,')* is w*-unimorphism on the set of weak
operator continuous states. Since 7, (.) does not have the cited 
property, then EXPr U~;iP(s) ds) does not induce a w*-uni
morphism if r,'(.) preserves the C *-algebraic structun;. (We 
recall that the composition of two uniformly continuous 
functions is continuous.) Therefore the question posed is 
similar to the following one: When does the superposition of 
two 1-1, onto, not continuous functions give a continuous 
function? The following equality shows the whole difficulty: 
he/-Ie/ = h for h continuous function and/discontinuous. 
The above arguments explain why we modify the posed 
problem to the following one: Is it possible to find nonexcep
tional bounded perturbation P such that r,'(.) preserves the 
C *-algebraic structure. Nonexceptional perturbation means 
that 1"'/ + A)p preserves the structure for small ,,1,E( - c,c). 

Theorem: It is not possible tofind nonexceptional bound
ed perturbations P such that r,'(.) preserves quasilocal 
structure. 

Proof Let us assume that a nonexceptional perturba
tion P exists. One has 13 

r',t +A)P(A) = EXPr(l;i(1 +,,1, )P(s) dS)7,(A }[ExPr(''')]* 

= EXPrU;(iP*iAP)(S) dS)EXPr([;iP(S) dS)7,(A) 

X [ExPr(···)ExPr("·)]*' 

where 

(B*A) = EXPr([;B (s) dS)1",(A)[ EXPr(CB (s) dS) ]*. 

Hence, 

EXPr(l;(iP*i,,1,P)(S) ds)t.)EXPr(l;(iP*i,,1,P)(S) dS)* {3(.) 

induces in the dual space a w*-unimorphism. [In what fol
lows, for simplicity, such EXPr("') will be called w*-unimor
phism.] Propositions 6 and 9 of Ref. 14 imply that 
EXPr(f~;{i(1 + n,,1, )P*( - i,,1,P)J(s) dS).is w*-un~~orp.hism 
for ,,1,E( - E, + c) and nEJV. The followmg equahtles gIve the 
basic idea of the proof of the above result: 

EXPrU;{(1 + A )iP*( - ,,1,iP)}(s) dS) 

X EXPr (f; [ (iP* i,,1,P )(s) dS) 

= EXPr([:((iP*iAP)*(iP*( - iAP))}(s) dS) 

X EXPr(i';(iP*iAP )(s) dS) = I. 

Thus one can choose DE(O,E) such that 
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is a w*-unimorphism. 

Then the cited properties of the perturbed dynamics, proper
ties of Exp,(.) and Expl) imply that ~P(.) does not preserve 
the C *-algebraic structure. Moreover, 8 can be chosen as a 
very small number. Let us call1'~{+=~P(.) and repeat the 
above arguments, etc, The result is: l'PPH does not preserve 
the C*-algebraic structure where 
Q = 8 + 8( 1 - 8) + 8{ 1 - 8 - 8{ 1 - 8)) + .... Therefore, 
for appropriate choice of 8, one can make Q arbitrary close to 
1 which is a contradiction. 
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A ge~eral.expression for the transition density of non equilibrium diffusion processes is derived 
that ~s valId for. ~on-Ga~ssian fluctuations. Using the thermodynamic principle, that relates the 
relative probabIlIty densIty of paths for absolutely continuous diffusion processes to the 
thermodynamic force, the kinetic analog of Boltzmann's principle is derived. The transition 
density ~a~ be expressed in terms of the difference in entropies of the endpoints of the transition 
and the~omt entropy. The gradient of the joint entropy is a measure of the strength of statistical 
correlatIOns b.etween nonequilibrium states and its difference (sum) between the thermodynamic 
forces determmes the rates of growth (decay) of fluctuations. These rates are mirror images in time 
of one another and display a symmetry in past and future. The macroscopic laws of irreversible 
thermodynamics emerge in the exact balance of these two phenomena. 

PACS numbers: 05.40. + j, 05.70.Ln 

I. INTRODUCTION AND SUMMARY 

The search for a kinetic analog of Boltzmann's princi
ple began with Onsager l and Onsager and Machlup.2 Boltz
mann's principle relates the probability of a spontaneous 
fluctuation from equilibrium to its entropy. When dealing 
with irreversible thermodynamic processes, it is important 
to know not only the distribution in the density of states but 
also the distribution in the density of paths connecting non
equilibrium states. Although Onsager and Machlup2 intro
duced the novel feature of evaluating statistical distributions 
by variational expressions and provided a statistical inter
pretation of the dissipation function, their analysis was 
based on the Gaussian assumption and lacked the essential 
elements which ultimately lead to the establishment of the 
limiting statistical distribution. In other words, (i) the Gaus
sian assumption is at the root of the variational analysis of 
statistical distributions and cannot be generalized to non
Gaussian processes and (ii) the inclusion of random pertur
bations which generate statistical correlations between non
equilibrium states requires the use of stochastic rather than 
ordinary calculus. 

Recent attempts to generalize the On sager-MachI up 
formulation, either in terms of path integrals3

-
7 or by proba

bilistic approaches, K.9 have not led to any general thermody
namic principles for non-Gaussian, diffusion processes. 
Moreover, thermodynamic theories which emphasize the 
distinction between irreversible thermodynamic processes 
that occur near and far from equilibrium 1 0.11 in relation to 
their stability properties 12.13 fail, even in the near equilibri
um regime, to obtain the necessary compatibility with equi
librium statistical thermodynamics in the asymptotic time 
limit where the statistical correlations between nonequilibri
um states have worn of. 14

•
15 

In this article, we consider the general problem of the 
transformation of one diffusion process into another by 
means of an externally applied constraint which is then sud
denly released. A general thermodynamic principle relates 

the restoring or thermodynamic force produced by the con
straint to the relative distribution in the density of paths of 
the transformed or biased diffusion process with respect to 
the initial or unbiased diffusion process. 

From this thermodynamic principle we obtain a general 
expression for the density of the probability measure of the 
biased diffusion process with respect to the probability mea
sure of the set of paths belonging to the unbiased diffusion 
process. Averaging this expression over all paths connecting 
two given nonequilibrium states yields an expression for the 
transition density. Several interesting forms of the transition 
density are given. 

In the first place, it can be expressed as a conditional 
Wiener integral of the so-called Onsager-Machlup poten
tial. 16 Its relationship with the kernel that is essentially re
sponsible for the propagation of the probability density in 
space-time is given and the associated eigenvalue problem is 
formulated. Although we leave the implied stability analy
sis, in terms of the On sager-MachI up potential, for a sepa
rate publication, 17 it is interesting to note that stability con
siderations have already been applied to the Onsager
Machlup potential in the case where it has the form of a 
bistable potential well. IR 

In the second place, the transition density is shown to be 
completely determined by the difference in entropies of the 
endpoints of the transition and the joint entropy, which is a 
quasi thermodynamic quantity that describes the statistical 
correlations between nonequilibrium states. This is the ki
netic analog of Boltzmann's principle. The thermodynamic 
additive properties, that are characteristic of equilibrium 
statistical thermodynamics, are destroyed by the presence of 
statistical correlations between nonequilibrium states. It is 
only when a long enough time has elapsed, so as to have 
given the statistical correlations ample time to have worn off, 
that we regain statistical independence; the joint entropy re
duces to the sum of the entropies of the given nonequilibrium 
states. 

The gradient of the joint entropy is a measure of the 
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strength of the statistical correlations. It provides informa
tion on the rates of growth and decay of fluctuations in irre
versible thermodynamics processes that is not contained in 
the macroscopic, phenomenological laws. Furthermore, we 
show that macroscopic phenomenological laws arise from 
the sum of these two phenomena. This result is not based on 
the Gaussianity of the irreversible process. In fact, it is a 
generalization of the symmetry property in past and future 
that was found in Gaussian processes. 2. 19 

The difference and sum of the gradients of the joint 
entropy and entropy are proportional to transitional veloci
ties, which are the rates at which fluctuations grow and de
cay in irreversible thermodynamic processes, respectively. 
The sum of the transitional velocities is the thermodynamic 
flux that appears in the macroscopic phenomenological 
force-flux relations. This is to say that the macroscopic laws 
of irreversible thermodynamics arise by an exact balancing 
of the rates at which fluctuations grow and decay. 

The rate of growth of fluctuations is related to the prob
ability flux density of the forward Fokker-Planck equation 
for the transition density. Written in the form of continuity 
equation, it shows that the motion behaves as a compressible 
fluid. In the specific example of the Ornstein-Uhlenbeck 
process, the fluid compressibility is shown to be related to 
the velocity at which the distribution spreads. This factor, 
whose time rate-of-charge is proportional to the divergence 
of the transitional velocity for the growth of fluctuations, is 
seen to arise from the inherent uncertainty in position and 
velocity measurements of the Brownian particle. It is not 
possible to measure, with arbitrary precision, any two non
equilibrium states through which the system passes at suc
cessive instants in time, for it would be equivalent to a precise 
knowledge of the initial position and velocity of the Brow
nian particle. This is reflected in a nonvanishing value of the 
divergence of the rate at which fluctuations grow. 

Potential conditions that would govern the behavior of 
irreversible thermodynamic processes have been pro
posed. 20 The transitional velocity for the decay offluctu
ations is seen to satisfy a compatibility condition which ex
presses it as the gradient of the transition density. Since the 
transition density cannot be expressed solely in terms of a 
difference in a thermodynamic function of state, there can be 
no potential condition attached to the rate of decay offluctu
ations. Only in the asymptotic time limit, where all statistical 
correlations have worn away, can the rate of decay offluctu
ations be derived from a velocity potential. The compatibil
ity condition then becomes the well-known Einstein condi
tion for dynamic equilibrium which together with 
Boltzmann's principle identify the entropy as the velocity 
potential. 

II. TRANSFORMATION OF DIFFUSION PROCESSES 

Consider an unbiased Brownian motion to which we 
apply an external constraint. 21 The applied constraint can be 
an external electromotive force, a difference in temperature, 
etc. A thermodynamic force is produced which, when the 
constraint is suddenly removed, drives the system back to 
eqUilibrium. This constitutes a particular case of the trans-
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formation of one diffusion process into another, which are 
absolutely continuous with respect to one another. A neces
sary and sufficient condition for the absolute continuity of 
the probability measures is that the diffusion coefficients of 
the two processes be equal. However, the thermodynamic 
forces, which are proportional to the drift parameters of the 
diffusion processes, are different. The transformation of one 
diffusion process into another, both of which have a nonvan
ishing thermodynamic force, constitutes a generalization of 
the theory to nonequilibrium stationary states that we shall 
discuss below. 

In the case that the reference state is thermodynamic 
equilibrium, an external constraint is applied to the unbiased 
Brownian motion 

dX(t) = adW(t), 

which converts it into a biased Brownian motion 

dX(t) = LX(X(t)jdt + adW(t) 

(I) 

(2) 

after the constraint has been suddenly released. The absolute 
continuity of the two diffusion processes X (t ) and X (t ) is en
sured by the fact that they have the same variance parameter 
a. The assumption of a constant variance parameter is a sim
plification that does not lead to any loss of generality. 22 W (t ) 
is a Wiener process; that is, a process with independent in
crements. Its mathematical expectation is zero so that pro
cess (2) describes, on the average, the macroscopic phenome
nological behavior that is dictated by the laws of irreversible 
thermodynamics. Correlations between the Wiener process 
in different instants in time are equal to the time that has 
elapsed. The externally applied constraint produces a ther
modynamic force X which acts as the restoring force when 
the constraint is suddenly removed. Note that we do not 
restrict it to be a linear function of the process; that is, we do 
not make the Gaussian assumption. Finally, the transport 
coefficient L is related to the diffusion coefficient according 
to Einstein's formula L = ~~ in units where Boltzmann's 
constant is equal to unity. 

I t now follows that the probability measures f.-l wand f.-l r 
associated with diffusion processes (I) and (2), respectively, 
are absolutely continuous with respect to one another23 and 

(3) 

on any Borel set B. The density of the probability measure 
Ilrwith respect tOf.-lwisp(x) = (df.-lr/dllw)(X). A knowledge 
of p, as a functional of the sample paths of the process 
! X (t ),to<,t<,t l l enables us to evaluate the probabilities ofvar
ious events of the biased Brownian motion X (t ) in terms of 
the unbiased diffusion process X (t ). 

The transformation of diffusion processes, through the 
application of a nonequilibrium thermodynamic constraint 
which is then suddenly released, allows us to formulate a 
general principle of irreversible thermodynamics: In the 
near equilibrium regime, the fractional increment in the rela
tive distribution of the density of paths of a biased diffusion 
process with respect to the unbiased process is equal to one
half of the product of the thermodynamic force and the in
crement of the unbiased diffusion process. This is expressed 
mathematically as 
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dp/ p = !X(X (t ))dX (t ). (4) 

The factor of one-half is dictated by equilibrium statistical 
thermodynamics, which is obtained in the asymptotic time 
limit (cf. Sec. III). 

Physically speaking, the thermodynamic principle (4) 
implicates the thermodynamic force as the cause of the in
cremental change in the relative probability density of paths 
belonging to the biased diffusion process with respect to the 
unbiased diffusion process. Moreover, this principle leads to 
a generalization of Boltzmann's principle for an irreversible 
thermodynamic process [cf. Eq. (25)]. 

The generalization to thermodynamic irreversible pro
cesses occurring in far from equilibrium regimes is purely 
formal. Since a nonequilibrium stationary state is main
tained by a finite, external constraint, it is necessary to con
sider the transformation of one biased diffusion process into 
another one with the same diffusion coefficient but with a 
different thermodynamic force. In place of (4), we now have 

dp/p = ¥1X(X(t))dX(t), (4') 

where AX is the difference in the thermodynamic forces of 
the two diffusion processes. In other words, (4') considers 
two relaxation processes with different driving forces that 
evolve to different, asymptotic stationary states. Both states 
cannot correspond to thermodynamic equilibrium since this 
state is uniquely determined by the principle of microscopic 
reversibility. Hereafter we shall restrict our discussion to the 
thermodynamic principle (4) since its generalization (4') fol
lows straightforwardly. 

Assume that the thermodynamic force of the biased dif
fusion process (2) is a gradient, viz., 

(5) 

where S is the entropy of the nonequilibrium state x. From 
classical considerations, we would expect the gradient con
dition to imply that the integral of (4) be equal to the differ
ence in entropies of the given nonequilibrium states. This, 
however, is not the case since the two non equilibrium states 
are statistically correlated and consequently the transition 
between two nonequilibrium states cannot be related simply 
to the difference in a thermodynamic function of state. In 
other words, the existence of statistical correlations between 
nonequilibrium states destroys the thermodynamic additive 
property oflnp and it follows that d lnp#dp/p. 

In order to take into consideration the statistical corre
lations that exist between nonequilibrium states which are 
not well separated in time, it is necessary to use stochastic 
rather than ordinary calculus. According to the Ito chain 
rule of stochastic ca1culus24 we have that 

d Inp = dp/p - ~(dp/p)2 (6) 

which, on account of the Brownian motion phenomenon 

(7) 

tends, in probability, to 

d Inp = !Ix (X(t))dX(t) -lcrx2(X(t))dt J. (8) 

In expression (7), E denotes the mathematical expectation. 
Then integrating over the time interval [to,t I] we obtain 

2928 J. Math. Phys .• Vol. 22. No. 12. December 1981 

Inp(X (t )) = ~ r [XIX (t ))dX (t) - lcrx2(X (t ))dt l· (9) 

Expression (9) is in a somewhat inconvenient form due 
to the presence of the stochastic integral. The stochastic inte
gral can be eliminated by taking into account Ito's formula 

f' xIX (t ))dX (t) = S (X (tIl) - S (X (to)) 

- ~cr f' axX(X(t))dt. (10) 

Equation (10) defines the "stochastic" entropy which is a 
functional of the process X (t). Eliminating the stochastic in
tegral between Eqs. (9) and (10), we get 

Inp(X(t)) = HS(X(t l)) - S(X(toll - r V(X(t))dt J, (11) 

where Vis the so-called Onsager-Machlup potential 16 

V(x)=L t~2(x)+axX(x)J. (12) 

The time integral in expression (11) describes the statistical 
correlations between the endpoints of the transition. It is 
responsible for the destruction of the thermodynamic additi
vity property onn p and it makes it a path dependent quanti
ty; that is, it is a functional of the sample paths of the process 
X(t). 

III. THERMODYNAMICS OF STATISTICALLY 
CORRELATED NONEQUILIBRIUM STATES 

Using the results of the previous section, we derive the 
formula for the transition density function of the irreversible 
thermodynamic process X (t ) in terms of the process X (t ). 
Since the process is Markov, this together with the probabil
ity density function gives a complete statistical description of 
the process. This is to say that any joint probability density 
can be constructed by taking products of the transition prob
ability density which are mUltiplied by the probability densi
ty for the initial state. The latter is known from the entropy 
function by Boltzmann's principle. 

It is a peculiarity of diffusion processes that the transi
tion density is completely determined by the first two mo
ments of a conditional distribution?S In general, a distribu
tion is not determined by two of its moments unless it 
happens to be Gaussian. This is the key point in generalizing 
the Onsager-Machlup formulation2 to non-Gaussian, diffu
sion processes. 

Let Xx t (t) be the solution of the stochastic differential 
equation (2)"ior t> to with initial condition Xx",. (to) = Xo' 
The transition probability P T(B,t lixo,to) will coincide with 
the probability 91' {Xxo.,.(tl)EB J and 

PT(B,t lixo,to) = 91' {Xx •. ,.(tdEB I = f.lr(B). (13) 

Then in view of expression (3), we have 

Pr(B,t1Ixo,to) = L E {p(X(t))IXxo.,.ltill 

(14) 

where E {·IXx •. ,.ltlll denotes the conditional expectation 
with respect to the final point of the transition and X x •• /. is 
the solution of the stochastic differential equation (1) with 
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initial condition Xx.,t. (to) = xo. 
In Eq. (14),pw denotes the transition probability densi

ty of the Wiener process, 

Pw(x,tllxo,to) = {21Tcr(tl - to)}-1/2 

xexp{ - (x -xof/2cr(t l - to)}. (15) 

Equation (14) shows that there exists a density PT(X,tllxo,to) 
corresponding to the transition probability 

p T(B,t Ilxo,to) = L PT(X,t dxo,to)dx, (16) 

where 

PT(X,t dxo,to) = E {pIX (t HIXxo,t. (t tl}p w(x,t Ilxo,to). (17) 

Relation (17) is a fundamental result: The transition densities 
of the biased and unbiased diffusion processes are related by 
the conditional expectation of the relative probability densi
ty of the paths of the biased diffusion process with respect to 
the probability density of paths of the unbiased diffusion 
process. This path average, between fixed endpoints of the 
transition, transforms the transition density of the unbiased 
Brownian motion into the transition density for the biased 
Brownian motion which is our irreversible thermodynamic 
process. We now cast this path average into a more sugges
tive form. 

Introducing the expression for p, given in (11), into (17) 
yields 

PT(X,tllxo,to) = exp[US(x) - S(xo)]}·K(x,tllxo,to), (IS) 

where the transformation function or kernel K is given by 

K(X,tdxo,to)=E{exp[ -! [' V(X(t))dt lIXxo,to(t l )} 

(19) 

It will now be appreciated that (19) is the Feynman-Kac 
formula that expresses the kernel as a conditional Wiener 
integral for the potential V (X)26.1t is a well-known result that 
the evaluation of the conditional Wiener integral (19) can be 
reduced to solving the diffusion equation 

at,K =Lo;K - ~V(x)K, (20) 

which is closely allied with SchrOdinger's equation. In order 
that (19) represent a physically acceptable solution ofEq. 
(20), certain restrictions must be placed on the potential V. It 
will be shown elsewhere l7 that these restrictions are related 
to the stochastic stability of the process. 

We have previously remarked that the time integral of 
the Onsager-Machlup potential (12) describes the statistical 
correlations between nonequilibrium states. This informa
tion is likewise contained in the kernel (19). A quasithermo
dynamic quantity can be associated with the logarithm of the 
kernel in an analogous way so that Boltzmann's principle 
relates the entropy to the probability density in the asymp
totic time limit, viz., 

lnp ~ (x) = S (x) + const, 

where 

(21) 

(22) 

The change in notation -r = tl - to, emphasizes the station-
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arity of the process in the wide sense. Expression (22) states 
that in "aged" (stable) systems (i.e., those in which the statis
tical correlations between nonequilibrium states have had 
ample time to wear off), the transition density transforms 
into the limiting stationary distribution. In view of (IS), this 
means that 

lim InK (x,-rlxo) = H S (x) + S (xo)) + const. (23) 
,,~"" 

It now becomes apparent why the factor of one-half appears 
in the thermodynamic principle (4): It provides the correct 
limiting statistical distribution in the asymptotic time limit. 

The fact that the logarithm of the kernel is related to the 
sum of entropies in the asymptotic time limit implies that the 
two nonequilibrium states are statistically independent. If, 
however, a sufficient amount of time has not elapsed, the 
nonequilibrium states will be correlated statistically and InK 
will not reduce to a sum of entropies, as in (23). This fact 
motivates the definition 

(24) 

of the joint entropy q J' The properties of the joint entropy 
provide a detailed description of the statistical correlations 
between nonequilibrium states. Because it is a function of the 
endpoints of transition as well as the time interval of transi
tion, the joint entropy must be considered as a quasithermo
dynamic quantity. 

Taking the logarithm of (IS) and using (24), we obtain 
the kinetic analog of Boltzmann's principle (21), viz., 

InpT(x,'Tlxo) = HS(x) - S(xo) + U J(x,-r;xo)}. (25) 

In view of the asymptotic limit (22), it is necessary that 

lim q J(x,-r;.xo) = S (x) + S (xo) + const. (26) 

The proof that (26) is the correct asymptotic limit entails 
solving the diffusion equation (20) for the asymptotic station
ary solution. However, it is easier to use the logarithmic 
transformation (24) and solve the generalized Hamilton-Ja
cobi equation 

- a"u J + ¥- (axu J)2 + Lo;u J = V(x) (27) 

in the asymptotic time limit. The stationary solution 
(a"u J = 0) can be gleaned from the Onsager-Machlup po
tential (12); after integration we obtain 

U J(x,-r = oo;xo) = SIx) + C(xo). (2S) 

The constant of integration, C, can be determined by consid
ering the stationary solution of the "backward" diffusion 
equation (replacing tl by - to and x by xo) for the kernel 

a"K = La;.K - !V(xo)K. (29) 

Equivalently, we can consider the stationary solution of the 
"backward" Hamilton-Jacobi equation 

- a"u J + ~L (ax. U J)2 + La;. U J = V(xo)' (30) 

Now in order that the stationary solution ofEq. (30) be com
patible with the stationary solution (2S), it is necessary to set 
the constant of integration C (xo) = S (xo) + const. This then 
establishes the validity of the asymptotic limit in (26). 

Furthermore, an additional quasi thermodynamic 
quantity can be defined according to 
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(31) 

which is the conditional entropy. In the asymptotic time lim
it, it transforms into the entropy of the given nonequilibrium 
state. This is easily demonstrated by taking the asymptotic 
time limit in (31) and using (26). We then obtain 

limadx,r\xo) =S(x) + const. (32) 

Qualitatively speaking, (32) expresses the fact that a dissipa
tive system forgets its past. 

IV. GROWTH AND DECAY OF FLUCTUATIONS 

In this section, the close analogy between the forward 
diffusion equation (20) and Schrodinger's equation will be 
used to investigate the growth and decay of fluctuations in 
nonequilibrium thermodynamic processes. The important 
result of the analysis will be to show that the macroscopic, 
phenomenological laws of irreversible thermodynamics 
emerge in the exact balance between the rates of growth and 
decay of fluctuations. This generalizes previous results that 
are strictly valid for Gaussian diffusion processes which dis
playa symmetry in past and future. 2

,19 For Gaussian fluctu
ations, the "smoothest" path is a superposition of decaying 
and growing exponentials in time. 

It is a well-known property that if V(x)_oo asx- ± 00 

the eigenvalue problem 

La;tP - W(x)tP = - rtP (33) 

yields a discrete spectrum of eigenvalues rO,rl,r2"" with the 
corresponding normalized eigenfunctions tPO,tPl,tP2"" . The 
problem is then of the Sturm-Liouville type in which all 
eigenvalues are real and the sequence of eigenvalues forms 
an infinitely denumerable sequence that can be ordered in 
such a way that r n + I > r n' n = 0, I ,2, .... One advantage of 
considering Eq. (33) instead of the diffusion equation (20) is 
that the time factor e - YT has been split off. In fact, the kernel 
can be expressed as a bilinear sum of normalized eigenfunc
tions with each term being weighted by the appropriate ex
ponential time factor, viz., 27 

K (x,r\xo) = f tPn (x)tPn (xo)e - YnT. (34) 
n=O 

We have thus succeeded in expressing an integral over a 
space offunctions, (19), as a purely classical quantity in (34). 

The "ground state" eigenfunction, which is related to 
the asymptotic stationary distribution, can be found by con
sidering (12) as an equation for the thermodynamic force 
rather than the definition of the Onsager-Machlup poten
tial. Let X = ax Imp, say, and introduce it into Eq. (12). We 
then obtain 

(35) 

On comparing Eq. (33) with Eq. (35), we identify ¢-==tPQ> the 
ground state eigenfunction with eigenvalue ro = O. 

Parenthetically, we remark that the stochastic correc
tion term in the Onsager-Machlup potential (12) plays a fun
damental role in setting up the limiting stationary distribu
tion. In its absence, we would obtain a nonzero ground state 
eigenvalue, comparable to the zero-point energy of the har-
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monic oscillator. As a consequence, the eigenfunction ex
pansion of the transition density [cf. Eq, (38)] would contain 
an exponential decaying factor in time in the principal term 
of this expansion. Hence, there would be no stationary statis
tical distribution to which the transition probability density 
would approach in the asymptotic time limit. Therefore, the 
stochastic correction term, which describes the random fluc
tuations, is essential to the establishment of the stationary 
statistical distribution, In general, these random fluctu
ations work against the stability of irreversible thermody
namic processes but they are nevertheless the essential factor 
which establishes the stationary statistical distribution. 15 

Returning to the discussion of the ground state eigen
function, it now follows from the definition of the thermody
namic force, (5), that 

IntP Mx) = S (x) + const. (36) 

On comparison with Boltzmann's principle (21), we obtain 
P", (x) = tP ~ (x). We have thus defined the stationary statisti
cal distribution in terms of the ground state eigenfunction as 
well as the thermodynamic force 

(37) 

This is to say that the thermodynamic force is defined solely 
in terms of the stationary statistical distribution, or equiv
alently, in terms of the ground state eigenfunction. 

On the strength of expressions (34) and (36), the transi
tion density (I 8) can be written as the eigenfunction series 
expansion 

PT(x,r\xo) = tP~(x) + tPo(x)/tPo(xo) 

X f tP" (x)tP" (xo)e - Yn
T
. (38) 

n=1 

It is easy to see that (38) is the solution to the forward 
Fokker-Planck equation 

aTPT(x,r\xo) = - Jx}(x,r\xo)' (39) 

with an initial distribution given by 

PT(x,r!xo) = 8(x - xo) as 7---+0. 

The forward Fokker-Planck equation (39) has been written 
in the form of a continuity equation, where the transition 
probability flux density} is given by 

} = L lPTJxS - axPT L (40) 

or in terms of the eigenfunction series expansion 

}=L f tPn(xo) 
n = 1 t,6o(Xo) 

X I tP"(x)JxtPo(X) - tPo(x)axtP"(x)je - YnT. (41) 

The transition probability flux density describes transitions 
between excited (nonequilibrium) states and the ground (equi
librium) state. 

In view of (36), the transition density can be written in 
the form 

PT(x,r!xo) = tPo(x)K (x, 7 \Xo)tP 0- l(XO)' (42) 

Introducing (42) into (41) and using definition (24) results in 
(24) results in 

}(x,r\xo) = ~LpT(JXS - axaJ l. (43) 
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which has a form similar to that of a macroscopic, phenome
nological force-flux relation 

(44) 

Jis the thermodynamic flux and Eq. (44) is the average of the 
stochastic differential equation (2) in accordance with On
sager's regression hypothesis. 1.2 The relationship between 
(43) and (44) can be preceived if we define 

J(x) = u(x,rlxo) + u(x,l"lxo) 

and 

j(x,rlxo) = PT(x,rlxo)u(x,rlxo)' 

It then follows that 

u(x,rlxo) = ¥- I axs (x) - ax 0' J(x,l";xo) I, 
u(x,rlxo) = ¥- I axs (x) + axO'J(x,l";xo) I· 

(45) 

(46) 

(47) 

The separation of the thermodynamic flux J into two transi
tional velocities u and u decomposes the motion into the rates 
of growth and decay of fluctuations back to equilibrium, 
respectively. 

The two transitional velocities are mirror images of one 
another (r replacing - 1"). This is a general characteristic 
that applies to all stationary diffusion processes; it is a conse
quence of the fact that the joint entropy is an odd function of 
the time interval r. The transitional velocities are functions 
of both endpoints of transition as well as the time interval. 
The surprising fact is that their sum, the thermodynamic 
flux, is a function of the present state of the system. This has 
been achieved by an exact balance between the rates of 
growth and decay of fluctuations. In other words, on ac
count of the time-inversion symmetry, all information re
garding the initial state has no influence on the macroscopic 
evolution of irreversible thermodynamic processes. This ap
plies to non-Gaussian as well as Gaussian diffusion processes 
and generalizes our previous results. 19 We shall now illus
trate these results by taking the particular case of the Orn
stein-Uhlenbeck process in configuration space. 

If we expand the entropy in a Taylor series about equi
librium, we have 

s (x) = So - !Q ;:; IX2 + higher terms, (48) 

where Q"" is the equilibrium second moment. Neglect of the 
higher terms means that we are making the Gaussian as
sumption. In view of the definition of the thermodynamic 
force, (5), we have 

X = - Q;:; IX (49) 

which, in the Gaussian approximation, is a linear restoring 
force. The Onsager-Machlup potential (12), for the Gaus
sian diffusion process, is 

(50) 

With the Onsager-Machlup potential (50), the conditional 
Wiener integral (19) for the kernel can be evaluated. The 
path average yields an explicit expression for the kernel, 
since the integrals are Gaussian, in terms of the endpoints of 
the transition and the time interval for the transition. How
ever, a more physically intuitive method can be used that is 
based on the equality of means and modes of a Gaussian 
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process. In this way, the origins of the stochastic correction 
terms can be clearly delineated. 

The exponent in the conditional Wiener integral (19) 
can be written in the form of a thermodynamic action6,27 

.n1(x,r;xo) = [ 2"(x.x)dt =! [ L -llx2 + V(x)ldt. 

(51) 

On the strength of the identity between means and modes, a 
path average is equivalent to the requirement that the ther
modynamic action be an extremum. The Euler-Lagrange 
equation for the extreme value of the integral is 

d,ax 2" - ax!f = 0 (52) 

or 

x-rx=O, (53) 

where y = LQ ;:; I. The general solution to Eq. (53) is 

x(l") = Xo cosh yl" + (xoly) sinh yl", (54) 

where Xo and Xo are the initial position and velocity, respec
tively. Introducing (54) into (51) and integrating yields 

.n1(x,l";Xo) = W ;:; II (x2 + x~) cosh yr - 2xxoll sinh yr 

-yr. (55) 

The thermodynamic action (55) differs from its deter
ministic counterpart by the last term in (55), which is the 
stochastic correction term that makes the stochastic integral 
(10) a martingale. Moreover, we cannot simply relate the 
thermodynamic action (55) to the kernel since there is an 
inherent indeterminancy in simultaneous position and ve
locity measurements. Analogous to the Heisenberg uncer
tainty principle of quantum mechanics, we cannot deter
mine simultaneously, to any arbitrary degree of precision, 
both the velocity and position of the Brownian particle. 28 

Hence, it is necessary to express the kernel as the stochastic 
integral 

K(x,rlxo) = const exp{ - ~ [ d.n1(x,t;Xo)} 

= const I Q(r)I- 1
/2 expl - !.n1(x,r;xo) 1 ,(56) 

since by the Ito chain rule 

d.n1(x,r;xo) 

= Q ;:; II (x cosh yr - x o)/ sinh yr 1 dx 

- !yQ ;;; 11 (x2 + x~ - 2xxo cosh yr)/ sinh 2yr I dr 

+ y coth yrdr - ydr. (57) 

Moreover, since a precise knowledge of the endpoints of 
transition is equivalent to knowing the initial position and 
velo~i~y of the Brownian particle, to any arbitrary degree of 
preCISion, allowance has been made for the uncertainty in 
the final endpoint in (57).29 The last two terms in (57) are the 
stochastic correction terms which, when integrated over the 
time interval, determine the correct normalizing factor for 
the kernel, viz., 

y iT (coth yt - I)dt = In(sinh yr/eYT) 

=lnl~(I-e-2J'T)j. (58) 
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Thus, the kernel is given explicitly as 

K (x,Tixo) = ! 41TQ", sinh yTle1"71-1 /2 

X exp f - ((x 2 + x~ ) cosh yT - 2xxo)/4Q", sinh yT I, 

and from expression (18) we obtain the transition densit~9) 
PT(X,Tixo) = /21TQ", (1 - e - 21"7)) - 1/2 

Xexp! -(x-xoe-1"7)2/2Q",(I-e- 21"7)l. (60) 

Expression (60) is a well-known result; the reason for its 
detailed derivation was to display the stochastic origins of 
the normalization factor. In fact, its time rate of change is 
related to the compressibility of fluid motion of the volume 
occupied by the path trajectories in configuration space. 

The space derivative of the joint entropy is 

axC7J = 2ax InK = - Q :;; I(X cosh yT - xo)/ sinh YT. 
(61) 

Introducing expressions (49) and (61) for the two forces into 
the transitional velocity expressions (46) and (47), we obtain 

v= -LQ- 1(-T)(x-xoe1"1 (62) 

and 
u = - LQ -I(T)(X - xoe - 1"T), 

where Q (T) is the second moment of the distribution, 

Q (T) = Q", (1 - e - 21"T), 

(63) 

(64) 

and Q ( - T) is its mirror image in time ( - T replacing T). It 
will also be appreciated that the transitional velocities, (62) 
and (63), are mirror images of one another in time. The tran
sitional velocity v is the rate of growth of fluctuations from 
the most probable path for their growth, along which it van
ishes. Likewise, the transitional velocity u is the rate of decay 
of fluctuations from the most probable path for their decay 
to equilibrium. Along this path, u vanishes. On the average, 
these two effects balance one another and what is observed 
macroscopically is the thermodynamic flux J, the sum ofthe 
two transitional velocities. 

The thermodynamic force is the driving force toward 
equilibrium; it is a measure of the attraction of the equilibri
um state. On the other hand, the gradient of the joint entropy 
is a measure of the strength of statistical correlations be
tween nonequilibrium states. In the asymptotic time limit, 
the statistical correlations have worn off and we have 

(65) 
T--"oo 

The system has decayed back to equilibrium where only 
spontaneous fluctuations occur. The transitional velocity v 
vanishes and u coincides with the thermodynamic fluxJ. We 
emphasize that our stochastic analysis provides for the cor
rect limiting statistical distribution in which the x are spon
taneous fluctuations from equilibrium that obey the phe
nomenological relations (44). This is to say, that as far as the 
average behavior is concerned, it does not matter whether a 
state was the result of a spontaneous fluctuation or of an 
imposed constraint. For non-Gaussian fluctuations, these 
results remain valid with the exception that the transitional 
velocities will not vanish on the most probable path for the 
growth or decay of a fluctuation. They are then related to the 
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average, rather than the most probable, behavior of the 
course of a fluctuation. 

The transitional velocity for the growth of fluctuations 
is involved in the establishment of the asymptotic statistical 
distribution. Its nonvanishing space derivative, 

(66) 

allows us to draw the analogy with compressible fluid mo
tion. This compressible fluid motion is related to the rate at 
which the distribution spreads in time. In the case of the 
Ornstein-Uhlenbeck process, we have 

- axv = y(1 - e21"7)-1 = ~dT InQ(T), (67) 

where expression (62) has been substituted into (66). In other 
words, the stochastic uncertainty of the process is responsi
ble for the variation in the volume occupied by the path tra
jectories. Although we have shown this result only in the 
particular case of Gaussian diffusion processes, we expect 
that it should be valid in the general case since the transition 
densities of diffusion processes are determined completely 
by the first two moments. 25 

Turning to the transitional velocity for the rate of decay 
of fluctuations, we see that in order for (45) to be compatible 
with (40), u must satisfy the condition 

u(x,Tixo) = Lax hlPT(X,Tixo), (68) 

which is another way of expressing (47). On account of the 
statistical correlations between non equilibrium states, the 
transitional velocity for the rate of decay of fluctuations can
not be derived from a velocity potential. In general, no po
tential conditions can be imposed on the velocity u because 
the transition density cannot be determined in terms of a 
difference in a thermodynamic function of state. Therefore, 
the transitional velocity will be a nonlocal function with an 
explicit dependence on the time interval of transition. Re
sults, contrary to ours, have appeared in the literature. 20 

However, in the asymptotic time limit where the transi
tion density transforms into the stationary probability densi
ty (22), we have 

lim u(x,Tixo) = Lax \np 00 (x). (69) 

Relation (69) is none other than the Einstein criterion for 
dynamic equilibrium in a suspension of Brownian particles. 
In a state of dynamic equilibrium, the osmotic pressure force 
ax lnp '" is balanced by the (fluctuating) velocity acquired by 
a Brownian particle due to the action of a (virtual) external 
force. 

Relation (69), together with Boltzmann's principle (21), 
give 

(70) 

thus showing that the entropy is the velocity potential for the 
(fluctuating) velocity u in the asymptotic time limit. The in
teresting conclusion that can be drawn is that the behavior of 
the decay of a spontaneous fluctuation back to equilibrium 
depends solely on the nonequilibrium state in which it is 
found. This confirms and generalizes our previous re-
sults. 19.2K Out of a state of dynamic equilibrium, no potential 
condition can be imposed on the transitional velocity for the 
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decay of fluctuations due to the presence of statistical corre
lations that make the transition density dependent on the 
endpoints of transition as well as the time interval transition. 
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The uniqueness of the Einstein-Cartan-Sciama-Kibble theory is examined using a concomitant 
approach. The demand that the Lagrangian be a scalar density under coordinate transformations 
and a scalar under Poincare or Lorentz gauge transformations as well as be degenerate in the 
order of the Euler-Lagrange expressions determines a class of Lagrangians whose Euler
Lagrange equations reduce essentially to the Einstein vacuum field equations with cosmological 
term. 

PACS numbers: 11.IO.Np, 1l.30.Cp, 04.20.Fy 

1. INTRODUCTION 

Several attempts I have been made to show that the Ein
stein-Cartan-Sciama-Kibble theory2 is, in some sense, a 
unique theory for the Poincare group. Rigorous mathemat
ical techniques have not been applied and their use of the 
term gauge theory is somewhat questionable since their so
called gauge transformations are induced by coordinate 
transformations based on the Poincare group. 

In this paper we shall use the local formalism developed 
previously3 and so we shall restrict ourselves to the connect
ed component of the identity of the Poincare group. At each 
point of the space-time manifold M (local coordinates Xi, 

i = 1, ... ,4), we associate a group element u = u(xl We shall 
be concerned with two kinds of transformations: coordinate 
transformations, denoted by a horizontal bar, and Poincare 
gauge transformations, denoted by a prime. A coordinate 
transformation 

~ =~(xi), 

is characterized by 

Jj=axiaXi , 

with 

J=detJj#O. 

By a Poincare gauge transformation we shall mean a 10-
parameter transformation where the parameters 
uaP (Xi) = - U pa(xi) and ua(xt a, /3 = 1, ... ,4, are the coordi
nates of U(Xi) relative to a canonical chart of the first kind.4 

Under a Poincare gauge transformation the local coordi
nates of M are invariant, i.e., 

while, for example, an orthonormal tetrad (or vierbein) h ~ 
undergoes a Lorentz transformation, i.e., 

where 

if'p=exp( - uaY1]yp) , 

with 

1]yp=diag ( - 1, - 1, - 1,1) . 

With every gauge theory there arise quantities known 

as gauge connections (or gauge potentials). For the Poincare 
group these will be denoted by A fP = - A ra and A ~. The 
corresponding gauge curvatures are, by definition, 

F ap - A ap A ap C ap A !'VA yw 
i j= i.j - j,i - Ill' yev j j 

_ C ap A I:'A yw _ C ap A I:"'A Y - C ap A I:'A y 
I-l yw J) /-LV Y J J J.L Y J J' 

and 

F,aj = A f.j - A J.i - C!'v a ywA fVA yw 
- C!' uywAfAYW- C!,vUyAfvAJ - C!' uyAfAJ, 

where the C!'v ap yw' C!' ap yw , ... , and C!' a yare the structure 
constants of the Poincare group. 

Kibble2 dealt with just the Lorentz group and the 
Lagrangian 

L hh i h j FaP 
- a(3t)' 

where 

h =ideth ~i #0, 

h~ is the inverse of h~, i.e., 

h~h~=8(, 

and 

h'ph ~ = 8p, 
and Fi a P

j is the Lorentz gauge curvature given by 

F up A up _ A ap + 1] (A ~p A pw - A ap A PW) . 
I J I.} 1,1 pw I J J I 

The corresponding Euler-Lagrange equations, viz., 

Ek =~ _ ..E..(~)=O, 
(77- aA (77 aXi aA (77 

k k,/ 

and 

'flk- aL =0, 
(7 ah r 

reduce to the Einstein vacuum field equations, i.e., 

Rij=O, 

(1.1) 

where Rij is the Ricci tensor of the Christoffel symbol. It is 
interesting to note that the Lagrangian (1.1) is degenerate in 
the sense that while it is first order in the gauge connection, 
i.e., 

L = L (h ~;A ~P;A f.1) , 
the Euler-Lagrange expression E :7 is also first order in A ~P, 
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i.e., 

E~r = E~r(h f;h f.j;A fP;A f.~). 

One would expect E ~r to be second order in A fP. A similar 
degeneracy also arises in the standard approach to general 
relativity where the Lagrangian is second order in the metric 

gij =hfh 11JaP' 

with 

g=!detgij! = h 2=1=0. 

The Euler-Lagrange expression 

~ij= JL _ ~(~)+ ~(~) 
Jgij Jxk Jgij,k JXhJxk Jgij,kh ' 

for the usual Lagrangian, viz., 

L=~gR , 

where R is the curvature scalar, is just second order in g ij and 
not fourth order. Much success5 has been obtained in exam
ining the uniqueness of various theories by demanding that 
the appropriate degeneracy hold. 

In this paper we shall consider Lagrangians of the fonn 

L = L (h a;A aP;A a;A aP;A a.) , , , ',J I.j' 

which are scalar densities under a coordinate transfonna
tion, i.e., 

(1.2) 

scalars under a Poincare gauge transfonnation, i.e., 

L =L, (1.3) 

and are degenerate in the sense that the Euler-Lagrange ex
pressions E ~r and E ~ are only first order in the gauge con
nections, i.e., 

Ek - Ek (h a'h a ;A aP;A a;A aP;A a ) 
(TT - UT j, i,j i i i,j ;,j' 

and 

E k = E k (h ':·h a;A aP;A a;A aP;A a.) 
a u " '.J I I I,) I,}· 

It will be shown that with these conditions L is restricted to 
being 

L = a l~jkhEapywF; aPjFk yw h + a2~jkh1Jay 1Jpw F; aPjFk yw h 

+ blhh ~hjv rfY1JvwEapywF; aPj + b2hh ~h~F; aPj + ch , 

where ~jkh and EaPYw are four-dimensional Levi-Civita sym
bols and ai' a2 , bl' b2, and c are arbitrary constants. Notice 
that there are no tenns involving F; aj • It is a simple matter to 
show that the same Lagrangian is obtained if we are con
cerned with just the Lorentz group. In order to complete the 
discussion we find that the Euler-Lagrange equations corre
sponding to this Lagrangian reduce essentially to the Ein
stein vacuum field equations with cosmological tenn, i.e., 

b2Rij = !cgij' 

provided that b l and b2 are not both zero. 

2. PRELIMINARIES 

The Poincare group is the semidirect product of the 
Lorentz group with R4

, i.e., the elements u and v of the Poin-
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care group consist of the ordered pairs (ap ,aa) and (b p ,b a) 
with multiplication, w = uv, defined by 

(ap,aa).(b~,bP) = (apb~,apbP + aa). 

To obtain the structure constants and the adjoint representa
tion3 we must set up a canonical chart of the first kind.4 It 
can be shown6 that such a chart is given by 

A 

ap = exp(uaY1Jyp)=.2"P , 

and 

aa=["uP, 

where 

1 1 [a ~a + _ uaY1J + _ uaY1J uwv1J + .... 
P P 2! YP 3! ycu vp 

This is arrived at by first finding a basis for the left invariant 
vector fields ofthe semidirect product ofGI(4,R) with R4 and 
then calculating their integral curves starting from the iden
tity, thereby detennining the exponential map. We then re
strict this to the subgroup, the Poincare group. It should be 
noted that a'J is the inverse of the Lorentz transfonnation 
matrix .2"p. Also, since .2"" is a Lorentz matrix it leaves 1J ap 
invariant, i.e., 

.2" a .2" P -p-1Jap v - 1Jp-v , 

and thus the Poincare gauge transfonnation law for 1JaP can 
be expressed as either 

, 
.2"~.2"; 1Jp-v = 1Jap , 

or 

1JaP = 1Jap . 

As shown in Ref. 3 the inverse of the adjoint representa
tion is given by 

TaP(u) Jw
aP I ' 

yw JvYw v~ e 

where waP and wa are the coordinates of 

w=u-Ivu. 

We thus have 

T~~(u) = .2"[y(u).2"~ ](u) , T~P(u) = 0 , 

T~w(u) = .2"[y(u)1Jw]p[~(u)uP-, and T~(u) = .2"~(u), 

where square brackets around indices denotes antisymmetri
zation. Since the gauge curvatures transfonn by means of the 
inverse of the adjoint representation under a gauge transfor
mation,3 we have 

, 
F ap _ efta eftPFYw 

i j - oZ yoZ OJ i j' (2.1) 

and 
, 
Fa -.2"a [P P-FYw + UJaFY ; j - y1JwP p- u ; j ..L Y ; j . (2.2) 

Relative to our chosen chart, the structure constants 
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ap _ aT~~(u) I 
Cf.lV Y'" = Y'" , etc., 

au u=e 

are thus 

Cf.lyapy", = - !T/PT(8~~~: - 8;t~:), 
caP - C aP-o 

J.l yw-- yet} 1-1.-' 

C ap -0 C a -0 
JL Y -, {tv yw - , 

Cf.l \", = - CYWaf.l = - ~8~:T/Tf.l ' 

and 

Cf.l a y =0. 

The gauge curvatures then reduce to 

Fi aB. = A aB - A c:B + '>1 (A c:y A f3w _ A C:YA f3W ) 
J lJ J.I ., y(t} I} J I , 

and 

Fi aj = A rj - A},i + T/y",(A rA j'" - A fA fW) . 

Note that FtP
j is the same here as for the Lorentz group. We 

are now ready to demand that our Lagrangian be degenerate. 

3. DEGENERACY 

To simplify our calculations we shall use upper case 
Greek letters to represent all 10 gauge indices, so that, for 
example, A f ~ = 1, ... ,10, signifies the ordered pair 
(A ff3 ,A n We now seek all Lagrangians 

L = L (h f;A f;A fj) , 

which satisfy the transformation laws (1.2) and (1.3) and 
which are degenerate in the sense that the Euler-Lagrange 
expression 

E k- aL a ( aL ) 
Z = aA Z - axl aA I ' k k,l 

is independent of A 1ih' i.e., 

aE~ 
--=0. 
aA 1ih 

Expansion of(3.1) yields 

if-L hY-
ah yaA I a,l a k,l 

a2
L An 

aA n aA Z a,bl . 
a,b k,l 

Hence, the condition (3,2) reduces to 

aZL _a2L 

aA 1jaA t.h - aA th aA L ' 

(3.1) 

(3.2) 

which, when combined with the in variance identity7 corre
sponding to (4.5) in Ref. 3, viz" 

aL aL 
--,1- = - --,1-, 
aA i,j aAj,i 

yields that a 2 L I aA t jaA t.h is totally antisymmetric in its 
lower case Latin indices. Therefore, 
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and hence 

aZL 
----- = ~jkhLAZ , 
aA t jaA t.h 

(3.3) 

where ~jkh is the four-dimensional Levi-Civita symbol and 

L AZ = LAZ(h f;A ~) . 

By virtue of the transformation laws of L AI inherited from 
a 2 L I aA t jaA t.h we obtain the invariance identity corre
sponding to (4.6) in Ref. 3, viz., 

aLAZlaA ?=O, 
and thus 

L AZ = LAZ(h f) . 

Integration of (3.3) with respect to A t.h then yields 

~ = ~jkhL A I +!l'ij (h a;A Il) aA A . AI k,h A k k' 
',J 

which can be expressed in the more useful form 

~ =l~jkhL F..r +Lij(ha;All) 
aA A . 2 AI k h A k k' 

',J 

where L ~ now inherits the transformation laws of 

(3.4) 

aL faA 1j. The in variance identity for L ~ corresponding to 
(4.6) in Ref. 3 demands that 

L~ =L~(h~). 

When (3.4) is integrated with respect toA tj it is found thatL 
can be expressed as 

ifkh A I ij A u L = A~ LAZFi jFk h + ~AFi j + Lo(hk) . 

Upon absorbing the various constants and returning to low
er case Greek indices, we have established the following 
theorem. 

Theorem 3.1: A necessary condition for a Lagrangian of 
the form 

L = L (h a;A uP;A a;A af3;A a .) 
I I I I,} I.}' 

which is a scalar density under a coordinate transformation 
and a scalar under a Poincare gauge transformation to be 
degenerate in the sense that the Euler-Lagrange expressions 

E ~T and E ~ satisfy 

E~T = E~T(h f;h rj;A ff3;A f;A r1;A rj)' 

and 

E k = E k (h a·h a.;A uB;A a;A uf3;A a.) 
a U " I,} I I I.) I,J' 

is that L must be of the general form 

L - ~jkhL F af3 F yw + ~jkhL F af3 F y - af3ywijkh af3yijkh 

+ ~jkhL F a F f3 + L ij F af3 + L ij F a + L 
a/3ijkh a/3ij aij 0' 

where the quantities L aBy," , L uf3y ,., "Lo depend on h 7 alone, 
inherit their transformation laws from L and its derivatives 
and have the symmetry properties 

L af3Yl<J = - L f3ayw = - L af3wy , Ly,"aB = L af3Yf<,' 

L(Jar = - Laf3y ,L(Ja = L af3 , L Zf3 = - L %a = - L~f3' 

and L~ = -LZ ' 

Remark: The above argument can be extended to the 
case where any m-dimensional Lie group is used and h 7 is 
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replaced by any quantity pA,A = 1, ... ,M (but not its deriva
tives), as long as the gauge transformation law for pA is of the 
form 

, 
pA = T~(uIloB, ~ = 1, ... ,m. 

If the dimension of the base manifold is n = 4 and the 
Lagrangian 

L = L (pA;A f;A tj)' 

is required to have the desired degeneracy then we must be 
able to express L as 

L = ~jkhLAI(pA )FiAjFk Ih + L ~ (pA )FiAj + LO(pA). 

For the case we are concerned with, viz., the Poincare 
group, we shall now determine the structure of 
L a{3rw' L a{3r'''',Lo by exploiting their symmetry properties 
and transformation laws. First, recall that 

, 
h- a Jjh a h a U'ah (3 
j= ii' i=-Zp it 

and 

Thus 

u=e 

and 

=0. aur u ~ e 

Expansion of(1.2) while noting the transformation laws of 
the gauge curvatures under a coordinate transformation 
yields 

,-ijkhL- F a{3 F rw + ,-,jkhL- P a{3 F r 
oIC' a{3rw i j k h oIC' a{3r i j k h 

+ J€ijkhL pap{3 +Lij rJ bpa{3 a{3'Jkh a{3/Job 

+ LijJoJ bp a +L 
aijab 0 (3.5) 

- J(-ijkhL F a{3 P rw + -ijkhL F a{3 F r 
- C' a{3rw i j k h C' a{3r i j k h 

+ -ijkhL P a F (3 + L ij P a{3 + L ijp a + L ) 
C' a{3 i j k h a{3 i j a i j 0 • 

In order to determine the gauge transformation laws of the 
undetermined quantities we expand (1.3), while making use 
of (2.1) and (2.2), and obtain 

, 
-ijkh L U'a (.P{3 (.Pr U'wF I"V F UT 
r: . a{3yw oZ. 11 oZ. v -Z (7 -Z r i j k h 

, 
+ 

-ijkh L (".Pa (.P{3 (.PrF I"V p a 
C' a{3r..Ll"..L v ..L ui jkh 

, 
+ -ijkh L U'a I w '" U'{3 I r ()F I"V P aT 

C' a{3..L I"'T/vw "'u ..L u'T/Tr ()U i j k h 

, 

- -ijkhL P a{3 F rw + .jjkhL p a{3 F r 
- C' aPrw i j k h C' aPr i j k h 

+ .JjkhL F a F (3 + L ij F a{3 + L ij F a + L 
C' ap i j k h a{3 i j a i j 0 • 

We begin by observing from (3.5) and (3.6) that 

Eo = JLo and L 0 = Lo . 

Consider instead the quantity 

Bo=LoIh , 

which then has the transformation laws 

Do = Bo, 

and 

Bo=Bo· 

(3.7) 

(3.8) 

Differentiationof(3.7) with respect toJ~, followed by evalu
ation at the identity transformation, J ~ = 5~, yields 

When the above is multiplied by h ~ it is found that 

aBoIah~ =0. 

We have actually established the following lemma. 
Lemma 3.1: If a quantity 

B=B(hf) 

is a scalar under a coordinate transformation, i.e., 

B=B, 
then 

aB/ahf=O. 

In view of (3.8) we then have the following corollary. 
Corollary 3.1: If a quantity 

Bo =Bo(hf) 

is a scalar under both coordinate and Poincare gauge trans
formations, i.e., 

Do = Bo and B 0 = Bo , 

then 

Bo=c, 

where c is an arbitrary constant. 

Thus we must have that 

Lo =ch, 

where c is an arbitrary constant. 
Next we shall determine L a {3' which, according to (3.5) 

and (3.6), transforms as 

(3.9) 

and 
, 

+ 2-ijkh L (.Pa I w '" U'{3F I"V F U 
C' a{3..L I" 'T/vw "'u ..L U i j k h (3.6) L pv.!f~.!fp = LI"{3 . (3.10) 
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By virtue of (3.9) and Lemma 3.1 we see that 

aLa(3lah T=O. 

When (3.10) is differentiated with respect to ua
'" and then 

evaluated at u = e, we obtain 

- !Lp(38;.~ 1]()1' - !Ll'v8~~ 1]()(3 = 0 . 

Therefore, 

L a(31]",1' - L"'(31]al' + Ll'a 1]"'(3 - LI'''' 1]a(3 = 0 . 

When this is multiplied by 1]"'1' it is found that 

3La(3 +L(3a = (1]"'I'L I'",)1]a(3' 

However, the quantity 1]"'I'LI'''' satisfies the hypothesis of 
Corollary 3.1 and thus 

3La(3 + L(3a = b1]a(3 , 

where b is an arbitrary constant. Antisymmetrization of the 
above leads to 

L[a(3 J = 0, 

and hence 

(3.11) 

L a(3 = d1]a(3 , (3.12) 

where d is an arbitrary constant. Note that (3.11) was ob
tained merely as a consequence of the transformation laws 
even though the structure of L also demanded it. We have 
thus established the following lemma. 

Lemma 3.2: If a quantity 

B a(3 = Ba(3(h T) , 

has the transformation laws 

and 
, 

B pv.5t'~.5t'p = BI'(3 , 

then 

B a(3 = b1]a(3 , 

where b is an arbitrary constant. 
In order to calculate La(3y we must first establish the 

following lemma. 
Lemma 3.3: If a quantity 

Ba =Ba(hT) 

has the transformation laws 

(3.13) 

and 

(3.14) 

then 

Ba=O. 
Proof Since (3.13) holds, Lemma 3.1 implies that 

Differentiation of(3.14) with respect to ua
'" followed by eval

uation at u = e yields 

- VJplY;: 1]()1' = 0 , 
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and thus, 

Ba 1]",1' - B", 1]al' = 0 . 

When (3.15) is multiplied by 1]"'1' we obtain 

3Ba = 0, 

which establishes the lemma. 

(3.15) 

From (3.5), (3.6), and (3.12) we see that La(3y transforms 
as 

(3.16) 

and 
, 

L pva.5t'~ .5t'p.5t'; + 2d1]Ta .5t'11' 1](3 Jj~u'" .5t'; 
=LI'(3y' (3.17) 

In view of (3.16) and Lemma 3.1 we have that 

aLa(3ylah f=O . 

Differentiation of (3.17) with respect to ua and evaluation at 
u = e leads to 

d (1]I'Y 1](3a - 1](3y 1]l'a) = 0 . 

When this is multiplied by ifY we obtain 

3d1](3a = 0, 

and hence 

d=O, 

which implies that 

L a(3=O. 

Now (3.17) reduces to 
, 

L pva.5t'~.5t'p.5t'; = L 1l(3Y . (3.18) 

When (3.18) is differentiated with respect to ua
'" and then 

evaluated at u = e, it is found that 
_IT "o() _IT "v() _IT "<Y() =0 

'r"'p(3yU'a'" 1]()1' 'r"'l'vyUa", 1]()(3 2'-'1'(3aUa'" 1]()y . 

Therefore, 

L a(3y 1]",1' - L "'(3y 1] a!, + L I'ay 1]"'(3 - L I''''y 1] a(3 

+ LI'(3a 1]",y - LI'(3'" 1]ay = 0 , (3.19) 

which, when multiplied by 1]"'1', yields 

3La(3y + L(3ay + Ly(3a = (1]"'I'L I'",y)1]a(3 + (1]"'I'L I'(3",)1]ay . 

However, Lemma 3.3 implies that both 1]"'I'LI''''y and 
1]"'I'LI'(3'" vanish and thus 

(3.20) 

Weare now forced to actually use a symmetry property of 
L a(3Y' viz., 

L(3ay = - La(3y . 

This reduces (3.20) to 

La(3y = - !LY(3a , 

which, when applied twice, yields 

La(3y = !La(3y , 

and therefore 

La(3y = O. 
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We have thus established the following lemma. 

Lemma 3.4: If a quantity 

Ba/3y = Ba/3y(h f) 

has the antisymmetry 

B/3ay = - Ba/3Y 

and the transformation laws 

Ba/3y = B a/3y 

and 
, 
Bpvu.!/~.!/P.!/~ =B/l-/3Y' 

then 

Ba/3Y~O . 

For the quantity L a/3Yw the transformation laws ob
tained from (3.5) and (3.6) are 

and 
, 

L pvur.!/~ .!/p.!/~.!/: = L/l-/3yw . 

From (3.21) and Lemma 3.1 we see that 

aLa/3y.,! ah f=O . 

(3.21) 

(3.22) 

When (3.22) is differentiated with respect to ua
'" and then 

evaluated at u = e, we obtain 

- !LP/3Y<u~: TJIJ/l- - !L/l-vywl5~: TJIJ/3 

- !L/l-/3uwl5~ TJlJy - !L/l-/3yr15:: TJlJw = 0 . 

Therefore, 

L a/3yw TJ"'/l- - L",/3yw TJa/l- + L/l-aYw TJ"'/3 - L/l-"'Yw TJa/3 

+ L/l-/3aw TJ",y - L/l-/3",w TJay + L/l-/3ya TJ<J,w - L/l-/3y", TJaw = 0, 

which, when multiplied by TJ"'/l-, yields 

3La/3yw + L/3ayw + L y/3aw + L w/3ya 

(3.23) 

= (TJ"'/l-L/l-",yw)TJa/3 + (TJ"'/l-L/l-/3",w)TJay + (TJ"'/l-L/l-/3y",)TJaw . 
(3.24) 

By making use of the antisymmetry properties 

and Lemma 3.2 it is found that 

and 

TJ"'/l-L/l-"'YW = 0, 

TJ"'/l-L/l-/3",w = aTJ/3w , 

(3.25) 

(3.26) 

TJ"'/l-L/l-/3y", = - aTJ/3y , (3.27) 

where a is an arbitrary constant. Thus (3.24) reduces to 

3La/3yw + L/3ayw + L y/3aw + L w/3ya 

= a(TJ/3w TJay - TJ/3y TJaw) . (3.28) 

When we multiply (3.23) by TJ"'y, while noting (3.25H3.27), 
we obtain 

L a/3/l-'u + L/l-a/3w + 3L/l-/3aw + L/l-/3wa 

= a(TJf3w TJa/l- - TJ/l-w TJa/3) . 
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(3.29) 

Replacing a with rand J-L with a in (3.29) results in 

3La/3yw + L a/3wy + L y/3aw + Larf3w 

= a(TJ/3w TJya - TJaw TJY/3) , 

which we then subtract from (3.28). With the use of(3.25) we 
are then able to conclude that 

(3.30) 

By virtue of both (3.25) and (3.30) total antisymmetrization 
of L a/3yw can be expressed as 

Furthermore, since lower case Greek indices range from 1 to 
4, L(a/3y,u I must be proportional to a Levi-Civita symbol, i.e., 

L(a/3Yw I = B€a/3yw , 

where B is a scalar under both coordinate and Poincare 
gauge transformations in view of the transformation laws of 
€a/3yw' Corollary 3.1 restricts B to being a constant. Thus 

L/3ayw + L Y/3aw + L w/3ya = b€a/3yw , 

where b is an arbitrary constant. Therefore, upon relabeling 
constants, (3.28) now becomes 

L a/3yw = a l €a/3yw + !a2(TJf3w TJay - TJ/3y TJaw) , 

where a I and a2 are arbitrary constants. We have thus estab
lished the following lemma. 

Lemma 3.5: If a quantity 

Ba/3Yw = Ba/3yw(hf) 

has the antisymmetries 

B a/3yw = - B /3ayw = - B af3wy 

and the transformation laws 

Ba/3YW = B a/3yw 

and 
, 

B pvur.!/~.!/P:/~.!/: = B/l-/3yw , 

then 

Ba/3yw = a€a/3yw + b (TJay TJ/3w - TJa,u TJ/3y) , 

where a and b are arbitrary constants. 
It is a relatively simple matter to determine the remain

ing quantities. The transformation laws for L ~ arising from 
(3.5) and (3.6) are 

LijrJb=JLab 
a I ) a 

and 

If we consider, instead, the quantity 

D - 1 Lijh/l-h v a/3y= h y j j TJ/l-a TJv/3 ' 

we can apply Lemma 3.4 to Da/3y since Da/3y satisfies 

D/3ay = - Da/3y 

and has the transformation laws 

Da/3Y = D a/3y 
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and 

Hence 

Da/3y=O, 

and thus 

L~=O. 
From (3.5) and (3.6) we obtain the transformation laws 

for L ~/3' viz., 

L'i J~Jb = JL ab a/3 I J a/3 

and 
, 

L ij (Pp ifv - L ij 
pv.z I'.z /3 - 1'/3' 

Lemma 3.5 can then be applied to the quantity 

D - 1 Lij hl'h v a/3y,,, = h a/3 i /'ll'yrJvw' 

since it satisfies the required antisymmetries and transfor
mation laws. Therefore L ~/3 can be expressed as 

L ~/3 = hh ~h~rJI'YrJvW[bIEa/3Yw + !b2(rJa yrJ/3w -rJawrJ/3y)] , 

where b l and b2 are arbitrary constants. This reduces to 

L ij - b hh i h j,.,)l-Y vw a/3 - I I' v'l rJ Ea/3yw 
+ !b2h (h ~h~ - h ~h~). 

We have thus established the following theorem. 
Theorem 3.2: If a Lagrangian of the form 

L = L (h f;A f/3;A f;A f.1;A f.j) 

which has the transformation laws 

L=JL 

and 

L =L 

is degenerate in the sense that 

E k = E k (h ~'h a.;A a/3;A a;A a/3;A a.) 
UT UT " l,j I J E.} I, J 

and 

then L is restricted to being 

L -ijkh F a/3 F yw + ijkh F a/3 F yw = alc Ea/3yw i j k h a2E rJayrJ/3w i j k h 

+ b hh i hj,.,)l-Y vw F a/3 
I I' v'l rJ Ea/3yw i j 

+ b2hh ~h~Fia/3j + ch, 

where ai' a2, bl> b2, and c are arbitrary constants. 
Remark 1: If we look at the full Poincare group, rather 

than just the connected component of the identity, then the 
Levi-Civita symbol Ea/3yw is no longer invariant under a 
Poincare gauge transformation, but satisfies 

Therefore, if we demand that the Lagrangian be invariant 
under the full Poincare group, then L must take the form 

L = aEijkhrJUyrJ/3wFiu/3jFk YWh + bhh ~h~Fia/3j + ch, 
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where a, b, and c are arbitrary constants. 
Remark 2: The Lagrangian depends only on A f/3 and 

A f.1. There are no terms involving A f and A I.j. Thus we are 
actually dealing with just the Lorentz group. This situation 
arises from the fact that the transformation law for h f de
pends on only uu/3 and not UU. 

4. THE FIELD EQUATIONS 

We begin our calculations by determining which of the 
terms in the Lagrangian are divergences since they will have 
identically vanishing Euler-Lagrange equations. To do so, 
recall that it is possible to express our Lagrangian in the form 

L = ~jkhLAIF/jFk Ih + L ~ (h ~)F/j + Lo(h~). 
The first term, viz., 

_ 'jkh A I 
L1=E" LAIFi jFk h , (4.1) 

can easily be shown to be a divergence as follows. The Poin
care gauge transformation law for L AI , viz., 

, 
L AIT~T~ =Lnr , 

where T~ is the inverse of the adjoint representation, can be 
differentiated with respect to u'/' and evaluated at u = e to 
obtain the invariance identity 

LArCn
A,/, + LnACr

A,/, =0. (4.2) 

Expansion of (4.1) in terms of the definition of Fi Aj leads to 

LI = 4EijkhL A A.A I + ~jkhL A A.C I A [JA r AI I.J k,h AI I,J n r k h 

+ EijkhL C A C I A '/' A ~ A [JA r AI '/' ~ [J r I J k h' 

which, by using the antisymmetry of Eijkh in each term and 
(4,2) in the last term, becomes 

LI = (4EijkhL AIA 1A th),j + ¥JkhLAIA ~jC[JIrA ~A r 
ijkh A I [J r - ¥ LAIA k,jCn rA i A h 

-ijkhL C A C I A '/'A ~A [JA r 
- C" A,/, I [~ [J r J i j k h' (4,3) 

By relabeling the indices in the second term and using (4,2) in 
the third term of(4.3), while noting that the lastterm vanish
es by virtue of the Jacobi identity, 3 we find that 

"kh A I [J r + ¥,J L[JIA kJCA rA i A h 

which, by virtue of the anti symmetry of Eijkh and C A I r, be
comes the divergence 

LI = (4EijkhL AIA 1A th + ¥ijkhLflICA IrA ;JA:A [),j . 

Therefore, we need only calculate the Euler-Lagrange equa
tions for 

L = blhh ~hjvrJI'YrJv("ea/3y(Jia/3j + b2hh ~h~Fia/3j + ch . 

(4.4) 

By virtue of the invariance identity corresponding to (4.6) in 
Ref. 3, viz" 

~ + aL C a/3 A yw - 0 
--Y(J)uTI- , 

aA'1/ aA l.f 
(4.5) 

we can rewrite the Euler-Lagrange expression E ~T as 
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k BL C a{3 A r'" _ ~ . (4 6) E = - -- rill crT I J' A aT ,I • 
(TT BA I.~ f1 k,1 

The invariance identity (4.5) also tells us that any Lagran
gian of the form 

L = L (h f;A fP;A r~) , 
must be of the form 

L = L (h a·FaP.) l' t J 

and 

~=2~. aA ap BpaP 
It} , J 

Hence (4.6) can be expressed as 

E k BL 
aT = - 2 BP

k 
aT

l 
III , 

where a double vertical ,bar signifies the double covariant 
derivative3

•
B using the Christoffel symbol L ik J as the linear 

connection and A fP as the Lorentz gauge connection. Thus 
for the Lagrangian (4.4) we have that 

E!T = - 2b l h (h r"h ~ Illl/rtY.rt"'€ary(" - 2b2h (h tah ~ 1)11/ • 

Hence the field equations reduce to 

b K k Jl.'( VM + b K k - 0 
I I'V 1j 1j €aTYM Z aT - , (4.7) 

where 

K!.,.= - 2h (h ra h ~Ilul 
is the Euler-Lagrange expression for the Kibble Lagrangian 

L hh i hjpaP = apij' 

When (4.7) is multiplied by 1jaa1jTP€p,;a{3 it is found that 

- 4b IK;,; + bzK!.,. 1jU"1jTP€ptf>ap = 0 , (4.8) 

where we have made use of the identities 

and 
....aPI'V _ 21: Jl.V 
t: €p¢aP - U p¢ . 

Notice that (4.7) and (4.8) can be expressed as the matrix 
equation 

[
bl b2][K~v1jI'Y~VW€UTYW] = [ 0 ], 
b2 - 4b l KaT 0 

which has only the trivial solution, viz., 

K k ,..py vw - 0 Jl.v'f 1j €aryw - , 

and 

K!.,. =0, 

provided 

[
b l b2] 2 2 

det b
z 

_ 4b
l 
= - 4b l - bz ¥O. 

Therefore, as long as b I and b2 are not both zero, we recover 
the Kibble field equations 

which impliesz that 
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h~v =0. 

This equation can be used to solve for A fP in terms of h f and 
h ri' however, greater use is made of the subsequently van
ishing commutator 

h a ha - R a h" +hypaP -0 ilVk - il/kj= - i jk a i j k1jPY - , 

where Ri ajk is the Riemann curvature tensor. Thus we can 
solve for Pi aPj as 

F aP - R hlha,.,p" uP 
i j - - laij p a" 1j . (4.9) 

The remaining Euler-Lagrange expression for 

L -hh i hi,..py vw F ap 
2= I' v'f 1j €apyw i j' 

is 

~~(L2) = hh ~h ~hZrtr1jv"'€apr",PiaPi 

- 2hh ~h ~hZrtr1jvw€aPrwFiaPi . 

In view of (4.9) this becomes 

~~(L2) = - hh ~h ~hZh ~h ~rtr1jvwifa1jaf3€aPrwRlaij 

+ 2hh ~h ~hZh ~h ~1fr1jvw~1jaP€aprwRlaij , 

which vanishes by virtue of the identity 

Rr/aliIJl=O. 
For the Lagrangian (4.4) the field equation 

~~ =0 

thus reduces to the Einstein vacuum field equations with 
cosmological term, i.e., 

b~ij = !cgij' 

We have thus established the following theorem. 
Theorem 4. 1: For a Lagrangian of the form 

L = L (h ";A aP;A a;A '!-P;A a .) 
J I J I,) I,) 

which has the transformation laws 

L=JL 

and 

L =L 

and which is degenerate in the sense that 

Ek = Ek (h a·h a.;A~;A a;A '?-/3;A a.) 
err (IT " t,j I I 1,J 1.1 

and 

Ek = Ek(h '!-·h C;.;A~;A a;A '?-/3;A a.) 
q q " ld I I 1,J t,j' 

the Euler-Lagrange equations, viz., 

E!.. =0, E! =0, 

and 

~~ =0, 

imply the Einstein vacuum field equations with cosmologi
cal term 

b2R ij = !cgij , 

where bz and c are arbitrary constants. 

5. DISCUSSION 

We have just seen that the properties which we regard 
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as noteworthy for the Kibble Lagrangian 

L = hh j hJp' paP. 
a I J 

are not unique to this Lagrangian. Nonetheless these proper
ties do determine a class of Lagrangians whose field equa
tions give rise to the Einstein vacuum field equations with 
cosmological term. Since Poincare gauge invariance arises 
here only as a consequence of Lorentz gauge invariance, it 
seems more fitting to call gravity a Lorentz gauge theory. A 
Poincare gauge theory should make use of all of the Poincare 
group, not just a subgroup. 

In view of the success of this approach, an investigation 
of gauge theories which exhibit invariance under other Lie 
groups should prove valuable. 
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We show that a theorem by S. Solomon on quasi-abelian gauge fields extends to a full 
classification of ambiguous potentials for any general non-abelian field which exhibits this 
phenomenon. A characterization for such fields is given, as well as a criterion that distinguishes in 
a straightforward manner between potentials that are at least locally gauge-equivalent to a fixed 
canonical potential and those which are not equivalent to that potential anywhere inside a 
neighborhood of space-time. Our results are obtained for R4 with an arbitrary non-degenerate 
metric, but can be easily extended to any space-time. Three examples (due to S. Deser and F. 
Wilczek, S. Coleman, and T. T. Wu and C. N. Yang) are discussed in order to clarify our analysis. 

PACS numbers: 11.lO.Np, 11.30.Jw, 02.4D.Vh 

I. INTRODUCTION 

In a recent paper Solomon 1 discussed the geometrical 
structure of quasi-abelian SU(2) gauge fields. An abelian 
SU(2) field can be written in the form 

F/Jv(x) =f/Jv(x)~ (1.1) 

in suitable local coordinate systems in R4, where ~ is one of 
the SU(2) generators. This field is said to be (globally) quasi
abelian if det{f/Jv) = 0 on the whole ofR4. 

Solomon showed that such fields are basically exten
sions to R4 of gauge fields defined (locally at least) on a two
dimensional submanifold ofR4. Such fields present also po
tential ambiguities, that is, they can be derived from an infi
nite family of potentials which are not all gauge equivalent. 

We give in the present paper a stronger formulation for 
Solomon's result: we show that quasi-abelian arbitrary 
gauge fields have locally a very simple constant canonical 
expression in R4, which is obtained as a consequence of the 
Darboux theorem.2 All other results in Solomon's paper are 
obtained out of this canonical form for a quasi-abelian field. 
Our discussion centers around finite-dimensional semi-sim
ple gauge groups, a class which includes the symmetry 
groups in practically all current gauge-theoretical models. 

Some aspects of quasi-abelian fields can be generalized 
to include a large class of non-abelian gauge fields, of which 
an important example is given by Coleman's plane wave so
lutions for the gauge equations.3 

In Sec. 2 of this paper we state and prove our generaliza
tion of Solomon's theorem: quasi-abelian gauge fields can be 
locally represented in a suitable coordinate system by a Lie
algebra-valued two-form which has a single constant com
ponent. A complete classification is also given for its poten
tials, which are infinite in number. They are partitioned into 
two mutually exclusive classes. The first one is generated in a 
very precise sense by the field's stability group, and consists 
of all potentials which are gauge equivalent to a fixed canoni
cal potential. The second class consists of all potentials 
which are not equivalent to any element of the previous 
class. They are also classified with the help of the algebraic 

_I Partially supported by MEC and CNPq (Brazill. 

objects involved, and are given a simple characterization. 
Global smoothness is also an important difference between 
the two classes. Those of which are equivalent to the canoni
cal potential can be always smoothed out over the manifold; 
those of which are not can be made smooth only in some 
specific cases. 

Quasi-abelian fields are shown to be particular exam
ples of what is here called a gauge field with a type I degener
acy. In Sec. 3 of this paper we show that the basic features of 
quasi-Abelian fields are easily generalized to the more gener
al, non-abelian, class of type I fields. We again have two non
intersecting families of potentials which are generated and 
classified as in the quasi-abelian situation. 

The main differences between the two situations are 
that we lose the simple form for the field when we pass over 
to the non-abelian case, and that the set of potentials equiv
alent to the canonical potential may have just one element, 
the canonical potential itself. Here we reach the most 
anomalous situation of all: a field which has an infinite sys
tem of potentials, none of which can be gauge-transformed 
over any of the others. An example of this phenomenon is 
given by Coleman's plane waves. 

At the end of Sec. 3 we show that our previous results 
lead very naturally to a general characterization for fields 
with potential ambiguities: these are fields which have a type 
I or type II degeneracy, or, more generally, for which we 
have the vanishing of det * Yon a nonvoid open set in R4. 
* Y is a familiar matrix in gauge field theory, described be
low. Since its degeneracy was already known to be a neces
sary condition for the existence of potential ambiguities in a 
gauge field, the results of this section show it to be both 
necessary and sufficient. 

Finally, in Sec. 4 we discuss three examples of gauge 
field copies in the light of the previous analysis. These are the 
Oeser and Wilczek infinite family of potentials for a quasi
abelian field, 4 Coleman's plane waves,3 and the example that 
started it all, the given one by Wu and Yang.5 

Our discussion shows that potential ambiguity is a fea
ture of non-abelian gauge fields which can be related to other 
aspects of such objects6 but whose specific meaning is stilI 
unclear. 
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2. SOLOMON'S THEOREM 

In what follows we work with objects defined on R4. 
Greek indices range from 1 to 4 (or from ° to 3), while the 
latin indices i,j, k, are used to designate coordinate systems 
in a three submanifold of R4. Also a "0" subscript will be 
sometimes used to single out a particular coordinate direc
tion in R4

, without any reference to a specific metric signa
ture or physical interpretation, such as the identification of 
that particular coordinate with "time". 

We also suppose that R4 is endowed with a nondegener
ate Minkowskian or Euclidean metric tensor. This has the 
purpose of simplifying our notation, by allowing some more 
ease in the manipulation of vectorial indices. It is, however, 
easily verified that this particular nondegenerate metric has 
no bearing on our results. 

We have as gauge group G a semi-simple finite-dimen
sional Lie group with Lie algebra L (G), which is spanned by 
theEa, which satisfy [E a,E b] _ = cabcEc. a, b, c, d··· denote 
Lie algebra components. The group of gauge transforma
tions [1 is formed by smooth mappings U:R4~G; its relation 
to the gauge group is discussed in Sec. 3. We will also consid
er some of its subgroups. 

All objects are supposed to be smooth unless otherwise 
specified, and all R4-defined numerical functions are sup
posed to be real. We will in general work in a local coordinate 
system R4 and in the trivial bundle R4 X G. Global results 
will be always made explicit. 

We now give some definitions. 
We say that a gauge field FI-'v is abelian (locally on a 

nonvoid open set UCR4 or globally if U = R4) ifit can be 
written as 

(2.1) 

in a local coordinate system in U C JR4, where E is a fixed 
element of L (G ) and thefl-'v are components of a nondegener
ate two-form on R4

, that is, det V;,v(x))=;i:O on a dense subset 
ofR. 

We say that a gauge field FI-'v is locally (globally) quasi
abelian when it has the form (2.1) over a nonvoid open 
UC R4 (over R4) andfl-'v is degenerate, that is, det if;.v) = ° on 
U(on JR4). 

A general (abelian or non-abelian) gauge field can be 
written as 

(2.2) 
in a local coordinate system. A general gauge field is copied 
(or has a potential ambiguity) over U (over R4) if it can be 
derived from at least two potentials A I and A 2 which differ 
on U (on R4

). One of these potentials is always supposed to be 
smooth. 

The dual adjoint field matrix *.'7 is defined (in a local 
coordinate system): 

*.'7 = (cahc*f!v(x)). (2.3) 

where *fl-'v = (1I2)cl-'vprP'''· 
A gauge field F is degenerate of class lover an open set 

UCR4 if there exists a nonvanishing smooth vectorfield 
X = (X 1-') on U such that 

*,Y(X) =0, 
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or 

*qabxv=o 
J ltV • (2.4) 

F is degenerate of class II over an open UC R4 if there 
exists a non vanishing smooth Lie-algebra valued function 
O:U-L (G), OU(x) = oa(x)E a

, such that 

*.'7(0)=0, 

.'7:~0 h = 0. (2.5) 

We notice that if Fis degenerate both of class I and II, a 
solution for * Y (s ) = ° has the form of a linear combination 
IO ax I-' of products of solutions of both classes. 

We can now state: 
Proposition 2.1: FI-'v is a quasi-abelian over an open non

void U C R4 iff it is degenerate of class lover U and if it can be 
written in the form (2.1) over U. 

In our version Solomon's theorem has the following 
form: 

Theorem 1: Let F be quasi-abelian over UCR4. Then 
there exists a nonvoid Vk U and a coordinate system (xl-') in 
V such that in V and in this particular system 

(i) We can write 
F 12(x) = E (2.6) 

for a fixed EEL (G). All other components vanish. 
(ii) Fhas in V, in this special coordinate system, a poten

tial A given by 

AI(x) = - (x 2 )E (2.7) 

while A2 = A3 = A4 = O. A is called the canonical potential 
for F. 

Let [1 be the group of gauge transformations which act 
on F and A. Let f!J F be the stability group of F, that is, 

81 F = {gEf!! /g-IF,.vg = FI-'v}. 

Then 
(iii) Potentials for Fwhich are gauge-equivalent to the 

canonical potential A have the form 

A (x,g) = A + g-ldg, gEf!J F' (2.8) 

with A (x, 1) = A. Moreover, A and A 'are gauge-equivalent 
and are potentials for F iff A ' - A comutes with F. 

Let L [C (E )] be the set of all objects in L (G ) which com
mute with E; define B (E) = L (G)/L [C(E)] and consider 
smooth functions h:R.....,..B (E), which are then extended to V 
by writing H (x) = H (x 1,0,0,0) = h (Xl), XEV. We have 

(iv-a) Given H (x) as above we have a single family of 
potentials which are not gauge-equivalent to A, 

AI(x,H,g) =AI +g-IHg+g-lalg, 

(2.9) 

Now consider functions k : R2 ~B (E) and extend them 
to Vby defining K (x) = K (Xl ,x2,0,0) = k (x\x2

). We have: 
(iv-b) If A - A = (KI>Kz,O,O),KI and K 2 =;i:O, then there 

exists a gauge transformation u(x I ,x2 ,0,0) such that 
u(A) = A' = (A 'I ,0,0,0), and if [1 F is the stability group of F, 
then the orbit of A under the action of f!J f is the collection of 
all potentials for Fwhich are gauge equivalent to A. 

(v) The objects described in (iii) and (iv) exhaust all po
tentials for F. 

As we will see in Sec. 3, Solomon's theorem lists all the 
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interesting features of the field copy problem. The classifica
tion in (iii) and (iv) is also true in the general case, while there 
is a straightfoward generalization for (i) and (ii) that mirrors 
(iv-b). 

Solomon's theorem will be proved in a succession of 
propositions and lemmas. 

We will first give a general characterization for (locally 
or globally) abelian and quasi-abelian fields. Let E (x) : 
]R4--+L (G) be a Lie-algebra-valued function and letf"y(x) be 
the components of a two-form over ]R4 in a given coordinate 
system. We then assert: 

Proposition 2.2: A field gauge F has the form 

F"y(x) = f"y(x)E (x) (2.10) 

in a local coordinate system iffit is abelian or quasi-abelian in 
the region where that coordinate system is defined. 

The proposition says that if a gauge field can be written 
as the product of a numerical-valued form by a matrix func
tion, the matrix factor can always be transformed to a con
stant matrix by a gauge transformation. This result will be 
generalized below to encompass the case when Eq. (2.10) is a 
linear combination offi'elds which does not span the whole 
Lie algebra. 

Proof Sufficiency. An abelian or quasi-abelian field has 
the form 

(2.11) 

in a particular coordinate system, and this is clearly a par
ticular case of (2.10). 

Necessity. We will show first that there is always a]R4 
dependent linear automorphism which sends any object 
with the form (2.10) over to objects with the form given by 
(2.11 ). We then show that such automorphisms can be made 
to take values in the gauge group G. 

We endow L (G) with a nondegenerate inner product 
and consider the bundle ]R4XL (G). For Fofthe form (2.10), 
we see that at each point in the coordinate neighborhood, 
E (x) determines an orthogonal subspaceN (x) C L (G )(x). One 
can endow this subspace with a continuous basis which is 
defined all over the coordinate neighborhood. If this basis is 
denoted by Xa(x), we can ask that [Xa,X b L(x) = cabcxc(x), 
where we have considered X I(X) = E (x). Rescaling also al
lows us to put IIxa(x)112 = 1, where the norm is the one in
duced by the inner product. 

We now fix an arbitrary XoE U, where U is the coordi
nate neighborhood where Fhas the form ofEq. (2.10). Let S 
be the (finite-dimensional) vector space where L (G) is repre
sented and let GL (s) be the group of its linear transforma
tions. Then there is a unique u : U--+GL (s) (up to a constant 
factor) such that xa(x) = u-l(xlXa(xo)u(x). If we fix a value 
for det u(x), this transformation becomes unique. 

We now must show that u can take values inside the 
gauge group GC GL (s). Suppose first that G is simple. Let 
EEL (G) be an arbitrary object; put tJ G (E) 
= {u-IEu I UEG}, [tJ G(E)], = linear closure (tJ G(E)). 

We can writeL (G) = [tJ G(E)] ffi N, whereNis a subspace of 
L (G) unattained by [tJ G(E)]. But then the action of G in
duces on L (G) a direct sum decomposition, which would 
then imply that G is semi-simple, which is a contradiction. 
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Then N = 0, and [tJ G (E)] = L (G). Thus every element of 
the Lie algebra can be mapped on the direction of every other 
element. 

Now if G is semi-simple, we suppose that F is non van
ishing inside U and that this domain is connected. Thus, due 
to continuity E (x) will wander inside one of the component 
subalgebras which add up to form L (G). We then apply the 
previous reasoning. 

The transformations u thus defined are local, since our 
reasoning has been restricted to a connected UCR4. They 
can be continuously patched over a connected region where 
Fis abelian (or quasi-abelian). And they can be continuously 
extended over the whole ]R4, since we can continuously ex
tend the basis X a over the whole manifold. 

Proposition 2.2 has been quoted and applied without 
proof by Solomon I in the SU(2) case. It allows one further 
and immediate generalization, which will be used in Sec. 3. 
Suppose that F is degenerate of class II on a neighborhood U 
of]R4. Then over U we have aL (G )-valued function 0 (x) such 
that * Y(O) = O. The space of all such 0 has a Lie-algebra 
structure, and so has the complementary commutant space 
over which F = r(x)E a is defined (to check that [0, O'L 
satisfies the class II degeneracy condition in Eq. (2.5) one 
uses the Jacobi identity for * Y([O,O 'L) = [*/.[0,0 'L]). 

W edenote by L (H )(x) the subalgebra ofL (G ) overwhich 
we define at each point a class II field F. Then 

Proposition 2.3: IfF is degenerate of class II over U C ]R4 
then there is a subalgebraL (H )CL (G) and a gaugetransfor
mation u such that u - IFu takes values only in L (H). 

Proof We first suppose that the space of solutions for 
* Y (0) = 0, 0 : U--+L (G ) has constant dimension over U. We 
then at each point XEU define a basis for the solutions 0 (x) 
which satisfies the commutation relations [Xa,X b

] _(x) 
= cabcXC(x), when restricted to the subspace spanned by the 
o (x). We then apply the reasoning of the preceding proposi
tion, while noting that all elements of the basis for the 0 (x) 
must be in the linear span [tJ G(E)] of a fixed EEL (G). In 
order to deal with the case when the space of the 0 (x) does not 
have a constant dimension over U, we simply choose a basis 
for L (G) on Uwhich separates at each point the solutions for 
*YO = 0 from objects which are not solutions for it. 

This result will be needed in Sec. 3. 
Let now V (x) C U (x) C ]R4 be a coordinate neighborhood 

with coordinates (x) = (x") = (X I
,X

2
,X

3
,X

4
). In order to avoid 

trivial situations we suppose that the quasi-abelian field F is 
non-vanishing on U. In order to prove statement (i) in Theo
rem 1 we will use the 

Lemma 2.4 (Darboux): Letfbe a closed real two-form 
on a (2n + k )-dimensional manifold M. Let 2n be the rank of 
f Then for every xEM there is a coordinate neighborhood 
and a coordinate system U(x)CM such that 

flu = IdxiAd/, (2.12) 
i= 1 

where (x) = (xI, .. ·,xn,yI, ... yn,wl,···,w k ). 

Proof See Ref. 2. We can now show that 
Proposition 2.5: There is a coordinate neighborhood 

V(x) C]R4 such that the quasi-abelian field F can be written as 
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as 

F'2=E, 

FI3 = F'4 = F23 = F24 = F34 = O. 

This field may be derived from a potential 

A, = - (x 2)E,A 2 =A3 =A4 = 0 

which we call the canonical potential A for F. 

(2.13) 

(2.14) 

(2.15) 

Proof Proposition 2.2 guarantees us that there is a co
ordinate system inside U where F can be written in the form 

(2.16) 

/!,v(x) is a real two-form. We apply Darboux's theorem, Pro
position 2.4, to it. Since/is a degnerate two-form over a four
dimensional manifold, it must be of rank 2 (since we have 
excluded the trivial case). Lemma 2.4 and Eq. (2.16) show 
that we must have 

Fdx)=E (2.17) 

as the single surviving component for F, the coordinates be

ing labeled in a convenient manner. The second statement is 
immediate. 

Remark 2.6: We write 

T = T3 Ell 0 = (€3j k Ell 0) 

o 0 0 0 . [ ~1 0 ~ ~] 
o 0 0 0 

(2.13) and (2.14) have the form 

F= T®E. 

(2.18) 

(2.19) 

We also notice that A ; = (x1)E, A ; = Ai = A ~ = 0, is 
a potential for F in the privileged coordinate system of Pro
position 2.5. There is however a local gauge transformation 
that sends the above potential over the canonical potential A; 
in the same coordinate system this transformation is given 
by 

(2.20) 

We finally notice that it is not in general possible to 
obtain a global coordinate system in R4 such that Fhas (glo
bally) the form (2.19), as shown by the following example: let 
us be given on R2 the two forms 

(A)/O) = dx 1\ dy in a disk of radius 1 centered at the 
origin; the coordinate system is rectangular Cartesian. 

(B)l2) = dr 1\ dO outside a circle of radius 1/2 centered 
at the origin, in polar coordinates.f°) can be derived from a 
potential aO ) = x dy, and/(2) from a(2) = r dO, in the respec
tive coordinate systems. Let g:R2 ---+R be a smooth function 
that satisfies girl = 1 if r< 1/2; girl = 0 if r> 1 and Jg/ JO = O. 
The field/whose potential is 

a = gat!) + (1 - g)a(2) (2.21) 

can be written in the annulus !<r< 1 centered at the origin as 

/=da 

= [rg + (I-g) + rlg,I(1- rcos20)]drl\dO,g, = Jg (2.22) 
Jg 

in polar coordinates. It is easily checked that/is never zero 
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in R2, and in particular inside the annulus. We notice that/ 
cannot be written in the form (2.19) globally on R2, since this 
would imply that there is a transformation that sends Carte
sian coordinates over to polar coordinates without singular 
points. And this is also true when we extend this example in a 
trivial way to the whole ofR4. This example rose out ofa 
conversation with C. Gunther. 

We have thus proved (i) and (ii) in Theorem 1. In order 
to proceed we are going to use two well-known results in the 
theory of copied fields. We suppose that F is a general non
abelian gauge field over R4 with potentials A ' and A 2 which 
differ on a nonvoid open UCR4. 

Proposition 2.7: If Fhas two potentials which differ on 
U, then the determinant of the dual adjoint field matrix * Y, 

det(*,7) = 0 (2.23) 

on U [see Eq. (2.3)]. 
Also, Fhas two potentials A 'andA 2 which differ on U 

iff A ' and A 2 - A ' = p satisfies 

JI,Pv-JvP!, + [p!',pJ-+ [A~PvL- [A~,p!,]=O 

U (2.24) on . 
Proof If Fis derived from two potentials, it must satisfy 

two different Bianchi identities, 

J *F!'V + [A' *F!'V] = 0 It It' -- , 

(2.25) 

Their difference leads to Eq. (2.23). 
Equation (2.24) arises out of the comparison of the fields 

F(A ') =F(A' +p). 
The whole problem in the field copy question concerns 

the classification and existence of solutions for (2.24). The 
above conditions have been long known.4,6,7 What we will do 
next is to classify the solutions for the (algebraic) condition 
(2.23) and to take them into Eq. (2.24). This will be seen to 
work also in the general situation, as we show in the next 
section and in Theorems 2 and 3. 

Suppose now that we are inside the privileged coordi
nate domain and coordinate system where Fhas the form of 
Eq. (2.19). *,7 can be written here 

o 
o 
o 

o 
o 
o 

o _Ead 

(2.26) 

where E ad is the adjoint representation of E, that means, the 
representation of E in the space spanned by the (cab )e. A look 
at Eq. (2.26) shows that Fhas both type I and type II degener
acies. The type I solutions are those ofthe formp = (p"O,O,O) 
and CT = (O,CT2 ,O,O), wherep, =p~Ea, and CT2 = cr';.Ea. The 
type II solutions are all the 0

1
, such that [E,O!' ] _ = O. The 

solutions for (2.24) must be found within the space spanned 
by these type I and type II Lie-algebra-valued objects. 

Type II solutions: We will take here A ' = A, the canoni
cal potential. Thus any object that commutes with E will also 
commute with A, and as a consequence the commutators in 
Eq. (2.24) will vanish. It is then easily checked as a conse
quence that the commutators in Eq. (2.24) will vanish. It is 
then easily checked that e!, will be a solution for Eq. (2.24) if 
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Ojl. isa vacuum potential, that is, Ojl. = u-1ajl.u, for u:V-G. 
We also notice that all such solutions are gauge-related, for 
we have 

A~ -A~ = rajl.u + [A~,u]_] 
= u-Iajl.u. (2.27) 

Thus type II solutions always lead to potential ambiguities 
which are reducible modulo a (local, over V) gauge 
transformation. 

Type I solutions: We consider firstp = (P1>0,0,0). Ifwe 
substitute it into Eq. (2.24), taking A I = A, we get 

- al/Jl(x) = 0, 

- ayJl(x) = 0, 

- a4Jl(x) = 0. (2.28) 

Thusp must be independent ofx2,x3
, andx4

• A solution can 
be obtained if we choose smooth h a:R_R and take (inside V) 
h a(x) = h U(xl,o,O,O) andp (x) = [h (x),O,O,Oj. It is not imme
diately obvious if this solution is gauge-equivalent to A. We 
will see below that is is so iff [h, E j _ = 0. 

The second class of type I solutions is given by 
0' = (O,O'z,O,O). This is however equivalent to the preceding 
case, since we can reason as we did while taking A I = A ' in 
Remark 2.6. 

We notice that, again, the commutators vanish. 
We have thus settled that for a quasi-abelian Fthe dif

ferences between any potential A 2 for F and A (or A ') span the 
nullspace of *.'T. In order to conclude the proof of (iii), (iv) 
and (v) we will make precise definitions for some concepts 
frequently used in gauge theory. 

The first such concept is that of gauge. A gauge is a 
cross section...!' = (x,u(x))CR4 X G. The identity gauge is de
fined to be Io = (x,I)CR4 XG. 

The second such concept concerns the relationship be
tween the group of gauge transformations, fft, and the gauge 
group G. A gauge transformation is here supposed to be any 
smooth map u :R4_G. It acts on a gauge...!' as follows: 

Proposition 2.8: We have 

I= (x,k (x))-...!'u(x) = [x, k (x)u(x)]. (2.29) 

For the proof, see Ref. 8. 
A local gauge transformation over UCR4 is just any 

smooth mapping u:U-G. We consider now the stability 
group fft F of a general gauge field F. Let us construct Fin the 
privileged gauge described in Prop. 2.3. Let C (F) denote the 
set of all elements of G which commute with F, that is, which 
are such thatg-1Fjl.vg = Fjl.v' for all pairs/-l, v. C (F) is called 
the centralizer of Fin G. Now immediately, in this particular 
representation for F, the stability group fft F is the group of 
aU g: U-C (F). 

This definition is tied to a particular gauge. Let us show 
how it extends to a gauge-independent definition. Let a 
gauge field Fbe described (if possible) in the privileged form 
of Prop. 2.3 over U. For all gauge transformations u over U 
we define the curvature form qJ associated to F to be the form 

(2.30) 

over the bundle U X G. The connection form over U X G, a, 
associated to A, is given by 
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(2.31) 

The stability group fft F is easily checked to be nontrivial iff 
C (F) is not contained in the center of G; also fft F does not 
coincide with the stability group of A , fft A' which is precisely 
C (F). R The existence of fft F allows us to partition all gauges 
over U under an equivalence relation given by...!' -l:' if F is 
unchanged by the map ...!'_...!' '. It is done as follows: let Fbe 
given in the form of Proposition 2.3, which we denote by Fo· 
We attach Fa to the identity gauge l:a by forming the pair 
(Fo,Io). fft acts on this pair according to the usual rules, and 
this action actually generates the entire curvature form qJ 

associated to F on U X G. 

We now notice that fft F(Fo,Io) = (Fo,...!'afft F). And for 
any UE::1 , the right cosets ,~ FU generate disjoint families of 
gauges, denoted by Io fft F u. In each one of these families the 
stability group ofu-1Fou is clearly u -I fft FU, and the expres
sion of the curvature is kept fixed under the action of a coset 
element. 

Let us now suppose that Fo is quasi-abelian, and that A 
is its canonical potential, in the coordinate system of Prop. 
2.5. Their orbit under fft F is clearly given by all triples 
(A + g-ldg,Fo,l:g), wheregEfft F. And we notice that if A 'is 
a potential for Fo which is gauge-related to A, A I must be of 
the form A + g-Idg, gEfft F. We also observe that A I - A 
commutes both with A and with Fo. We have thus proved: 

Proposition 2.9: Potentials for Fwhich are gauge equiv
alent to the canonical potential A can be expressed in the 
privileged coordinate system of Prop. 2.5 by 

A '(x,g) = A + g-Idg, (2.32) 

where gE fft JandA (x,l) = A. Moreover, A and A I are gauge
equivalent and are potentials for Fiff A '-A commutes withF. 

This deals with (iii) in Theorem I. Also, this deals with 
all type II copied potentials, that is, all potentials A ' such 
thatA' - A = Oisa type II solution for * .'T(O) = 0. The type 
I potentials are dealt with by the next proposition. We write 
L (C (F)) for the Lie algebra of C (F), and given the quotient 
B (F) = L (G )I L (C (F)), we take smooth functions h :R_B (F) 
which we then extend to the coordinate domain Vby writing 
H (x) = H (Xl ,0,0,0) = h (Xl). This function is obviously not 
smooth, in general situations, over the whole R4. We then 
have: 

Proposition 2.10: In VC R4, in the coordinate system of 
Propostion 2.5, given the B (F)-valued function H, we have a 
unique family of potentials A (x, H, g) which are not equiv
alen t to A. This family is given by 

A1(x,H,g) = A 1+ g- Wg + g-Ialg, (2.33) 

(2.34) 

In this coordinate system, potentials A which are not gauge 
equivalent to the canonical potential A are characterized by 
the fact that A-A does not commute with either For A. 

Proof The second statement is implied by the last state
ment in the previous proposition. Equations (2.33) and (2.34) 
are immediately checked to be potentials for F, and unique
ness is implied by the fact that the above expressions give the 
whole orbit (F fixed) of the potential A (x,H, I). 

This deals with assertion (iv-a) in Theorem 1. We must 
now consider linear combinations of type I and type II solu-
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tions. We first suppose that in the privileged coordinate sys
tem of Proposition 2.5 we have A-A = (pI,P2'O,O), where 
A = ( - x2E,O,O,O). IfP2 is of type II andpi is of type I, a 
gauge transformation that commutes with E is enough to 
send this potential over to the one in Proposition 2.10. 

If A-A = 1.0 I,P2'O,O), 1.0 I and P2 both being of class I) 
Prop. 2.7 and Eq. (2.24) ensure thatpi andp2 are functions 
only of x I and x 2

• Thus there is a (local) gauge transformation 
u(x\x2,O,O) such thatp2 is made to vanish. We are thus left 
with a potential u(A) = A' = 1.0; ,0,0,0). Since FI2 = E is 
mapped over F;2 = U- I(XI,X2)Eu(x\X2) in this new gauge 
(and since all other components remain equal to zero in this 
new gauge there exists a potential B (x I,X2 ,0,0) = (B 1,0,0,0) 
given by 

B I(X I ,x2,O,O) = - x2 fu -I (txl,tx2)Eu(tx l,tx2
) dt. (2.35) 

We notice that B #A in general; they coincide iff u com
mutes with E, and this is not the case. Ifwe putp = A' -B, by 
applying Prop. 2.7 and Eq. (2.24) we check that 
p = pIx 1,0,0,0). 

Finally if A-A = P + 8, wherep = (pI,P2'O,O) is of type 
I, and 8 = (81,82,83,84) is of type II, we notice that since Fhas 
a single component, there is a gauge transformation that 
sends A over A = (A; ,0,0,0). (The other components must be 
the components of a vacuum field.) We then apply the rea
soning above and conclude: 

Proposition 2.11: Assertion (iv-b) in Theorem 1 is valid. 
We also had 
Scholium 2.12: In the new gauge of (iv-b) in Theorem I 

the field F' has a potential given by (2.35) which is gauge 
equivalent to A I = utA ) if and only if u commutes with E. 

We thus conclude the proof of Theorem 1. 
We now say that F is smoothly copied over R4 of type I 

(or II) if it has a smooth potential A I such that the difference 
A I _ A = 8 is a type I (or II solution for *Y(8) = O. 

Proposition 2.13: Fis always smoothly copied of type II. 
Proof6: Suppose that det * Y = 0 over an open U C R4. 

Suppose also that Fhas been written in the gauge given by 
Proposition 2.2 and consider any smooth function 
8:U-+L (e (F)). If,u is a real "bump" function for U, that is, a 
function which is zero on R4 - U, nonzero on U, and smooth 
over R4, we putg(x) = exp,u(x)8 (x), and have the smooth po
tential A I = A + g-ldg on the whole of R4. 

It is, however, easy to notice that type I solutions are 
not always smoothly copied on the whole of R4, since Eqs. 
(2.33) and (2.34) explicitly depend on the existence of a func
tion which can be extended in a smooth way only in a Carte
sian product neighborhood. We can restrict our reasoning to 
a plane R2 in R\ due to (i) in Theorem 1. The function h in 
Proposition 2.10 is smooth over the line, or any of its subin
tervals, which we denote by J. It can be globally extended 
only by the products J X R or by J X S I, and then again by 
taking the product of this factor with R2 to get to the dimen
sionofR4. Thus, if we denote the setsJ XR3 0rJ xS I XR2by 
W, it becomes apparent that a potential A is smoothly copied 
of type II iff the open set U where det* ,r = 0 contains a 
subset diffeomorphic to W such that F has the form of (i) in 
Theorem I in a coordinate system which may be restricted to 
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the whole of W, and where the index 1 denotes the coordi
nate parallel to J in W. 

We can state this result in a less precise version 
Proposition 2.14: Type II potentials for quasi-abelian 

fields are not in general smooth over the whole of R4. 
Thus we conclude our discussion of quasi-Abelian 

gauge fields and their potentials. 

3. CLASS I AND CLASS II NON-ABELIAN GAUGE 
FIELDS 

The proof that we have given for Theorem I is a direct 
consequence of the Darboux theorem in symplectic geome
try. However the theorem's statements can be slightly modi
fied so that they can be applied in more general situations. 
Quasi-abelian fields are abelian fields which have (locally at 
least) a type I degeneracy. We will now consider a general 
non-abelian gauge field with a class I degeneracy, that is, 
such that there is a smooth non-zero vector field X which 
satisfies 

(3.1) 

inside a nonvoid open set U in R4. 
We first suppose that F has no class II degeneracy on 

R4. This immediately excludes quasi-abelian fields from the 
scope of Theorem 2, which we now state. 

Theorem 2: Let F be a type I field as characterized 
above, and let it be degenerate over UCR4. Then 

(i) There is a local coordinate domain VC U together 
with an adequate cordinate system such that F can be written 
as 

(3.2) 

while all other components vanish. 
(ii) In that particular coordinate system F can be derived 

from the potential 

A (x) = (Ao(x),O,O,O) (3.3) 

which we call the canonical potential for F in V. 
(iii) Let us be given a function h :R-+L (G ); extend it to V 

by defining H(x) = H (Xo ,0,0,0) = h (xo), in the coordinate syste 
tem established above. Then the potential 
A (x) = (Ao(x),O,O,O) given by 

Ao(x,H) =Ao + H (3.4) 

is a potential for F which is not gauge related to A. 
(iv), (ii), and all possible objects as in (iii) exhaust all 

potentials for F. 
Theorem 2 shows that the general class I fields have a 

potential ambiguity which appears as an extension of the 
situation described in the quasi-abelian case. Since we have 
now a fully non-abelian field, all gauge-equivalent potentials 
collapse over the canonical potential, while the other poten
tials become unique in the sense that no gauge equivalence is 
possible among them. 

We again split the proof of this theorem into several 
propositions. 

Proposition 3.1: There is a coordinate domain VC U and 
a coordinate system (XO,x i

) = (xO,X I,X2,X") in U such that 

*.7~~(x) = o. (3.5) 
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Proof On U there is a non vanishing vector field X such 
that *.7(x) = 0, or in components 

*Y:~Xl' = O. (3.6) 

Let us now write X = Xo. Inside U one can then look for 
three linearly independent vector fields Xi which satisfy 

(3.7) 

for all i. In a region where these four XI' are non-vanishing, 
they determine a local coordinate system with respect to 
which their components are (Xl't = 8;. SinceXo = (1,0,0,0) 
is a solution for (3.6), we have in this particular coordinate 
system 

* qab l1l' - 0 or * 'lab = 0 ,/ I'l'UO - • 1'0 • (3.8) 

That is, *,7~ = 0 in this coordinate system over VC U. 
This result implies: 
Proposition 3.2: In this particular system in Vthe field F 

can be written as 

FiO = JjAo, 

Fi) =0, 

(3.9) 

(3.10) 

and has a potential A with components A (x) = (Ao(x),O,O,O). 
Proof Since we have * y~ = 0, we have Y':/ = O. And 

as Y,:/ = (cab'ft), due to the semi simplicity of the group G 
we conclude that the Fi) = ftE b = O. Thus the only surviv
ing components of the field F in this coordinate system are 
the Fo}' Thus the potential for F, A, splits into A = (A b,Aj)' 
The Ai are solely responsible for the components Fj} of the 
field, and these form the components of a vacuum field. 
Then there is a gauge transformation that sends A j to zero, 
and we are left with a single surviving component for A along 
the X O direction, that is, we get A = (Ao'O,O,O), where Ao (x) 
= ag (x)E b, after performing that gauge transformation. 

We have thus proved assertions (i) and (ii) in Theorem 2. 
Since the field is supposed to be fully non-abelian, no type II 
degeneracies are allowed, and then the construction indicat
ed in Proposition 2.3 becomes trivial. Thus the stability 
group of the field is reduced to the identity element, and as a 
consequence the equivalence class of gauges molulo the sta
bility group ,C(I F collapses over (A ,F,~.), where A is the ca
nonical potential. As it can be immediately checked that all 
A (x,H) are potentials for F, and that, as a consequence of the 
previous reasoning, noA can be gauge mapped over any oth
er or over A, we conclude the proof of (iii) and (iv) in Theorem 
II. 

We now go back to an observation made at the begin
ning of Sec. 2, and notice that any solution 0 for * .7(0) = 0, 
or in components 

*.7:~.0 vb = 0 (3.11) 

must be a linear combination of products of type I and type 
II solutions, that is 0 = (ovb) = (~'ovOb), where Ol'(Ob) isa 
type I (type II) solution for (3.11). Theorem 2 shows that all 
type I solutions lead to copied potentials which are smooth 
at least over V; Theorem 1 shows that a special class of type I 
fields are also copied but the potential ambiguity may be 
reduced modulo a gauge transformation. The reasoning that 
leads to Proposition 2.9 is, however, general enough to fit in 
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the larger picture. Let Fbe a general gauge field which has a 
type I degeneracy over an open VCR4 type II degeneracy 
over WCR4; we write U = Vuw. Let Fbe written in the 
form indicated by Proposition 2.3 whenever possible, that 
means over W. LetL (C(F)) be the commutant subalgebraof 
L (H) insideL (G), [L (H) is the subalgebra of L (G) whereF 
takes values.] Since dim L (H) may vary over W, we will actu
ally have to cut up this region into the neighborhoods where 
dim L (H) is constant. It is sufficient, however, to consider 
just one of these specific domains and then piece things to
gether. We are thus given the stability group ~ F ofF and the 
elements in L (G) which do not commute with some compo
nent of F. These are elements of B (F) = L (G )1 L (C (F)). 

We state: 
Theorem 3: Let Fbe degenerate of class lover V, of class 

II over W; let U = Vuw. In general (cf. Theorem 1) 
VnW#O. 

(i) There is a local coordinate system on a domain V' C V 
such that F has the form of (i), Theorem 2. 

(ii) There is a unique potential of the form (ii), Theorem 
2 for the field F. IfF is of class II over V', this potential is the 
unique potential that takes its values inside L (H). 

(iii) The potentials for F which are gauge equivalent to 
the canonical potential A described in (ii) above have the 
form 

A '(x,g) = A + g-ldg, gE~ F (3.12) 

and are such that A ' - A commutes with F. 
(iv) The potentials for Fwhich are not gauge equivalent 

to A have the form 

Ao(x,H,g) = Ao + g-IHg + g-IJrE, 

Aj(x,H,g) =g-IJig, gE~ F 

with the notations of (iii), Theorem 2. 
(iii) and (iv) are exhaustive. 

(3.13) 

(3.14) 

(v) Fhas a potential ambiguity on R4 iff det * Y = 0 on a 
nonvoid open UC R4. 

Proof We suppose that L (H) has a constant dimension 
over V'. (i) is proved as in Theorem 2, and so it (ii). The 
argument for (iii) in Theorem 1 applies equally well to the 
proof ofEq. (3.12), and so does the similar agument for (iv), 
as well as the exhaustiveness of potentials (iii) and (iv). 

(v) is a necessary condition, for Proposition 2.7 (iii) and 
(iv) show that the differences A ' - A and A - A span the 
space of solutions of *,7(0) = o. We finally notice the van
ishing of det * Y over a set with a void interior in R4 does not 
lead to the existence of potential ambiguities, since the non
vanishing of det* Y over an open set is a sufficient condition 
for the existence of a single potential for the field F over that 
open set, and if det * Y vanishes over a closed set C with a 
void interior in R4, R4 - C is dense in R4, and F and its 
potential can be smoothly and uniquely extended to the 
whole ofR4. 

We notice that the canonical potential for a type II field 
can be defined as the (unique) lowest-dimensional solution 
for the linear equation 

(3.15) 

which arises out of the differential Bianchi identities for F. 
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Proposition 3.3: If Fis copied of type II over UCR4
, 

then Fis smoothly copied over R4. 
Proof F is smoothly copied if it has at least a smooth 

potential which does not coincide with the canonical poten
tial. We first partition U into neighborhoods Ui where dim 
L (H) is constant. We then apply here the reasoning in Propo
sition 2.11 to each Ui • 

Proposition 3.4: Fis not always smoothly copied of type 
lover an arbitrary UC R4. 

Proof The argument runs as in the discussion preceding 
Proposition 2.12. The geometry for the sets in R4 which en
tail a global smoothness for potentials of F which are not 
equivalent to A is also the same in this case. 

4. EXAMPLES 

We discuss here three examples from the current litera
ture on the subject in order to clarify our preceding analysis. 
These are Deser and Wilczek's quasi-abelian field and its 
infinite family of potentials,4, 9 Coleman's plane waves3 and 
the example that started it all, Wu and Yang's.5 

A. The Oeser and Wilczek example 

We start our discussions with the slightly more general 
form that was discussed by Bollini, Giambiagi, and 
Tiomno. 7,10 Let us be given the trivial bundle R4 X G and the 
smooth functions 

t:R4-+R, 

A: IR-+L(G), 

f: R-+IR. 

In the local coordinate system we choose a constant covector 
17 = (17 /L) and define the smooth potentials 

A (f,x) = {17/L + f(t)a/Lt}A (t). (4.1) 

In this coordinate system the field is given by 

F/Lv(x) = {17va/Lt -17/Lavt }aA lat· (4.2) 

We first apply Proposition 2.2 to (4.2). If we put 
aA lat = - (aA lat )u(t )Eu-I(t ),forafixedEEL (G landfor 
a smooth function A:R-+R, we get in the new gauge 

F;,v = u-IF/Lvu = (17va/Lt -17/Lavt)( - aA lat)E. 

Now since we have 
(4.3) 

(4.4) 

we can choose (locally at least) the symplectic coordinate 
system where 17 = (1,0,0,0) and (avA) = (0,1,0,0). Thus (4.3) 
becomes 

(4.5) 

while all other components vanish. The family in Eq. (4.1) is 
given by 

AI = U- I(X2)A (x2) U(X2), (4.6) 

Az = f(x2)u -1(X2)U(X2) 

+ u- l (x2)(a2)u(x2) (x2 = A). (4.7) 

The rest is zero. The reasoning before Proposition 2.11 guar
antees us that in the general case these potentials are not 
mutually gauge equivalent. 
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B. The Coleman plane waves 

Let R4 be endowed with a Minkowskian metric and out 
of the standard Cartesian coordinates (XO, Xi) we define the 
light cone coordinates x ± = Xo ± x 3

, Xl, x2. Coleman intro
duced the plane-wave3 solutions for the gauge field 
equations 

A a+ = f+(X+)x1 + g"(x+)x2 + h a(x+), (4.8 

A a_ =A~ =A~ =0, (4.9) 
with field strength given by 

(4.10) 

F~+ =g". (4.11) 
These are clearly of the given form in (iii), Theorem 2. We 
notice that the canonical potential is given by 

AO+ =f(X+)x1 +g(x+)x2;AO_ =A~ =A~ =0(4.12) 

and that Eqs. (4.8) and (4.9) are not gauge equivalent to Eq. 
(4.12), in the general case. 

C. The Wu and Yang exampleS 
The base manifold here is R3 minus the nonpositive z 

axis, times R. The gauge group is supposed to be SO(3), but 
our reasoning is valid for any finite-dimensional semi-simple 
group. We will apply Theorem 3 to this case, despite the fact 
that since the field is quasi-abelian we could have used Theo
rem 1. Theorem 3 will suffice. The potential is given by 

A", = [(I-cosO)/rsinO]E, (4.13) 

Ar =Ae =A, = O. (4.14) 

This is the potential for the field of a magnetic monopole 
sitting at the origin of the coordinate system in 1R3 X R, where 
R3 is described by spherical coordinates. the "bad" region 
for the potential has been already excluded. This monopole 
generates a radial magnetic field along the constant gauge 
direction E, and it is sourceless. It is easy to check that a 
potential such as 

A", = A", + ,pE', 

Ar =Ao =A, = 0, 

(4.15) 

(4.16) 

will generate the same field as (4.13) and (4.14). It will not, 
however, be sourceless if we ask that [E,E'L #0, and as a 
consequence of our analysis in Sees. 2 and 3, where nonequi
valence is tied to such noncommutativity, the potential 
above is not equivalent to A. 

This was the main point in Wu and Yang's argument. 

5. CONCLUSION 

We have shown that Solomon's results for quasi-abelian 
SU(2) fields I can be given a stronger and more general for
mulation for any gauge field where the gauge group is finite
dimensional and semi-simple. The main interest of this ex
tension however lies in that the chief features of quasi-abe
lian fields are easily generalized to a non-abelian situation. 
We are thus led to a characterization of gauge fields with 
potential ambiguity and to a classification of their ambiguity 
and to a classification of their ambiguous potentials that mir
rors the classification obtained in the quasi-abelian case. 

The discussion of class II fields on general manifolds 
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has been done elsewhere;6 class I fields have then been ex
pressly excluded from our analysis. The present discussion 
has been restricted to fields on lR4 and over a trivial bundle; it 
can however be generalized to arbitrary space-times in a 
straightfoward manner. In particular, it is immediately no
ticed that space-times that do not admit a subset with the 
topologyofJ xS I XNorJ XlRorJ X lR XN(cf., Proposition 
2.12; N must be a closed boundariless two-submanifold of 
our general space-time) do not admit a copied potential of 
type I which can be smoothly extended over the whole space
time. 
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The freedom of choice of some discrete and internal symmetries in the supersymmetric, massive, 
interacting quantum field theory is discussed. It is shown that the discrete symmetry consisting of 
changing the sign of some (not all) scalar fields is incompatible with the supersymmetric structure 
of the theory. It is further demonstrated that an internal symmetry which transforms only some of 
the fields of fixed spin leaving the other fields invariant and which acts nontrivially on the 
supercharges can not be admitted as a symmetry; although it can be a good internal symmetry in 
absence of supersymmetric covariance. Moreover, in case of a model consisting of scalar, spinor, 
and vector fields even a symmetry which transforms all of the scalar (vector) fields leaving spinor 
and vector (scalar) fields unaffected is ruled out provided it acts non trivially on some of the 
supercharges. 

P ACS numbers: IUO.Pb 

1. INTRODUCTION 

This note is meant as a commentary to an earlier 
paper written by Haag, Sohnius, and mel and is con
cerned with two problems, which often cause some con
fusion and misunderstanding. 

To begin with, let me remind the reader of two funda
mental statements concerning the symmetries and su
persymmetries: 

(i) The "No Go" theorem of Coleman and Mandulaa 

claims that in a quantum theory of a finite number of 
massive fields which all interact with each other, con
forming with the usually accepted axioms, the only ad
missible S-matrix symmetry generators are those of 
the Poincare group and of the group of internal sym
metries, the latter commuting with the Poincare group. 
Notice that this theorem does not apply to the case of 

free fields. 
(ii) The extended Coleman-Mandula theorem1 states 

that in a theory which in addition to the symmetry prop
erties mentioned above displays super symmetric co
variance, the set of admissible generators is enlarged 
by a finite number of spino rial generators Q)f', which 
we shall call supercharges, (where A = 1,2 is the spin
or index and L = 1, ..• ,N labels the supercharges) and 
their Hermitian conjugates; these supercharges com
mute with the translations. The Poincare generators 
P,,- and M",v, }.J.; v =0,1,2,3, internal symmetry gener
ators B I' l = 1, .. . k, as well as QJ) have to satisfy the 
following commutation relations1

: 

{Q (L) Q(M)}=CLM,'cr"') • P =CLl1 PAB (1) 
A , B \ AB '" ' 

{Ql),Q~)}=EAE.zIM , (2) 

(3) 

[QA(L>'P,,-] ==[B" P.,.] =0, 

where C LM is a positive definite Hermitian matrix.3 The 
operators P (/J. =0, 1, 2, 3) form the energy-momentum 

'" ZLM vector of the whole system. The central charges 
= _ZMI. commute with all other generators and so, of 
course, belong to the center of the algebra of B I' Un-

der the Lorentz transformation B I (and Z LM) transform 
as scalars, P," as a vector, and QA(L) as spinors. B I 

may, but do not have to commute with QX'). 
The first rather minor problem, discussed in Sec. 2, 

is to what extent the definition of the spino rial charge 
in a field-theoretical setting is unambiguous. 

The examination of this question leads us, in a na
tural way, to the main problem, considered in Secs. 3 
and 4, namely: are there any restrictions imposed 
upon the discrete and internal symmetries originating 
from the presence of supersymmetric covariance of a 
model? The Coleman-M:mdula theorem in its original 
version2 does not impose any restrictions upon the in
ternal symmetries.4 The discrete symmetry consist
ing in changing or preserving the sign of the field, dealt 
with in Sec. 3, is also not lim ited by the axiom s. As 
we shall see this is no longer the case when we require 
that the model under consideration exhibits supersym
metriC covariance. The restriction comes from rela
tion (1), (2), and (3). Although-given an internal sy~
metry-one can always find a suitable supersymmetnc 
model of field theory such that these requirements are 
satisfied, the reverse statement is not true; not every 
internal or discrete symmetry admissible in a given 
field theory which does not display supersymmetric 
properties can be implemented in a similar but s~per
symmetrically covariant theory. The mternal or dIscrete 
symmetries compatible with the supersymmetric struc
ture of the theory and acting nontrivially on the super
charges must satisfy a kind of democracy prinCiple with 
respect to the fields representing the model; they m.rst 
act on these fields in a fairly uniform way, without fa
voring some of them. We shall make this rather vague 
statement more precise in Secs. 3 and 4. 

2. AMBIGUITY OF THE DEFINITION OF 
SPINORIAL CHARGES 

Given a model in field theory, the generators P,,- and 
,'VI ~ u are defined uniquely; there is also no ambiguity in 
defininu the basis of internal charges B, , although 
there i; consi.derable freedom in choosing such a basiso 
Are the supercharges Q t) also defined in a nonam
biguous way? 

To answer this question let me call to the attention of 
the reader that the easiest way to investigate the struc-
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ture of the generators is to express them in terms of 
asymptotic (incoming or outgoing) free fields which we 
assume for simplicity to be all of the same mass m *- 0 
and to form an irreducible set. In terms of these fields 
the generators are expressed as sesquilinear forms in 
the creation and annihilation operators. Of course, for 
the asymptotic free field theory we will find infinitely 
many generators of numerous free field symmetries 
among which, however, we shall also, for sure, find 
the few generators of the S -matrix symmetries chosen 
by the extended Coleman-Mandula Theorem. 

To make things as simple as possible let us start with 
the case of one supercharge (Le., N = 1) and a model 
conSisting of one neutral spinor field and two real scal
ar fields. 

The free asymptotic-incoming or outgoing-fields 
belonging to the mass m '" 0 and corresponding to the 
interacting fields of the model are 

([J (i)(x) =(;7T) 3/2 f ~~ {a (i)+e ipx + a (i)e-
iPX

} , i = 1, 2, 

resp., where wp = + (p2 + m2)1 /2, [P]1 is the 2 x 2 boost 
matrix,S [P]Aa=[P]Ai>Epa' Epa=(~ ~), px=wpxo-px, and 
a(a) = a(p, a) and a ~)= a (i~p) are annihilation operators 
for the free spinor and scalar fields of mass m * 0, mo
mentum p= (Pl'P2,P3) and spin= (a- i) resp. 

The free fields satisfy the neutrality (reality) condi
tions 

. . . . 
8A'ifJA(x)=mIjJ3(x); 8-"'''O(aI'V '0 I'' 

rp (i)(X) = ([J(i}>(X), i= 1, 2, 

and the commutation relations 

{IjJA(X),IjJJ(Y)=-EAn~(X-Y), A,B=1,2, 

[([J(iJ(X), ([J(J)(y)]=i~(x-y)OiJ, i,j=1,2, 

All asymptotic fields satisfy the Klein-Gordon equation 
with mass m *0, 

In this particular case a straightforward computation 
shows that among the multitude of translationally invari
ant spinorial generators which appear in the theory of 
free asymptotic fields there are-up to the irrelevant 
phase factor-two and only two distinct candidates which 
satisfy (1), viz., 

-[p lA °a+(a) a(k J } 

choosing either 

c (llJ= (1, i) or c (k)= (1, -i), 

we get the supercharges in question, say, Q;l and Q:;. 
Notice thatS 
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(4) 

is neither proportional to P AB nor equal to zero and so 
violates (1). Furthermores 

{Q~, Q~}=F AS+ im 2 
EASB , 

where 

F AS = im 2f d
2 

\ (fp]M [p] / + [p] Ba[P] /)a + (p)a(J) 
wp 

=F SA'" 0, 

B -= i f d P ( -a (1 J + a (2 J + a (2 J + a (1 J ) 
2wp 

(6) 

(7) 

On the right-hand side of (6) one term, F AB, is sym
metric in the spinor indices and does not vanish; this 
violates, in turn, relation (2). F AS is definitely not 
proportional6 to MAS as it commutes with P,.. Of 
course, B also commutes with translations. Therefore 
Q~ and Q! cannot be identified with, say Q;':) and Q1>' 
resp., appearing in relations (1), (2), and (3). This 
observation implies also that at most one of the afore
mentioned supercharges can coincide with the super
charge admitted by the extended Coleman-Mandula 
theorem in the interacting field theory. 

Which of the two is the genuine supercharge and what 
meaning can be attributed to the other one? 

This dilemma is easily solved if we take into account 
that the scalar free field theory is always covariant 
under the mapping 

<p(x) - - «l(x) • 

Let us define the unitary operator 11 (7T2 = 1) by 

1Ia(l)(p)1I=a(1)(p) , 

1Iafp, a)7T = a(P, a) ; 

then 

(8) 

and vice versa. If Q~ is the supercharge linked to the 
interacting field theory, Q~ is not, but it is, of course
because of (8)-a good supersymmetry generator of the 
asymptotic free fields. 

By this simple example one sees that there if no way 
to tell which of the two supercharges is the genuine 
one, as they are subject to changes under transfor
mations, like 11, which on the other hand do not affect 
the tensorial charges P"" Ml'v, and B,. We have to 
choose one of the supercharges as the genuine one and 
nothing goes wrong as long as we stick conSistently 
to this choice. Similar situation arises in more com
plicated cases. 

3. DEMOCRACY OF THE DISCRETE SYMMETRIES 

The considerations presented in Sec. 2 have also 
another aspect which we are going to exhibit in this 
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section. This different feature concerns the compat
ibility of the 7T-transformation and supersymmetry in 
an interacting field theory. 

The conclusion drawn from these considerations is 
as follows: in a supersymmetric model consisting of 
one neutral spinor field Ij! in! ,A and two real scalar 
qJi~t), i= 1, 2, which interact with each other, the map
ping 

4~lnt,A(X)-1'lnt,A(X) , 

cannot be a symmetry of this model. 

To prove this assertion, assume on the contrary that 
the mapping is implemented by a unitary operator 7T; 
then, in addition to the supercharge Q~ responsible for 
the supersymmetry, we would have another super
charge Q A given by (8)7 as well, but this would violate 
(1) and (2), as was shown earlier. 

This assertion can be generalized. Let us consider 
a supersymmetric model of massive, interacting fields 
encompassing also scalar fields. Assume that this 
model is covariant under the mapping consisting of 
changing the sign of only some of the scalar fields, not 
all of them, and leaving the other fields invariant. This 
will be also valid, a fortiori, for the asymptotic free 
fields. 

In terms of the asymptotic fields any supercharge Q~ 
of the interacting field model can be expressed as a 
sesquUinear form of creation and annihilation opera
tors of all fields appearing in the model; notice that if 
single field were missing in this expression we would 
never recover from it [by using Q~ and (1)] the energy
momentum vector P" for the whole system of fields as 
the contribution of this missing field would be left out. 
As far as the scalar fields are concerned, Q~ is a 
linear expression of these fields. 

Let us write it in the form 

Q~ = a~ + b A + r A = a A + b A , (9) 

where a~ depends on the scalar fields which do not 
change the sign under the mapping, b A depends on the 
scalar fields which change the sign and r A is a term 
which does not depend on the scalar fields at all; as 
a~ and r A are not affected by the mapping we combine 
them in (9) to one term a~+rA EaA. 

As we assumed that there is a symmetry of the model 
corresponding to the aforementioned mapping, we have 
also beside (9) the supercharge 

The anticommutation relations between Q~ and Q~ 
must conform with (1); we have 
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c~o. 

Taking into account (9) and (10) these relations yield 

{aA,ail=(a+ c+ b+ blPAB , 

{b A , b1}= (a+c - b - b)P AB 

(11) 

(12) 

As the left-hand side of (11) does not depend on the 
scalar fields which change the sign under the mapping 
and the left-hand side of (12) does not depend on the 
sc alar fields which do not change the sign, the right
hand sides of (11) and (12) cannot be proportional to 
the whole energy-momentum vector, unless 

a + c = 0, b + b = ° 
or-because of the nonnegativity of the matrix-

a=c=b=O, 

which in turn entails 

Q~=Q~=O, A=1,2. 

We conclude that in the model described above the 
Simultaneous existence of supersymmetry and sym
metry consisting of changing sign of only a some of 
scalar fields is incompatible. 

Notice that this mapping is nevertheless a good can
didate for symmetry of a model in the absence of sup
ersymmetry as it does not contradict any fundamental 
assumption. 

4. DEMOCRACY OF THE INTERNAL SYMMETRIES 

An observation similar to that investigated in Sec. 3 
but concerning internal symmetry will be the subject 
of this secion. We shall show that the presence of 
supersymmetric covariance imposes restrictions in 
the choice of the internal symmetries. To demonstrate 
this we shall expoit mainly the relation (3). It can 
easily happen that in a supersymmetric theory a gen
erator of an internal symmetry-let us call it B
whose presence in a theory without supersymmetry is 
perfectly acceptable, does not conform with the basic 
relations and must be ruled out; e.g., we expect for 
every supercharge QA that, according to (3), 

[QA,B]=Q ... #-O 

is a linear combination of supercharges appearing in 
the model, but this does not need to be the case; more
over, it may happen that 

Thus QA if- :6sMQf) as well as VAB;f-AP AB would exclude 
B as a possible candidate for a generator of internal 
symmetry for the interacting theory; however, both 
ql:lantities, QA and V AB , are not ruled out in an as
ymptotic free field theory, where they appear as 
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legitimate symmetry generators. 

To make things clearer let us consider first a model 
consisting of one neutral spinor field ljJint and two real 

scalar fields <p~: and <p l!l interacting with each other. 
Let us further assume that these two real scalar fields 
are covariant under a U(1) transformations generated 
by b =B+ given by (7); for the asymptotic free (incom
ing or outgoing) fields IjJ and rp (A), k= 1,2 we have 

i[B, rp(ll + irp (2)J= rp 0.) + irp (2) , 

[B,IjJJ=O. (13) 

using (4) and (7) an easy computation yields 

(14) 

for C(l)= 'fic(2)= 1, resp. We infer from (14) that B is 
an admissible internal symmetry for an iteracting 
supersymmetrical model. 

Consider, however, the case of two neutral spinor 
fields 1jJ(.), a=I,2, aDd/our real scalar fields rp(A>, 
k= 1, 2, 3, 4, and assume that rp (ll and rp tn are covar
iant under a U(I) transformation, other fields being 
invariant under it,8 i.e., we have relation (13) and 

[B,rp(3)J=[B,rp(4)J=[B,IjJ<-)J=O. a=1,2. 

In this model we have two supercharges (L = 1, 2) 

-[P]AOa(&)+(a)a(k)} , 

where the coefficients C(LtkJ have to satisfy the rela
tions9 

2 E C(L'''C<M'f)+C(!AilC(Mal)=2l5C- M l5 'J , 
4=1 

4 

LC(LaJ)C(L&J)=O. 
j.1 

A straightforward computation shows that 

[Q~L),Bl 

(15) 

( 16) 

(17) 

= - .;;.. f ~! LEE (i[P1Aaa(b)(a)a(Il· - [P ]AOa(b)+(a)a(l) 
P I & " 

X(C(Lb4)lj/3_ C(Lb3)lj,4) . 

Here B is given by (7). If we require that the right-hand 
side be equal to 

L SLMQ(M') 
A , 

M 

in accordance with (3), we get the relation 

(18) 

which, because of (15), yields for 1=1,2 
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then from (18) it follows in turn that 

c(!b4)=C(Lb3)=O, 

which contradicts relations (15)-(17). Hence we con
clude that in this particular model the gauge transfor
mation U(l) which transforms only two of the four 
scalar fields, is prohibited as an internal symmetry 
of the interacting fields. 10 It is easy to see that a 
gauge transformation which simultaneously transforms 
(rp (I), rp (2) and (rp (3 >, rp (4» pairwise (which means that 
we have to do with two charged scalar fields) is already 
a good candidate for an internal symmetry of the inter
acting, supersymmetrical field theory. 

In the two examples presented above we tried to make 
plausible the conjecture that the presence of super
symmetry in a model suppresses those representations 
of the internal symmetries which single out a certain 
fraction of the fields of the same spin (in the examples 
at hand these are the scalar fields) and favors those 
which encompass all of the fields of the same spin. 
This is what we would call democracy of internal sym
metries in supersymmetric models. 

To corroborate this conjecture we are going to pre
sent arguments relying on more general basis. 

Let us consider a supersymmetric model consisting 
of massive scalar and spinor fields which interact with 
each other. Assume that this model is covariant under 
an internal symmetry and that the scalar fields can be 
separated into two sets, the fields {rp ~~LI' j =1, ... n/} 
of the first set are not affected by these symmetry 
transformations, while the fields of the other set 
{rp~=:,wk=l, ••. ,nu} transform nontrivially. The 
spinor fields are invariant under these transformations. 
The same will be true for the incoming and outgoing 
free fields {rpt}, {rpu}, etc. Let us concentrate on the 
action of one of the generators of these internal group 
transformations which we shall call B. For the free 
asymptotic fields we have 

[B, rp~Jll=o, j=l, ... ,nl' (19) 
"1 n~I 

[B, rpm =L akJ rp~J) + E bklrp~:), k =1 ... nu . (20a) 
J. I 1=1 

From the Jacobi identity of (B, rp\k1>, rpi m » it follows that 

(20b) 

As was mentioned earlier in Sec. 3, every spino rial 
charge QA is a linear form of all the scalar field ap
pearing in the model, viz .. 

"I "u 
QA =1: Q!i(rp~J» + 2>~(rp~:» 

J.I kol 

As B does commute with rpl and spinorial fields we have 
by virtue of (19) and (20) 

"II 

[B, QAl ~L [B, f:j~(cp:I)l 
kol 

"II "II 

='E L bkli3~(cp~l) =Q~ . 
kol 1.1 
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As Q~ does not depend on the fields cpt, {Q~, Q~+} cannot 
be proportional to P AB' the latter representirg the en
ergy momentum vector of the whole system including 
also CPI' unless Q~=O. Q~*O can not be a linear com
bination of spino rial charges inherent in the model, as 
required by (3); these charges conform namely, with(I). 
The only solution is Q~ =0, which leads to the relation 
among bkl and coefficients in front of cP in fji(cp) summed 
over k; this seems to be a rather special case, which 
needs further investigation. 

A similar reasoning can be applied in the case when 
the roles of scalar and spinor fields are interchanged. 

The conclusion resulting from these consideration 
reads: an internal symmetry which transforms only 
a part of fields of a fixed spin, leaving the other fields 
unaffected, and does not commute with all supercharges 
cannot be admited as a symmetry in an interacting 
sllpersymme tric field theory, although it can be a good 
internal symmetry in the absence of supersymmetric 
covariance. 

This statement can be further generalized, say, to 
the case of supersymmetric quantum theory of scalar, 
spinor, and vector fields. 

Each supercharge 

s v 

Q =~Q(P(rn(i»)+f; Q(') V(") 
A ~ S,A y V,A 

i= 1 Z= 

is a linear functional in all the asymptotic scalar real 
fields cp(P, i=l, ... , s, and Hermitian vector fields 
v~"L z = 1, ... , v (all of them of the same mass). 

Assume now that under an internal symmetry induced 
by some generators B" 1 = 1, ... ,n, only the scalar 
free fields are linearly transformed while the spinor 
and vector fields remain unaffected. Then for each B" 
which we shall call B, 

s 

[B,QAl = Q~ = L Q~(.il(cp(P) 
i,l 

no longer depends on V"') and therefore {Q~, Q~+} cannot 
reproduce the whole energy-momentum vector of the 
fields involved unless Q~=O. For Q~* 0 the extended 
Coleman-Mandula Theorem is violated. 

To summarize, let us state the following assertion 
about the democracy oj internal symmetries in super
symmetrical quantumjield theories: an internal sym
metry which transforms only some fields of a 
fixed spin, leaving the other fields unaffected and which 
acts nontrivially on at least one supercharge, cannot be 
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admitted as a symmetry in an interacting su!Jersv m -
In etric field theo ry, although it can be a good inte rnal 
symmetry in the absence of supersymmetric covar
iance; moreover, in the case of a model consisting of 
scalar, spinor, and vector fields even a symmetry 
which transforms all of the scalar (vector) fields 
leaving spinor and vector (scalar) fields unaffected is 
also ruled out. 
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The Bose-Fermi symmetry manifest in supersymmetry has non-super-symmetric realizations. 
Two examples of a new Bose-Fermi symmetry, called Clifford symmetry, are discussed. In the 
first example, the spin content of the Clifford multiplet (the analog of a supersymmetry particle 
multiplet) is 4(0,0) + 2 ((!,O) + (O,~)) + (!,~); in the second example it is 
25(0,0) + 20{(~,0) + (O,m + 5{(1,0) + (0,1)) + 16(M) + 4{(!,!) + (P)l + (1,1). The mass 
matrix for a Clifford multiplet is, in general, not a multiple of the unit matrix (which it is, however, 
required to be for an irreducible supersymmetry particle multiplet). 

PACS numbers: 1l.30.Pb, 02.20. + b 

I. INTRODUCTION 

The (extended) supersymmetry algebra is a nontrivial 
graded extension of the Lie algebra of the Poincare group. 1.2 

As with the Poincare group, the irreducible representations 
of the supersymmetry group fall into classes according to 
whether the momentum is timelike, lightlike, spacelike, or 
zero. Supersymmetry particle multiplets have been con
structed by means of the Wigner-Mackey method of in
duced representations3

; these states are labeled according to 
the value of Pa of the momentum, and by the eigenvalues of a 
complete set of commuting operators associated with the 
little group of Pa' In particular, in the case of timelike mo
menta,p2 = - m2

, a supersymmetry particle multiplet with 
the spin content (m,j - !) + 2(m,j) + (m,j + !) exists for 
eachj = O,!, 1,,,. and for each value of m > O. The cases 
j = O,! are the well-known chiral and vector particle multi
plets, respectively. 

Speaking very loosely, there is another way, completely 
different from supersymmetry, to generate particle multi
plets that contain both bosons and fermions. The idea is very 
simple. When one takes the "square root" of the Klein-Gor
don equation to produce the Dirac equation, spin or repre
sentations of 0(3,1) and spin - ~ appear. If one then takes 
the square root of the Dirac equations, not spin -! objects 
[SU(2) is simply connected!], but geometrical objects that 
contain spin O,!, and 1 = jmax arise in the formalism. Take 
the square root again, and geometrical objects containing 
spin O,!, 1 ,~, and 2 = jmax appear; and so on. In each case, the 
geometrical objects that arise in the formalism are rank-one 
tensors that transform under a certain pseudo-orthogonal 

group containing 0(3,1), whose representation is generat
ed by a set of elements in the enveloping algebra of an irredu
cible representation of a Clifford algebra C. Upon restriction 

to the 0(3,1) subgroup, these tensors decompose into the 

direct sum of irreducible 0(3,1) representations. The di
mensions and spin content of these tensors is fixed. This is 
clearly not equivalent to what happens in supersymmetry, 
where, for example in the timelike momentum class, unitary 
irreducible representations exist for each value ofj, of dimen
sion 4(2j + 1).3 Yet in both formalisms symmetry transfor
mations exist that mix hosons and fermions. In the present 

case the symmetry transformations are given by exp ( E ) , 
where E generates C. It seems appropriate to name this new 
symmetry Clifford symmetry, after W. K. Clifford. 

In this paper the two simplest representations of Clif
ford transformations are considered, namely the representa
tion associated withjmax = 1 in which C = Cg, and the repre
sentations associated withjmax = 2 in which C = C16• For 
these cases, denoting the rank-one Clifford tensor by,p, the 

0(3,1) decomposition is (i) Umax = 1; dim,p = 16) 
,p = 4(0,0) + 2 ( (!,O) + (O,!)) + (!,!); and (ii) Umax = 2; 
dim,p = 256) ,p = 25(0,0) + 20{ (!,O) + (O,!)) 
+ 5{(1,0) + (0, III + 16(!,!) + 4{(q) + (P)) + (1,1). 

II. BASIC FORMALISM 

The lowest-dimension Clifford multiplet is formed 

from a 16-component irreducible 0(4,4) spinor which un---- ---
der the restriction of 0(4,4) to an 0(3,1) subgroup, de-
composes into the direct sum 4(0,0) + 2 ( (!,O) + (O,!) ) 

+ (!,!). The restriction of 0(4,4) to 0(3,1) is realized as 
follows: 

Let yx (a,/J,'" = 1,2,3,4) denote a real 4 X 4 irreducible 
(Majorana) representation of the Dirac matrices, where 

and 

ga/3 =~/3 = diag(I,I,I, - 1). 

Define 

and 

r = - ~a/3Jlv yxyPt'yV 

= -ylfry4, 

(1) 

(2) 

(3) 

(4) 

(note that E, y4, and r are skew symmetric and have square 
equal to - 1). The antisymmetrized products of the yx 

(5) 

satisfy 

[sa/3'YJl] = o:yP - ~yx (6) 
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and 

[saP,Sltv] = g"ItSpV _ g"vSPIt _ gPltsav + gP"salt , (7) 

and are the generators of a four-dimensional irreducible re

presentation of SO(3,1); 

(8) 

where the {j)a/3 = - {j)Pa are six real parameters. (For nota
tional simplicity, throughout this paper a representation of a 
group G is simply denoted as G.) Since (tilde denotes 
transpose) 

t'~ = - ~y" (9) 

and 

t'E = Ey", (10) 

one finds that 

saP~ = _ ~saP (11) 

and 

saPE = _ ES aP, (12) 

so that, for SE SO(3,1), 

S~=~S-I (13) 

and 
- -I &=ES . (14) 

Equations (13) and (14) may be written asp = SpS, withp 
equal to E or ~ . p is skew symmetric; if, however, there exists 
a symmetric matrix 'T = f~'Tqp = 'Tpq that satisfies 'T = S'TS, 
then one can define a set of matrices Eq by 
EqEp + EpEq = 2'Tqp, and generate particle states that 
transform under the group generated by a set of elements in 
the enveloping algebra of the Eq • This is a mechanism where
by one can generate particle multiplets containing both bo
sons and fermions. Since p = - p, p cannot be utilized in 
this construction. However, by Eq. (9), ~y"Pa is symmetric, 
and moreover satisfies an equation of the form 
y4y"Pa = Sy4y"p~S [wherep~ = Aappp, andAESO(3,1)], 
since 

(15) 

under SO(3, 1). [Here A a 13 = D p - {j)a 13 + ... = (e - w)ap.] 
Therefore a set of operators Eq may be defined by 
EqEp + EpEq = 2(~y"Pa)qp, [Pa,Eq] = 0, and 
[rp,Eq] = iS~:Ep, thereby realizing a grading of the Poin
care Lie algebra and supersymmetry.21 

If one wants to construct a p a -independent symmetric 
matrix 'T satisfying an equation similar to 'T = fI'TS, then one 

must utilize a group larger than 0(3,1). We shall utilize 

0(3,3) . Let r A (A,B, ... , = 1, ... ,6) be six real matrices that 
generate an irreducible representation of the Clifford algebra 
C6 

rArB + rBr A = 2g4B, 

where 

gAB =g4B = diag(l,l,l, - 1, - 1, - 1). 

Define 
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(16) 

(17) 

then 

and 

(r7)2 = 1. 

A particular representation of the r matrices is 

and 

r a -( 0 
-Ey" 

r s =( 0 -ET 
r 6 =( 0 

-E 

y"E) 
o ' 

TE) 
o ' 

-E) 
o ' 

The generators of SO(3,3) are 

MAB = _ HrA,rB], 

and they satisfy 

[MAB,rR] = D~rB _ D~rA 

and 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

[MAB,MRS] =gARM BS _gASMBR _gBRMAS +gBSM AR. 
(27) 

In the particular representation ofEqs. (21)-(24), the MaP 
are given by 

MaP = (Soap 0) 
_saP (28) 

and M 56 is represented as 

(29) 

An element ME SO(3, 1) is given by 

(30) 

where S is defined in Eq. (8) . 

In order to construct the symmetric 'T matrix, we must 

first define a rank-two anti symmetric 0(3,3) "metric," de
noted as fl. fl may be defined by requiring that 

rAfl = flrA. (31) 

Then 

r 7fl = _ flr 7 (32) 

and 

MABfl = _ flMAB, (33) 

so that 

fl =MflM (34) 

for ME sot 3, 3) . In the above representation, fl may be cho-

Patrick l. Nash 2958 



                                                                                                                                    

sen to be 

n=r l r 2r 3 

I) 
O· (35) 

There are two possible choices for apa-independent 

symmetric matrix 7 satisfying 7 = M7M, ME SO(3, I) . The 

first is 7 = - nr 7 = (~ ~) [in this case, 7 = M7M is valid 

for ME SO(3,3)], and the second choice is 

7 = - r 4r 7 = 2nM 56 = (; -or). The choice for Tis 

contingent on the following observation. The parity trans

formation (xil--+ - xi, ~t ) contained in 0(3,3) may be re-

(0 I) . presented by M p = 1 0' and the tIme-reversal transfor-

. . (0 1) 4 mation (x'I--+x', ~ - t) represented by M T = . 
-1 ° - 7 7 - 7 7 NowMpnr Mp =nr andMTnr MT = -nr , 

while MpWM 56Mp = - WM 56 and 
M T WM 56M T = WM56. Thus it is possible to formulate 
this representation of Clifford symmetry in a manner that 
retains one of the discrete symmetries of parity or time rever
sal as a manifest symmetry, but not both. We shall retain 
time reversal as a manifest symmetry, and therefore we 
define 

(36) 

At this point we must introduce some index notation. 

Let t/J denote an 0(3,3) spinor that transforms under the 

8 X 8 irreducible representation of 0(3,3) that has been de

fined above. Associate 0(3,3), indices as follows: t/J-t// 
(a.b, ... = 1 •...• 8) n-nab = - nba; fi,n-t/Jb = t//nab ; 
- n -I_n abo and so the convention is n Obnbc = - t)~. 

According to this convention, spinor indices are to be raised 
according to t/Ja = n abt/Jb and lowered according to 
t/Jb = t//nab; rA_rAab' In index notation Eq. (31) reads 
r~b = - rta, Eq. (32) as r:b = rba. Eq. (33) as 
M~: = Mt:, andEq. (34)as!1ab = MCancdMdb' Equation 
(36) is tab = WacMS6cb = - 2M~~. 

We are now equipped to formulate the main result of 
this paper. Let Ea denote the generators of a real irreducible 
representation of the 28-dimensional (pseudo -) Clifford alge
bra C8 • The Ea are required to be real and to satisfy 

EaEb + EbEa = 27ab · (37) 

The 28 antisymmetrized products of the Ea comprise a basis 
for C8• and the Ea may be represented by real 28/2 X 28/2 
matrices. The Ea are related to ea satisfying 

gab = diag(I,I.I,I. - 1, - 1, - 1, - 1), 

by an orthogonal transformation Ea = eb Tba, where 

(S34 
T= - v'2 \812 S12) 

S34 . 

The eab = - H ea ,eb ]. and hence the 
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(38) 

(39) 

(40) 

generate a (real) irreducible 16 X 16 dimensional representa

tion of 0(4,4). The Eob satisfy 

and 

(41) 

[Eab,Ecd ] = 7acEbd - 7adEbc - 7bcEad + 7bdEac' (42) 

We recall that 7=M7MforME SO(3,1) and 
M = M T' This may also be expressed as 

(43) 

Consider the matrices EaMa b; they satisfy the same anti
commutation relations as the Ea :EcMcaEdM db 
+ EdMdb EcMca = 2Mca7cdMdb = 27ab' Therefore the 
EaMo b generate an irreducible representation ofC8 . Howev
er there is only one irreducible representation of Cn for n 
even.s Thus the EaMab are isomorphic to the Eo, i.e., there 

exists an LE ! the restriction of 0(4,4) to an 0(3,1) sub
group I such that 

(44) 

Therefore there exists a 2-1 map of the representation of ----- -----
! 0(4.4) restricted to 0(3,1) I generated by the Eab into 

the representation of 0(3, I) generated by the M "P, which is 
given by 

Mba = ~c trL -IEaLEc. (45) 
16 

The map is into and not onto because, for example. as we 
have seen above, the parity transformation Mp does not pre
serve din the sense ofEq. (43)], so thatL (Mp) does not exist, 
[Note that L (RMpR ) exists, where ~ is_an automorphism 
thatmapsTinto!1r7:~!1r7 =R7R,R =R -I. However, 
RMpR does not represent the parity transformation.] 

For M(w) = exp( lI2wopMap IE SO(3,1), L (w) is ex
plicitly given by 

L (w) = exp{ 1I2(J abEab JE SO(3, 1) , 

where 

(Jab = _ (Jba = l/2wapMapocr<b. 

(46) 

(47) 

This representation of SO(3,1) is, of course, reducible [as is 
the representation provided by the M (w)]. The form of Eqs. 
(46) and (47) suggests that we define the quantities 

EaP = IMaPa r<bE (48) 
2 cab' 

which are the generators of a reducible representation of 

SO(3, 1) . [If one picks a representation of the Ea, then it is 
straightforward to construct a unitary (orthogonal) similar
ity transformation U that reduces the E af3 to the direct sum 

U_IEOPU=(SOoOP _~ap ~ ~~) (49) 
o - gl'At);;ffIVI 

o 0 0 

= 2! !,O) + (O,~) J + (H) + 4(0,0), where 0 in Eq. (49) repre
sents the 4 X 4 zero matrix. We shall derive this spin content 
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again below in a different manner.] 
The first example of a Clifford multiplet <P of (contra

variant) rank one is defined to be a 16-component irreducible 

0(4,4) spinor that transforms under SO(3, 1) according to 

~ / = L ({t))-I<p, (50) 

where L ({t)) is defined in Eq. (46), and under time reversal 
according to 

(51) 

where LT satisfies Eq. (44) with M = MT' 
The spin content of <p may be derived as follows. Since <p 

has 16 components, it can be expanded in terms of the linear
ly independent basis vectors ofa 24 -dimensional Grassmann 
algebra ;§ 4' Let ej (ij,k,h = 1,2,3,4) generate ;§ 4: ejej + e/e j 
= 0; then 1, ej,ejej (i <j), ejejek (i <j < k), and e1e2e3e4 com-

prise a linearly independent basis for ;§ 4' Formally one may 
write <p = <Po + <p jej + !<p iJejej + .... <p contains spin -!, so 
the indices p,j,k,h 1 may be identified as SL(2,q spinor indi
ces. <p transforms in a covariant manner under time reversal, 
so we must have equal numbers of (!,O) and (O,!) indices. 
Therefore we put ej = (OA'OX') [OA is a two-component 
spinor transforming under D (1/2.0); 0 X' is a two-component 
spinor transforming under D (0.1/2)], and write <p as 
<p = <Po + <p A(J A + <Px' (J x' + ! <p AB(J A (JB + .... Using the 
usual techniques of symmetrizing and taking traces, one 
finds that the SL(2,q decomposition of <p is given by 
<p = 4(0,0) + 2\ !,O) + (O,!) 1 + (H)· 

The set of symmetry transformations that produces the 
Bose-Fermi mixing in this formalism is generated by the Ea, 
and is an eight-anticommuting-parameter family of trans
formations whose generic member we denote as 

C(¢) = exp { ;2 Ea~}, (52) 

where ~ is a real 0(3,3) spinor-valued Grassmann variable 

~¢b + ¢b¢a = O. (53) 

The product of two such transformations is given by 
C(¢dC (¢2) = expl2-1/2Ea¢~ + 2-1/2Ea¢~ 
+ H [Ea ¢~ ,Eb ¢~ ] + 
rz[2-1/2Ea(¢~ - ¢~),HEb¢t,Ec¢2]] + ... J 

= exp!l/2Tab¢~¢~ 1 C(¢! + ¢2)' where we have used the 
well-known Baker-Cambell-Hausdorff formula, and 
[Ea~ ,Eb~] = 2Tab~~,alongwith[¢'¢I'¢2] = O. There
fore the set of C (¢) mesh together to form a type of ray repre
sentation of an abelian group. 

Let ¢/a = M a b ¢b; then by Eq. (44), EaMab ¢b = Ea ¢/a 
=L -IEa¢aL. Thusexp!(2- 1I2)Ea ¢,al 
= L -Iexp [ (2- 1/2Eo ¢alL, or 

C (¢/) = L -IC (¢)L. (54) 

Therefore, if <p / = L - I <p and ¢ = C<p, then 

(<p /) = C/<p / = C'L -I<p = L -IC<p = L -I¢ = (¢r,so that 
the Clifford symmetry and Lorentz symmetry are 
compatible. 

In order to construct an 0(4,4) [restricted to 0(3,1)] 

scalar Langrangian from <p, an 0(4,4) rank-two metric 
spinor X is needed. We define X by requiring that 
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EaX = - XEa' 
The minus sign is required in this equation so that 

eX =XC- I
. 

Equation (55) implies that 

EabX = - XEab , 
so that 

LX =XL-t, 

(55) 

(56) 

(57) 

(58) 

for LE SO(3, 1) . Since the Ea are linearly related to the ea , X 
may be equivalently defined by eax = - xea. el , e2, e3 , and 
e4 are symmetric, while e5, e6 , e7 , and eg are skew symmetric, 
so that one choice for X is 

X = e l e2e3e4 • (59) 

Notice that -
X=X (60) 

and 
X2 = 1. (61) 

We shall not pursue the construction of a Langrangian 
field theory based on this Clifford multiplet other than to 
point out that the mass matrix M appearing in such a theory 
need not be a multiple of the identity (in contrast to super
symmetry, where all of the particles in an irreducible multi
plet must possess the same mass). Under a Clifford transfor
mation C, M transforms according to 

Mf---+M = CMC - 1, (62) 
so that a term such as <p tXM<p in the Langrangian is invar
iant under a Clifford transformation: 

¢tXM¢ = <p tCXMC<p = <p txc -IMC<p = <p tXM<p. 

By Eq. (60), X is symmetric: X ....... X i) = Xii 
(i,j, ... = 1, ... ,16). Therefore we can reproduce the previous 
calculation with X replacing T. Define the generators Fi of a 
real irreducible representation of the 2 16-dimensional (pseu
do -) Clifford algebra C I6 by 

F .. Fj + FjFj = 2Xi)' 
Then 

Fi) = - HF;.Fj] 

(63) 

(64) 

generate an (irreducible) representation of 0(8,8). A Clif
ford multiplet <p of dimension 21612 = 256 can be defined to 

----- -----
be an 0(8,8) [restricted to 0(3,1)] spinor. Using an argu-
ment analogous to the discussion following Eq. (51), the spin 
content of <p may be evaluated by expanding <p in terms of 
four spin or-valued Grassmann variables (OA'O X"; bA,b x'). 
One finds that the SL(2,q content of <p is given by 
<p = 25(0,0) + 20[(!,O) + (O,m + 5[(1,0) + (0, III + 
16(~,~) + 4 [ (I,!) + (~, 1) 1 + (1,1). As with the previous Clif
ford multiplet, the mass matrix for this <p need not be a multi
ple of the identity matrix. If one requires the mass matrix M 
to be Lorentz invariant, M = L - I ML, then M is only re
quired to be a multiple of the identity on each irreducible 
SL(2,q subspace. 
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A ~istribution function formalism is developed for perturbation theory and inverse-energy
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the~re~) 11ml!. A polynomIal expansion is also developed for the same. Finally, some applications 
are mdlcated. 
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1. INTRODUCTION 

A statistical approach to nuclear structure calculations 
known as the spectral distributions method or statistical 
spectroscopy has been recently developed,l in part, to over
come a major practical Iimitation in the conventional shell
model2 approach. By dispensing with the need to know the 
nuclear wavefunctions these statistical methods make it pos
sible to handle calculations in large model spaces. The the
ory is based on the recognition of certain simplifying features 
arising out of the many-particle nature of the model spaces, 
by virtue of which, strengths and expectation values exhibit, 
in most cases, a smooth behavior (with small fluctuations) 
over the model space spectrum. Recently, the method was 
successfully applied to the study of electromagnetic sum
rules,3 beta-decay giant resonances,4 single-nucleon trans
fer, 5 and so on. In this paper we extend3 this statistical ap
proach to perturbation theory and inverse-energy-weighted 
sum-rules. 

In a conventional nuclear shell-modee calculation, one 
first generates the eigenvalue and eigenvectors of the Hamil
tonian in a many-particle model space consisting of m parti
cles distributed among N single-particle states with two
body interactions between the particles. Then the expecta
tion values and strength functions of other operators of in
terest are calculated in the Hamiltonian eigenstates. All 
properties of the nuclear system in the chosen model space, 
and with the chosen interaction, are then defined, and one 
expects to get better and better results (as compared with 
experiment) by enlarging the model space and improving the 
model interaction. But, in practice, this soon becomes im
possible since, even for relatively small values of m and N 
(and even if there are simplifying symmetries), the dimen
sionalities of the matrices to be constructed and diagonalized 
become too large to handle even for the most sophisticated 
computers. 

The purpose of statistical nuclear spectroscopy is to 
overcome this limitation by essentia1Jy starting at the other 
end of the problem. The idea is to look at the global proper
ties of the Hamiltonian and other operators in the model 
space, and at the correlations between them. Some general 

"Supported in part by the National Science Foundation and the Depart
ment of Energy. 

h)Present address: Department of Physics. SUNY College. Fredonia. NY 
14063. 

properties of the system can be obtained most readily this 
way.6 Level densities and spectra can also be constructed 
from the moments.6.7. In fact, at least in finite-dimensional 
model spaces, one could in principle produce all the micro
scopic details by evaluating moments and covariances up to 
the order determined by the dimensionality of the model 
space. But this, by itself, would not be of much practical 
significance, if it were not for the existence of two helpful 
factors that contribute towards making this approach more 
successful than would be presumed otherwise. 

The first simplifying factor derives from the recognition 
of the role played by a central limit theorem6 (CLT) in many
particle model spaces constructed by distributing nucleons 
over some finite set of single-particle states. Then, by virtue 
of this CL T, in the limit of large particle number, the 
smoothed eigenvalue distributions for most Hamiltonian op
erators in the model space become6.S close to Gaussian. This, 
in turn, impIies9 closely related characteristic asymptotic 
forms, for expectation values and strengths of other opera
tors, defined by only a small number of traces over the model 
space of operators and their products. Such operator traces 
can be calcuated lO

•
lI by methods which do not involve con

struction of any Hamiltonian eigenfunctions. The fact that 
such traces can be obtained6 in a many-particle space by 
"propagation" from lower particle spaces is the second sim
plifying factor. This requires one to evaluate those traces 
only in a minimum defining set of spaces of low particle or 
hole number. These two features make the statistical ap
proach attractive, especially in model spaces oflarge dimen
sionality. Moreover, by its very nature, it gives results as 
more or less explicit functions of the Hamiltonian matrix 
elements so that one can easily connect the features of the 
Hamiltonian with the corresponding properties of the 
strengths and expectation values. 

The purpose here is to extend this statistical approach 
to inverse-energy-weighted sum-rules so that we can evalu
ate them in terms of traces of operators and operator pro
ducts without having to know their eigenvalues and eigen
functions. For this, we first reformulate the conventional 
Rayleigh-Schrodinger perturbation theory12 in terms of 
parametric derivatives of a distribution function and then 
derive an orthogonal polynomial expansion for the same. We 
also derive the result in the CLT limit and indicate some 
applications. Before we do all this, let us familiarize our-
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selves with a special set of orthonormal polynomials that are 
used in statistical nuclear theory. As usual we take the sys
tem to consist of m nucleons in N single-particle states with 
two-body interactions between the nucleons. But some of the 
results derived in this paper (those in Sec. 4A\ seem to be 
applicable more generally. Moreover, all the results apply 
for both discrete and continuous spectral densities p( W). 

2. ORTHONORMAL POLYNOMIALS 

Let H be the Hamiltonian for the nuclear system and 
p( W) denote the density of states at energy W. Let d be the 
dimensionality of the model space. Associated with the den
sity p(x)is a complete set of orthonormal polynomials P/l
such that 

J P}«x)Pv(x\o(x) dx = fJ/l- V ' ( 1) 

(2) 

These polynomials can be constructed explicitly in terms of 
the density moments 

Mp = Jp(z)zi' dz = (HP)m = ~ «HP»m, (3) 

where we use the notation that, for any operator G, < < G ) ) m 

denotes the trace over the model space and (G ) m de
notes the average expectation value. The first two polynomi
als are 

(4) 

where g' = Ml and 02 = M2 - Mi are the centroid and 
variance. The polynomial of order v requires density mo
ments of orders up to 2v and is given by13 

Ml M 2 ... M" 

M2 

z 

where D" is the determinant in Eq. (5) with the last row 
replaced by [M",Mv+ 1 , ... ,M2,,]. 

When the density is Gaussian, i.e., 

,(5) 

p(W) = (21Tcr)-1/2 exp{ - (W - g'f12a2j, (6) 

the polynomials P/l- are related to the Hermite polynomials 
HI' by 

P/l-(W) = (,u!)- I12He/l-{(W- g')lO'j, (7) 

where 

Hel'(z) = 2 -/l-12HI' (zh/2). 

When the density is of chi-squared type, theP/l- are related to 
the Laguerre polynomials. 

In terms of the orthogonal polynomials PI' (x) one de
rives9 for the expectation value of an operator K, 

K(W)==(WIKIW) 

= (dp(W))-I«KfJ(H - W»)'" 

= I(KP/l-(H)mp}«w). (8) 
/l-
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This polynomial expansion is found9 to be rapidly conver
gent due to the action of a central limit theorem in many 
particle model spaces. This will be discussed in more detail 
later. K (W) inEq. (8) involves only traces of products ofoper
ators. These traces can be evaluated without having to know 
eigenvalues and eigenfunctions. In addition, because of the 
rapid convergence, we need only traces oflow order and they 
can be evaluated10

•
ll fairly easily even for systems oflarge 

dimensionality. 
We seek to obtain such a formalism for the inverse

energy-weighted sum-rules (IEWSR). First we review, very 
briefly, convergence and the central limit theorem. 

3. CENTRAL LIMIT THEOREM AND CONVERGENCE 

As noted earlier the many particle nature of the model 
space ensures rapid convergence of the polynomial expan
sion (8). It has been known for many years now that as we 
increase the number of particles, the model space eigenvalue 
density goes rapidly to Gaussian, as a consequence of the 
central limit theorem. In the case of noninteracting particles 
this comes about because the density convolutes as we add 
particles. Thus, 

Pm (x) = JPm-dX-YlollY)dY Pm-l ®Pl[X] 

(9) 

in which m stands for the particle number. The density of 
energy states for the m-particle system is then an m-fold 
convolution of the single-particle energy density. Then, by 
the simplest version of CLT, Pm (x) approaches Gaussian for 
large enough particle number (for characteristic single-parti
cle spectra m;::::6 is enough for a good Gaussian). 

The convolution argument given above requires that 
the energies of the different particles be additive and inde
pendent. These conditions are not met for a system of inter
eacting nucleons. The Pauli blocking effect (which can be 
ignored for dilute systems, i.e., m <N) violates statistical in
dependence, and additivity is violated if interactions have to 
be considered. Despite all this it is foundS that all nuclear 
Hamiltonians which give reasonable agreement with experi
mental data have model space spectra which are close to 
Gaussian. This is better understood 1 by studying an ensem
ble of Hamiltonians of two-body interactions. It is found that 
the ensemble-averaged density is Gaussian, and that for 
large systems (l<m<N) only a negligible fraction of the 
members of the ensemble give deviant densities. However, in 
actual calculations, corrections to Gaussian are often neces
sary and can be easily incorporated. 

The convergence of the density to Gaussian implies an 
asymptotic linearity in K (W), which is then given by the first 
two terms ofEq. (8). 

CLT 
K(W)- (K) + (K(H - (H»))(W - (H»)/a2. (10) 

This can be interpreted by a linear geometry in the model 
space of operators. It could also have been derived \4 by a 
linear response theory. In fact we shall use the response the
ory approach in the following to treat inverse-energy
weighted sum rules. 
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4. PERTURBATION THEORY 

A. Distribution function approach 

Consider a perturbation of the Hamiltonian H by aK 
where a is a small parameter and K is the perturbing opera
tor. Let E and Ea denote the corresponding eigenvalues of H 
and Ha =H + aK, respectively. Let Ea be expressed as a 
power series in a by 

Ea =E+aS](E) + a2S 2 (E)+ ... 

= ! ans" (E) where So(E) = E. (11) 
,,=0 

This definition implies that the S" (E ) are the same as the 
terms in the Rayleigh-Schrodinger perturbation series. In 
particular, 

S,(E) = (EIKIE), 

S2(E) = - L I(E'IKIE)1
2

• 

E'¥E E'-E 

(12) 

(13) 

Denote the density (normalized to unity) of eigenvalues of H 
and H a by P and P a' respectively and the correspondingpth 
moments by Mp and Mp(a). Now Mp(a) can be written in 
two different ways. By the standard definition of moment, 

Mp(a) = f: 00 xPPa(x) dx. (14) 

However, the perturbation H-+Ha takes the eigenvalue E to 
Ea· The number of eigenvalues E which thus go to Ea is 
p(E) dE. Then 

Mp(a) = f:",(EaY'P(E) dE. (15) 

The reader should be able to visualize this important relation 
by taking the example of a discrete spectrum. Denoting 
D "=a"! aa" for all n > 0, we have, by repeated application of 
the Liebnitz theorem in differential calculus, 

D "((E. YI ~ J},["l"t -;~:i' }D'Eol} 1161 

where 1~,i,,i2, ... ,1~ are such that 

io = 0, it + i2 + ... + ip = n, and each i,>O. 

But, from Eq. (11). 

DIEct = n~IG)l!an-/Sn. (17) 

Then it follows from Eq. (15) that 

DnMp(al/a=o 

~ f fIE{t'r:,t'''(" -7~:i' }'~dEI] dE (181 

= LYOf (E),t,EP-'a7(E) dE, (19) 

where the coefficient a~(E ) is given below by Eq. (21). Equa
tion (19) is obtained from (18) by the following argument: 
When any of the indices i,.i2, ... ,ip in Eq. (18) is zero, it con
tributes a factor Sole I = E to the corresponding term. Then 
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we collect together all the terms having a fixed number t 
(where t = 1,2, ... ,n) of these indices as nonzero and the rest 
(p - t ) zero. For each choice of the set of nonzero values, the 
(p - t ) zeroes can be chosen in (f) ways and each of those 
ways would contribute the same term to Eq. (18). Then we 
can fix the indices i, such that i],i2, ... ,i, are nonzero and 
i, +, , ... ,ip are zero. Therefore, 

i, + i2 + '" + i, = n (20) 

and the coefficient a7(E ) has the E-dependent factors 
(f)S;. (E )S;2 (E ) .. 08;, (E) which should further be multiplied by 
the number of ways in which i" ... ,ip can be chosen such that 
i"i2, ... ,i, are nonzero (and positive integers) and satisfy the 
condition i] + i2 + ... + i, = n (the rest being zero). This 
number is equivalent to the number of ways in which n iden
tical things can be put into t boxes with at least one in each of 
them, or the number of partitions of the number n into t 
positive terms. Denoting such partitions by P [there are (7 ~ I') 
of them]. we can write for a~(E ) the expression 

a;(E I ~ eh:(~)(n ~ i').(" -;,~:,) 
(21) 

Now integrate the right-hand side ofEq. (19) by parts t times 
to get 

a"Mp(a) I = if"" EP~fp(E)c7(E)) dE, (22) 
aan a = 0 ,=, _ '" aE' 

where 

c7(E) = (- l),(f)-'(t!)-]a~(E) 

= (- l),n;I,S;.(E)s;,(E) .. o8;,(E), 
t. p 

(23) 

where the partitions P are such that 
, 
I,ik=n, ik>l. 

k=' 

Equation (22) can now be written as 

f'" [a"P: I - i ~1p(E )c7(E)) JE p dE = 0, (24) 
- '" aa a = 0 , = , aE 

for all p. The term within square brackets in the above equat· 
ion then vanishes, and on integrating it with respect to E, 
we get 

a" Fa (E) I = i ~1p(E )C7(E )). (25) 
aa" a=O ,= ,aE'-' 

Here ~ (E) is the distribution function f~ ",Pu (x) dx. 
Since 

we can write 

1 

n!p(E) 

(26) 

x[anFa~E)1 _ n:f~Ip(E)C7+1(E))], 
aa a=O ,=, aE 

(27) 
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where c7(E) is given by Eq. (23). Equation (27) expresses 
S n (E ), the nth order term in the perturbation series (11), in 
terms of the nth parametric derivative of Fa (E) and the low
er order terms S,(E) for 1< n, which themselves are given in 
terms of lower order parametric derivatives of Fa (E). Thus 
we are able to relate Sn (E) to the parametric derivatives of 
Fa (E) up to the nth order. 

When n = 1, Eq. (27) gives the already known 14 result 
for the expectation value of K, viz., 

K(E)==:SI(E) = __ 1_ aF,,(E) I. (28) 
pte) aa ,,=0 

When n = 2 we get the expression for the second-order per
turbation term or the first inverse-energy-weighted sum, 

S2(E) = __ 1_ 
2p(E) 

[ iYF" I a { 1 (dF" I )2}] 
X da2 a=O - dE pIE) da a=O ' 

(29) 

and the explicit form for n = 3 is 

S3(E) = __ I_[d
3
F" I -~[P(E)SI(E)S2(E) 

6p(E) da3 a=O dE 

+ d
2

1
(p(E)(S)(E))3)). (30) 

aE 

B. CL T result 
Characterizing the distributionp(x) by its centroid 

s) =5, variance S2==-o2 and a set of translation and scale :i1-

variant shape parameters s,,' v>3, we can write 

dF" _" dS" dF" ---"t..,---
da "da dS" 

(31) 

and 

d
2
F" = I d2S" dF" + IdSv IdSI' d

2

F" . 
aa2 

v aa2 asv v aa I' aa aSJ1-aSV 
(32) 

In the CLT limit, we assumep" (x) to be Gaussian with cen
troid 5" and width a" l more generally, we can takepa(x) to 
be of the form (l/aa)f [(x - 5" )laa ] l, and then the v>3 
terms in Eqs. (31) and (32) do not contribute. Moreover, 

dF,,(E) = -p,,(E), 
dS) 

dFa(E) = _ {E - 5" PalE)}, 
dS2 2~ 

d2F,,(E) dp,,(E) 

asi =~' 

(33) 

(34) 

(35) 

d
2
F,,(E) = (E - Sa) {(E _ t.- )apa(E) + 3 (E)}, (36) 
as~ 4a! ~a aE Pa 

d2F,,(E) = d2F,,(E) = E-5" dp,,(E) +p,,(E). (37) 

dS2ds 1 dS 1dS2 2~ dE 2~ 

In addition, 

ds)1 = (K)m, 
da ,,=0 

(38) 

a
2

s1 I = 0, 
aa2 a=O 

(39) 
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aS2 1 r - =2~aKa, 
aa ,,=0 

(40) 

a2s21 = 20-: (41) 
da2 a=O K' 

where S = «(H - 5)(K - (K»)) laKa is the correlation co
efficient between Hand K, ok is the variance of K. Then 
using Eq. (31) to (41) in Eq. (29), for S2(E) we get 

S2(E) = (1 - s 2)(ok 1202)(E - 5 ). (42) 

This is the desired CL T result for IEWSR. 

C. Polynomial expansions 

We now obtain an expansion for the perturbation term 
S2(E) in terms of orthogonal polynomials defined by the mo
ments of the density. The v = 1 and v = 2 contributions to 
aF"laa and a2F"laa 2 in Eqs. (31) and (32) have been ob
tained above and now we evaluate the v;;;. 3 terms. For this, 
we choose9 the shape parameters sv;,3 (a) to be the vth order 
polynomial moments of the form 

sv(a) = fpa(Z)Vv(Z) dz, for v>3 

= (V,,(H + aK), 

(43) 

(44) 

where Vv(z) is a vth order polynomial in which the coeffi
cient of z" does not vanish. The precise form of Vv;d (z) will be 
chosen later. However, they must be functions of (z - 5)/a 
only, so that the invariance requirements of the shape pa
rameters are satisfied. The deformed density and distribu
tion functions are 

p,,(Z) = g,,(Z){ 1 + ~ sv(a)Tv(Z)}, 

F,,(z) = ff,,(X)dX. 

(45) 

(46) 

Here the centroid and variance deformations are included in 
g" (z), which is a function of the form (l/a)f[(z - 5 )Ia), and 
Tv(z) is another set of polynomial functions of (z - 5 )Ia. It 
follows from Eqs. (43) and (45) that the two sets of poly nom i
als Vv(z) and T,,(z) are related by an orthonormality 
condition 

fg(z)Vv(Z):r:,(Z) dz = DJ1-V for v>3, /1;;;.3. (47) 

Thus we can make9 the following choice for V,,(z) and Tv(z) 

V~(z) = p,, __ ) (z), 

d 
g(z)T,,(z) = - -to(z)Pv - I (z)), 

dz 

(48) 

(49) 

where Pv(z) are orthonormal polynomials associated with 
the density p(z). Then, 

dS" 1 = (KPv _ I (H), 
aa la=o 

(50) 

a
2

s I ( a2 I) ~ = --2Vv (H+aK) . 
aa ,,=0 aa ,,=0 

(51) 

Further, it is straightforward to show that (with/1;;;'v, v;;;. 3), 
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ap(E) = _ (E)P (E) 
a P v-I , 
~v 

(52) 

a
2

p(E) = ~{P(E)PV-l (E)}, 
as1asv aE 

(53) 

a
2
p(E) =E-5 ~{P(E)Pv_dE)}, 

as2asy 202 aE 
(54) 

a2
p(E) =0. 

aSl"asy 

(55) 

Now, using Eqs. (50)-(55) in Eqs. (31) and (32), we get, from 
Eq. (29), 

~ 
S2(E)=(1-;\~(E-5) 

+ J.-I (a2

sl• ; I) PI"(E) 
21">2 aa a=O 

+ I (KPI"(H)(KP1(H)~PI"(E) 
1">2 a 

+ I I (KPI" (H)(KPv(H) 
1">2 v>2 

xp-l(E)~{p(E)PI"(E)Pv(E)j, (56) 
dE 

where (a2sl"/aa2 )a = 0 has the form 

t r{3~rt2 (KH'KH r-'-2), 
r=O '=0 

where the coefficients {3 ~ are such that 

r;. (z) = 1J3 ~zr. 
r 

5. EXAMPLE AND APPLICATIONS 

A. A two-level example 

(57) 

(58) 

We shall first look at a two-level system and demon
strate the equivalence of the Rayleigh-Schrodinger theory 
and the distribution function formalism of perturbation the
ory as developed here. It is also instructive to apply the CL T 
result to the two-level case. 

Let a and b be the two eigenvalues (a < b) of a two-level 
system with Hamiltonian H. Then 

p(E) = Ho(E - a) + S(E - b)]. (59) 

Suppose 

(60) 

is a perturbation on Hand H-Ha =H + aK. The second
order corrections to the eigenvalues of H a , by the Rayleigh
Schrodinger theory, are given by 

S2(a) =gg*/(a - b), S2(b) =gg*/(b - a). (61) 

The eigenvalues aa and ba of Ha are easily calculated as the 
solutions of the characteristic equation IHa - A.I I = 0 
where I is the unit matrix. This equation is 

A. 2 - A. (a + b + a(u + v)) + (a + au)(b + av) - a 2gg* = o. 
(62) 
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In terms of the roots aa and ba ofEq. (62) we have 

1 IE Pa(E) = - [o(x - aa) + o(x - bajJ dx. 
2 - 00 

(63) 

Note that for au and bu ' 

aaa I = u, aba I = v, 
aa a=O aa a=O 

(64) 

a
2
aa I 2gg* alba I _ 2gg* . 

aa1 a = 0 = a - b' aa2 a = 0 = a - b 
(65) 

We then have 

apa ! 1 -a =-[uo(E-a)+vo(E-b)], 
a u=o 2 

(66) 

a
2
F I gg* gg* -+ =~(E-a)+~(E-b) 

aa a=O a-b b-a 

+ ~u28'(E - a) + !v2o'(E - b ). (67) 

Equation (29) can now be used to get 

S2(E)P(E) = ![~(E - a) + ~(E - b)], (68) 
a-b b-a 

which is exactly what the Rayleigh-Schrodinger theory 
suggested. 

We also consider the CL T result for this two-level sys
tem. Now 

If = !(a + b), 

02= Wa -blf, 

oi = Wu - V)2 + 4gg*], 

;2 = (u _ V)2/[(U _ V)2 + 4gg*]. 

Then, by Eq. (42), the CLT would predict 

S2(E) = [2gg* I(a - b )2][E - !(a + b )] 

(69) 

(70) 

(71) 

(72) 

(73) 

for the two-level system. This is the straight line passing 
through the exact vaJuesS2(a)andS2(b Jin Eq. (61). TheCLT 
result is thus a smoothed linear approximation of the exact 
behavior as one might have expected in this case. 

B. Perturbation theory 

One obvious application is to calculate the effect of a 
perturbation On the known eigenvalues of an otherwise un
perturbed operator. 

As an illustration we take the particular case of the re
cently developed statistical approximation 15 to model inter
actions in nuclear physics. In that development, which we 
review briefly, an algorithm was proposed for expanding any 
interaction in terms of a given set of operators, one motiva
tion for doing so being the study of the types of forces that 
dominate an interaction. The theoretical basis for the con
struction is a model space geometry which emphasizes the 
importance of traces of bilinear products of operators and is 
made effective by the operation of the central limit theorem. 

For any operator 0 defined in the model space, 

(o+o)m= IIOII~ 

is the square of a proper norm. Furthermore, 

(Ou +O(3)mIIIOallmIIOpllm =cos8ap 
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defines an inner product. We have a linear vector space here 
and we can make use of the results of linear algebra. So if 
(OI,02, ... ,Ok) is a set of independent operators defined in our 
space, then 

H = CIOI + CP2 + ... + CkOk + X. (76) 

If! Oa I is complete, then X vanishes. The Ca can be deter
mined from the (Oa + H)m and (Oa +Op)mby matrix inver
sion. The norm of (H - X) compared to the norm of H pro
vides a measure for the completeness of the expansion. 

By a proper choice of the operators 0 a' one can use this 
technique to study group symmetries and to gain physical 
insight into the types offorces that dominate an interaction. 

In one such example, the Brown-Kuo Hamiltonian 16 H 
was approximated by an extended French trace-equivalent 
(FTE) operator l5 H'(FTE), which looked after the orbital 
and isospin structure of H and also included projections of H 
along P (pairing operator), G2 [second-order U(4) Casimir 
invariant], Q.Q, L 2, S 2, andJ 2

• ThisH '(FTE) accounted for 
about 97% of the full width of H. Then 

H=H'(FTE) +HR, (77) 

where H R is the residual part of H. 
We now treatH R as a pertubation onH'(FTE) and cal

culate the ground-state energy Eo of H from the ground-state 
energy E b of H '(FTE). Then, using the CL T result and the 
fact that H' and H R are orthogonal, we get (up to second
order in perturbation theory) 

Eo;:::,E b + !(E b - (H')}[=;, - 1]. (78) 

In (dS)6, E b has the value - 59.46 MeV (whereH is the 
Brown-Kuo Hamiltonian), the perturbation correction 
turns out to be - 0.95 MeV, giving a value - 60.41 MeV for 
Eo. The exact value of Eo, obtained by shell-model is 
- 60.35 MeV. 

c. Moment of inertia 

Using the cranking model, 17 the moment of inertia of a 
nucleus can be expressed as an IEWSR. It is obtained by 
evaluating the energy increase when the intrinsic (body
fixed) wavefunction is rotated. Suppose the intrinsic wave
function or body-fixed frame is rotating about the x axis with 
angular velocity w. The wavefunction for the rotating nucle
us expressed in space-fixed coordinates is a solution of the 
time-dependent Schrodinger equation 

HcPw(r,t) = i~w(r,t). at 
(79) 

But cP w (r,t ) must be stationary in the body-fixed frame. Then 

A ) ;w'J.A. ( ) tPw(r,t = e 'fT," r,t (80) 

is stationary in the space-fixed frame. Now, inserting (80) 
into (79), 

A • a A A 

HrA (r,t) =1'1i'::;;-cPw(r,t) +fuuJx,p",(r,t). (81) 
'fTw at 

For <$",(r,t) to be stationary, it must have the form 
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<$",(r,t) = <$w(r)e-;E(W)'/fi. (82) 

and <$w(r) must obey the equation 

(H - fuuJx )¢w(r) = E (w)<$w(r). (83) 

Then, using Rayleigh-Schrodinger perturbation theory 

E(w) = Eo + w21i2 I I (ilJx lOW, (84) 
;¥o E; -Eo 

so that the moment of inertia is 

fx =21i2I l(iIJxIOW. (85) 
;'1'0 .E; -Eo 

To evaluate fx one normally feeds in the wavefunc
tions and energies from a model for the intrinsic structure. It 
can be evaluated analytically in special cases like a pure de
formed harmonic oscillator potential without spin-orbit or 
residual interactions. A proper model should include these 
features also in the Hamiltonian. But then evaluation by con
ventional methods becomes difficult. 

Using the CLT result (42) for IEWSR derived in this 
paper, we can write 

if. 
f x = 21f2( 1 - t; .H) ~ (Eo - (H»), 

• 2Uil 
(86) 

where Eo is the ground-state energy. We make here a simple 
calculation using a Nilsson one-body Hamiltonian 18 which 
consists of an anisotropic harmonic oscillator well, together 
with a single-particle spin-orbit force and a quadratic orbital 
angular momentum force 

H = I[- ~V7 + !Mw~(E)[ (x7 + Y7)(1 + jE)2 +z7(l- ¥f\ 
; 2M 

+ C/.S + DI2l (87) 
I I I , 

where E is the deformation parameter, C and D are chosen to 
reproduce the known shell-model level sequence at zero de
formation. Using the single-particle energy levels for this 
Nilsson Hamiltonian as tabulated in Ref. 18, we evaluated 
the CLT result for moment of inertia. A value of 59 1i2 was 
obtained for the nucleus I66Ho. The experimental value is 55 
If2 and the rigid body value is 70 1i2• A thorough study of 
moment of inertia of deformed nuclei taking into account 
pairing and other two-body correlations will be made in the 
future. 

D. Other applications 

Perturbation and IEWSR are used in several other 
places in nuclear physics, like the vibrating potential mod
el, 17 effective charges, 19 effective interaction theory20 and so 
on. Applications in other branches of physics also need to be 
looked into. 

6.SUMMARV 

A statistical approach to the many nucleon problem has 
been extended here to the treatment of perturbations and 
inverse-energy-weighted sum-rules. The first IEWSR, de
noted by S2' for an excitation operator K is defined by Eq. 
(13). Because of the energy denominator, this quantity is 
largely determined by the low-lying excitations and hence is 
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of interest in the study of collectivity, moment of inertia, etc. 
It also represents the second-order term in the Rayleigh
SchrOdinger series for the perturbation H_H + aK. We 
have developed a statistical perturbation theory, and then 
derived a polynomial expansion for Sz(E). The most impor
tant new results derived here are Eq. (29) for S2(E) and the 
general result (27) for Sn (E). In the CLT convergence limit, 
one gets the linear result (42) for S2(E). Corrections to this 
from the shape parameters of the density are given in the 
form of a polynomial expansion, Eq. (56). Further, we pre
sented a test application to calculate the perturbed eigenval
ue and a simple application to the moment of inertia in nu
clei. The results were very encouraging. 
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A calculation of the Casimir force on a circular boundary 
Siddhartha Sen 
School of Mathematics, Trinity College, Dublin 2, Ireland 

(Received 28 August 1980; accepted for publication 24 October 1980) 

The zero point energy of a three-dimensional scalar field in the presence of a circular boundary of 
radius R is calculated using a Green's function method. It is found that the energy is cutoff
dependent. The cutoff-dependent terms are explicitly calculated in terms of the geometry of the 
problem. It is found that 

E(cuo) = + 0.045 + -..£cu~ - [_I_Jc2(S)dS] IncuoR, 
2R 41T 256 

where S is the length of circular boundary (S = 21TR ), cis) the curvature of the boundary 
[cis) = l/R], and CUo is the cutoff frequency. 

PACS numbers: 41.10.Fs 

I. INTRODUCTION 

Recently there has been some interest in the Casimir 
effect. 1 The original "Casimir effect,,2 was an observable 
nonclassical force of attraction between two perfectly con
ducting plates. Casimir was led to predicting such a force by 
considering the zero point energy of a scalar field between 
the two plates. 

In this paper we will calculate the zero point energy of a 
three-dimensional scalar field (2-space + I-time) in the pres
ence of a circular boundary. We will call this energy the 
Casimir energy of the system. Our calculational procedure is 
based on a Green's function method similar to that of Bender 
and Hays3 and of Milton, DeRaad, and Schwinger.4 The 
motivation for the calculation was to see what happens to the 
Casimir energy when we change the dimensionality of space. 
In three spatial dimensions the Casimir force is attractive 
between parallel plates2 but repulsive for a sphere.4

-
7 What 

are the corresponding results in two spatial dimensions? In 
Sec. II the Green's function method which we will use to do 
our calculation is briefly explained. In Sec. III the method is 
applied to the case of a circular boundary. In Sec. IV the 
general expression for the Casimir energy is evaluated using 
the uniform asymptotic expansion technique employed by 
Milton, DeRaad, and Schwinger.4 Numerical evaluation of 
various integrals is also carried out. The finite part of the 
Casimir energy is found to be 

Efinite = + 0.045/(2R ). (1.1) 

In Sec. V the divergent or cutoff-dependent parts of the Casi
mir energy are discussed. The expression for the Casimir 
energy E (cuo) , including the cutoff-dependent term is 

E(cuo) = 0.045/(2R) - (l/R )'1~81ncu()R + ~Rcu~. (1.2) 

It is shown in Sec. V, by explicit calculation, that the cutoff
dependent terms are related to the geometry of the problem 
under consideration. Thus the coefficient of the cu6 term is 
shown to be proportional to the total boundary length, while 
the coefficient of the IncuoR term is proportional to 
S Ic(sW ds, where cIs) represent the curvature of the bound
ary at the point s. These results make it clear that the diver-

gences present in the expression for the Casimir energy can
not be eliminated by local subtractions, i.e.,8 by 
renormalizing the parameters of the scalar field alone. It is, 
however, possible to argue that for the system consisting of 
the scalar field plus a region inside a boundary the parameter 
of the scalar field and the parameters of the boundary must 
both be renormalized when one eventually constructs a 
quantum theory for such a system. Finally there is an appen
dix in which a sketch of Pleijel's9 result relating the asymp
totic behavior of a certain integral of a Green's function to 
geometry, which we use to obtain the result of Sec. V, is 
given. 

II. THE GREEN'S FUNCTION METHOD3,4 

The method we use is standard. 3
,4 A quick review is 

included for the sake of completeness. Consider the follow
ing Green's function in a region r: 

(~ - V~)G+(x,y;r) = 8 D (x - y)8(r), (2.1) 
at~ 

where T = toe - ty' x = (X 1,X2 , ... ,XD), 

y = (Yl'Y2""'YD)' 8D(x) l>(xJ!8(x2 ) .. ·l>(XD) 

and x,yif. Writing 

G +(X,y,T) = f + 00 dw eiWTG +(x,y,cu), 
- 00 21T 

we get 

[ -V2 -cu2 jG+(x,y,cu)=8D (x-y). 

If we introduce 

- V 2 Un(x) = cu~ Un (x), 

where 

Un (x) = 0, when XEar, 
the boundary of the region rand 

I U~(x)U",(x)dDx=l>nm, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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Then we have 

f 
iWnT 

d DX G + (x,x,r) = i L _e_ . 
n 2w n 

(2.7) 

The expression on the right is obtained by choosing an ap
propriate contour of integration in the complex OJ plane. 
This contour characterizes the Green's function G +. Fol
lowing Schwinger's4,l0 prescription for continuing to the Eu
clidean Green's function we get 

E (OJo) = L HOJn)e - wnlwo 

r"" dOJ 2 - w Iwof G ( .) d D (28) = Jo -;;:- OJ e n + x,x,lOJ X. . 

This will be our tool for calculating the Casimir energy 
which will be defined to be the limOJo~ 00 of E (OJo)' 

III. THE CASE OF THE CIRCULAR BOUNDARY IN TWO 
SPATIAL DIMENSIONS 

We now apply Eq. (2.8) to the case ofa circular bound
ary in two spatial dimensions. For a circular boundary it is 
convenient to introduce polar coordinates (r,8) so that the 
equation for G+(x,y,OJ) becomes 

{ - [+ :r (r :,) + ~ :2] - OJ
2
}G+(X,y,OJ) 

= ..!.. c5(r - r')c5(8 - 8 '). (3.1) 
r 

Writing 

+"" 
G(x,y,OJ) = L gn(r,r')ein(IJ-IJ'), 

n = - 00 

(3.2) 
+ "" einllJ-IJ') 

15(8-8')= L ' 
n ~ _ "" 21T 

the differential equation satisfied by gn (r,r') is found to be 

:r [r :r gn (r,r')] - (n
2 - OJ2r ) + gn (r,r') 

= - 2~ c5(r - r'), (3.3) 

and gn (r,r') must satisfy the usual discontinuity condition 
(€-<J), 

[ 
dgn(r,r')] [ dgn(r,r')] 1 

r - r =(-)--. 
dr r~r+£ dr r~r'-£ 21T 

(3.4) 

There are two regions to consider in our problem. Region I 
where O<,r<,R and Region II, here R <,r<, 00. In Region I, 
g~ (r,r') is regular at r = 0 and tn (r,r') = 0 when r = R. From 
these boundary conditions and (3.4) we get 

g~(r,r') 

{

. [H (I)(Rw) ] 
- ~ I n (rOJ) n I n (r'OJ) - Hn (l)(r'OJ) , 

4 In(ROJ) 

- . [H (I)(ROJ) ] 
- ~Jn(r'OJ) n I n(rOJ)-Hn(l)(rOJ), 

4 In(ROJ) 
(3.5) 
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whereJn (r) represents a Bessel function andHn (I)(r) a Hankel 
function of the first kind. Choosing the Hankel function cor
responds to the boundary conditions appropriate for the 
Green's function G +. Similarly tnl(r,r') which vanishes when 
r = R and is to lead to an outgoing wave for G+(x,y,r) is 
found to be 

tnl(r,r') 

! 
i [ In(Rw) ] - - H (l)(r'OJ) J (rOJ) - H (I)(rOJ) , 
4 n n Hn (I)(ROJ) n 

- i [ I n (ROJ) ( ] - - H (i)(rw) J (r' OJ) - H l)(rOJ) 
4 n n Hn (I)(ROJ) n , r>r'. 

(3.6) 

Finally we determine the Greens function GO(x,y,OJ) corre
sponding to the case when there is no circular boundary at 
r = R. The appropriate g~ (r,r') is found to be 

g~(r,r') 

= {~ In(rOJ)Hn (l)(r'OJ) r<r', 

~Jn(r'OJ)Hn(l)(rOJ) r>r'. 
4 

(3.7) 

The expression for the Casimir energy can now be written as 

1"" dOJ "" 1"" E (OJo) = -- e - wlwo0J2 L r dr 
o 1T n~-"" 0 

r21T 

X Jo d8 gn (iOJ,r,r), 

where 

gn =(g!, - g~) in Region I 

==(g!,l _ g~ ) in Region II 

(3.8) 

so that E (OJo)=O when the circular boundary is absent. Sub
stituting (3.5), (3.6), and (3.7) in (3.8), we get 

r"" dOJ + "" rR 

E (OJo) = Jo -;;:- OJ2e - wlw
o n );~ "" Jo r dr 

X __ , [In(iOJrjp. __ n __ __ 1
2

" ( - .) H (lVwR ) 

o 4 I n (iwR ) 

+ L"" r dr f" d8 ( ~ i) [Hn (i)(iOJrjp 

In(iOJR) 

Hn (l)(iOJR ) . 

Evaluating the integrals using results of the type 

LR rdrJ~(ar) 
=!R 2[J~(aR) -In_ 1 (aR)Jn+ 1 (aR)] 

and making use of 

2n 
I n_ dx) + I n+ dx) = --In(x), 

x 
dJn I n _ 1 (x) - I n + 1 (x) = 2 -- = 2J ~ (x), 
dx 

Hn(x)J~(x)-Jn(x)H~(x)= ~, 
1TlX 

Siddhartha Sen 

(3.9) 

(3.10) 

(3.11) 
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we get 

1 +"" L"" E (mo) = ( - ) - I dy ye - yE 
21TR n ~ - "" 0 

x[I~(Y) + K~(Y)], (3.12) 
In(Y) Kn(Y) 

wherey = mR, € = 1/moR and In (x), Kn(x) are the usual 
modified Bessel functions defined by 

In (x) = e - n1Ti/2Jn (ix), 
(3.13) 

Kn(x) = !1Tien1Ti/2Hn (I)(ix). 

Equation (3.12) is our final expression for the Casimir 
energy. 

IV. NUMERICAL RESULTS 

In this section we evaluate (3.12) in the limit €-D (i.e., 
mo- 00 ). Making use of the fact that I _ n (x) = In (x), K _ n (x) 
= Kn (x), we can write (3.12) as 

1 "" L"" E(€)=(-I)- I dy.y·e- YE 
1TR n ~! 0 

x[I~(Y) + K~(Y)]+ To, (4.1) 
In(Y) Kn(Y) 

where 

To = (- )_1_1"" dy.y.e-YE[I~(Y) + K~(Y)]. 
21TR 0 Io(Y) Ko(Y) 

Integrating by parts, (4.1) can be written as 

1 "" 1 L"" F(€)=(-)- I - dxe- Enx 
1TR n ~ I € 0 

X ~ [X~lnIn(nX)Kn(nX)] 
dx dx 

__ 1_ ("" dx.x.e - EX ~ • lnIo(x)Ko(x). (4.2) 
21TR Jo dx 

Using the uniform asymptotic expansions for In (nx), Kn (nx) 
given by (for large n)!·4 

In (nx)Kn(nx) 

~ 1 / [1+ ~2(0.125t2-0.75t4+0.625t6) 
2n(1 + X2)! 2 n 

+ O(3) + .. 1 (4.3) 

where t = 1/(1 + X 2)1/2. We get for the contribution of the 
leading term ofthe expansion (4.3) to E (€), 

E (l1(€) = _1_ f ~ r"" dx. x 2 2 .e - Enx. (4.4) 
1TR n ~! € Jo (1 + x ) 

For the n = 0 term we use (for large X)1O 

1 
Io(x)Ko(x)~ - (4.5) 

2x 

to get the asymptotic contribution to To: 

EIOI(€)= __ dx.e- u = + __ _ 1 l"" 1 1 
21TR 0 21TR € 

(4.6) 

which is divergent as €-D. 
Let us evaluate E (l)(€). The summation over n can be 
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carried out to give 

E (l1(€) = _1_. ~ ("" dx·x 1 
1TR € Jo (1 +X2)1 . (l_e- EX)' 

Writing 

we get 

• (l) 1 11T 1 1 1 1T1 lImE (€)= -. -.- - -.- + -. 
E---D 1TR 2 C 2 € 24 

(4.7) 

It is interesting to note that the linearly divergent piece of 
E (Ol(€) cancells the corresponding term of E (I)(€). In Sec. V we 
will see that this cancellation can be understood from the 
geometry of the problem. 

We next evaluate numerically a few terms ofthe series: 

lim[E(€) - E(lI(€) - E 10I(€)] 
E--+O 

=(_)_1 f~ dy y~+~ l "" [{I' () K' ( )} 
2R n~O 1T 0 In(Y) Kn(Y) 

y2 ] 
+ n2 + yl ' 

where we have set € = 0 inside the integral and 

g= {2, n#O, 
I, n = O. 

we find 

Fo = 0.02925, 

FI = 0.01564, 

Fl = 0.00782, 

Fs = 0.0057. 

(4.8) 

(4.10) 

We also evaluate the next to leading asymptotic contribution 
of E (€) by using Eq. (4.3). This means evaluating 

E(2)= + _1_ f ~ ("" dy.y. [2xO.125y/(1 +y2)l] 
1TR n ~! n Jo 

_ 4XO.75y + 0.625yx6 
(1 + y2)3 (1 + y2)4 

=_1_ f Fill 
-2Rn~1 n' 

Fill = ~ r"" d . [2XO.125Y 
n n Jo Y Y (1 + y2f 

6XO.625Y ] + . 
(1 + y2)4 

We find that 

F~II = 0.01562 . 
n 

(4.11) 

(4.12) 

Comparing F ~ll for n = 1 and n = 2 with our numerical inte
gration results (4.10), we find they are very similar. Equation 
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(4.12) also tells us that a more careful evaluation of 
limE--+O [E (E) - E (l)(E)] is necessary since 1::=! F~) is a di
vergent quantity. In etTect we should not set E = 0 inside the 
integrals. We are thus led to evaluating 

.! In;l( r'" /" dn - H/(L + 1) +/(00)] + ... 
L+! )L+I 

and (4.14) 

L 1 L - = r + f/!{L + 1), r = 0.577···, 
! n 

where f/!{L ) is the Digamma function which has the property 
that for large L II 

1 1 
f/!{L )-lnL - 2L - 12L 2 + ... , 

weget 

F = ( - ) 2~ . [ ~ ] [r + InwoR ]. (4.15) 

Writing (L + 1) = woR, all the contribution to Fcomes from 
the first term ofEq. (4.13). The integral term does not cancel 
the divergent term. This is most easily seen if we note that for 
largeL, 

i'" e-UX 

--dn 
L+ I n 

e-(L+I) [ 1 2 

- L + 1 1 - (L + 1) + (L + 1)2 
(4.16) 

Thus our final expression for the Casimir energy, to at least 
two decimal place accuracy for the finite piece, is 

E (wo) = + _1_ X 0.045 _ _1_ InwoR + !i. w~. 
2R 128R 2 

(4.17) 

E (wo) for our two-dimensional problem appears to be cut-otT 
dependent unlike the result of Milton, DeRaad, and 
Schwinger for the three-dimensional conducting shell in an 
electromagnetic field. 12 We tum to a discussion of the diver
gent piece of Eq. (4.17) in the next section. 

V. DIVERGENT TERMS AND GEOMETRY 

In the previous section the Casimir energy was evaluat
ed and found to contain cutoff (wo)-dependent terms. It 
might be argued that these terms would not arise ifEq. (2.8) 
were properly evaluated. We will now show that this is not 
the case. If we accept Eq. (2.8) as a proper starting point for 
calculating the Casimir energy E (wo) then certain types of 
cutotT-dependent terms must be present. In order to be very 
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general we consider the case of a two-spatial-dimensional 
region with an arbitrary smooth boundary. It is further re
quired that the region be compact. Under these circum
stances Pleijel9 showed in 1954 that for large w, 

J d 2
xG(x,x,iw)- ~ . ~ - [1~1T J C(S)dS] ~2 

- _1 [_1_ J c2(s) dS] + .... (5.1) 
w3 512 

where S is the length of the smooth boundary an arbitrary 
point of which is located by means of S the arc length of the 
point from a fixed point on the boundary, cis) is the curvature 
of the boundary at the points and G + = G + - Go. A sketch 
of the way (5.1) may be derived is given in the Appendix. 
Clearly Eq. (5.1) is exactly what we need to discuss the diver
gences of E (wo) as Wo- 00 • 

We recall that 

E (wo) = 1"" d: ·w2e - w/w. f G + (x,x,iw) d DX. (5.2) 

Substituting (5.1) in (5.2) we get 

E (wo) = ~ ·w~ - (n J cis) ds )wo - (sh f c2
(s) dS) 

X InwoR + finite part of E (wo). (5.3) 

In our problem there are two regions to consider. Thus the 
divergent terms of E (wo) in terms of geometrical factors are 

E "'(wo) = ~w~ - (i!6 f c2(s) dS) InwoR· (5.4) 

The coefficient of the Wo term is zero, since 

(i cis) ds + L cis) dS) = O. 

Subtituting S = 21TR, 

cis) = 1/R, f ds = f" RdO , 

we get 

E CO(wo) = [(R /2)w~ - (l/128R ) InwoR ] (5.5) 

which agrees exactly with the result of Sec. IV. The presence 
of the cutoff-dependent terms in E (wo) can be viewed in at 
least two different ways. It can be argued that the boundary 
condition Un (x) = 0 for all Wn is physically unrealistic. Real 
boundaries become transparent for large frequencies. Thus 
the parameter Wo introduced in our calculations really repre
sents a physical quantity. Given the composition of the 
boundary and the way it interacts [in our case with the scalar 
field ¢ (x,t )] one should be able to calculate Wo' Once wo, for a 
particular boundary, is determined our expression for the 
Casimir energy is no longer ambiguous but represent the 
physically measurable zero-point energy of the system. 
Namely, that 

E (wo) = + 0.045 + [!i. w~ - -1-lnwoR ]. (5.6) 
2R 2 128R 

Ifin Eq. (5.6) we ignore the constant force the (R 2 /2)aJ~ term 
gives rise to, then Eq. (5.6) implies a change in the sign of the 
Casimir force in the neighborhood of a critical radius Rc 
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defined by woRe - 4S.42. When R > R e, the force is attrac
tive while for R <Re the force becomes repulsive. (Remem
ber Wo is not a variable.) A very intriguing state of affairs. 

Alternatively one can argue that the cut-off dependent 
terms are telling us that the "bare" parameters of the ex
tended object we are considering have to be renormalized. 
The system being considered consists of the scalar field ¢J (x,t ) 
and a region enclosed by the smooth boundary ar. Sche
matically we might expect the energy of the system to have 
the following structure: 

Etotal = E fie1d + Eboundary' 
(5.7) 

with 

Eboundary = as ~ + {3cR (s) ds + rc~ (s) ds + "', (5.S) 

where S ~ = length of the boundary, CR (s) the curvature of 
the boundarY,and a, {3, r, ... are numbers. The subscript R 
indicates that in general we might expect to have to renorma
lize the "bare boundary" parameters. For instance, we might 
have to write 

C~(S)~ [I - 0.35In(wolm)](1/R 2), (5.9) 

indicating that c~ = 1/R 2, when Wo = m. A procedure of 
this nature, with the quantitive S R' C R (s), c1, etc. identified 
as the observable parameters of the boundary, would lead to 
the observable, renormalized, Casimir energy E R being fin
ite and given by 

ER = + 0.045/(2R). (5.10) 

We do not have a procedure for carrying out such a renor
malization scheme in a systematic way and mention it only 
as a possibility. \3 
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APPENDIX 

We will sketch now Pleijel's result 

f d 2X (; (x,x,i) - ~ ~ - _1_ [_1_ f cis) dS] 
W S w2 1217' 

__ 1 [-1-fC2(S)dS] +''', (AI) 
w3 512 

where S is the length of the boundary, cis) the curvature may 
be obtained. Our treatment is based on the paper of Stewart
son and Waechter (Ref. 9) and is included for the sake of 
completeness. A sign error of Pleijel's is corrected in this 
paper. The mathematical problem we have to solve is the 
following: 
Given 

[ - \72 + S2]{; (x,x,s) = 0 (A2) 

in a region rand {; = ( - )Go = ( + )( 1/217')Ko(SR ) an ar, 
determine the asymptotic expansion for large S of 

K (S2) = f (; (x,x,s) dfl (A3) 

N 

= 2: ans- n. (A4) 
n=l 
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Ko(x) represents the usual modified Bessel functions. The 
procedure of Stewarts on and Waechter is to choose rectan
gular coordinates Pxy where P is a typical point of the 
boundaryar, Px is directed along the inward drawn normal 
to ar and Py along the tangent at P. On making the t~ansfor
mation S = xs, 11 = ys, where x (x,y) the function G can be 
written as 

(; (S'11;so,O;s2) 

= _1_ Ko{[(s + SO)2 + 112]}1/2 
217' 

I J"" aK + 2r _ "" dl1d(l1l,s) a
s
o (s,l1;O,l1l), (AS) 

where the source point is taken to be (S 0,0) and the functionJ 
is to be found from the condition that {; = Go on ar, pro
vided that terms which are exponentially small in s are ne
glected. Physically we can think ofJas representing a distri
bution of dipoles on S = 0 whose strengths are to be suitably 
chosen. For a smooth boundary ar the Serret-Frenet for
mula tell us that 

where 

a2 = K (r)l2, a 3 = K '(r)l6, 

a4 = K "(r)/24 + (K 3/S), etc, 

(A6) 

K (r) being the curvature of P, K '(r) the derivative of the cur
vature of P with respect to the arc length r, etc. In terms of 
s,l1 the equation for 2r becomes 

t-- ~ an n 
~ - ~ -11· 

n=2Sn- 1 (A7) 

An asymptotic determination {; can now proceed by writing 

(AS) 

Once (; is determined K(r) can be written as 

(A9) 

provided that terms which are exponentially small in terms 
of s are neglected. 

To illustrate how the method works we calculate the 
coefficient of the 0 (1/ S2) term [which is the same as the 
o (1/w 2

) coefficient]. 
It is found that 

Jo(T/,s) = + 211
2
So K' [(S2 + T/ 2)IIZ]. 

(s6 +112)1/2 0 ° 
Thus the 0 (1/ ( 2

) term of (A9) gets contribution from two 
terms: 

(i) II = ( -) r dr r"" dso ( + 2az)so(_1 )Ko(2so), 
Jar Jo 217' 

(ii) 12 = f 2~ dr f: "" Jo(l1IS) (S6 !011Z)1/2 

X K b(S6 + l1d dl1l' 

Evaluating (i) gives 
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II = _1_ ( air) dr. 
417" Jar 

To evaluate (ii) it is convenient to note that 

K~(x) = (-).x (~ dt
2 
e- t - x'/4t. 

Jo 4t 

Then we get 

12 = ( + ) f ;~ dr f~ ~ d1J1 21Ji 

X ("" !!.!Lexp(-t
l

- (S~ +1Ji)oo) 
Jo 4t i 4tl 

Sa
"" dt2 ( S ~ + 1Ji ) X -2 exp - t2 - . 

o 4t I t2 

Carrying out the So integration first and introducing 
T = t I + t2, t = t I - t2, we get 

II = ( + ) f!!2. . !!.... dr. ("" dT e - T 

2~ 4 Jo T3 

xL .(T-t)(T+t)dt 

= + ( ~dr Jar 1217" ' 

so that 

o (l/liJ)coeff= II +12 

2973 

= __ 1_ ( K(r) dr. 
1217" Jar 
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The problem of interest is the long-range (low-frequency) propagation of acoustic signals through 
the ocean. The loss of spatial coherence of the signal as a result of scattering by large scale internal 
waves leads to a limitation on the resolution of the direction of the source of the signal. The 
applicability of a stochastic waveguide propagation model to this problem in ocean acoustics is 
investigated. 

PACS numbers: 43.20.Mv, 43.20.Bi 

I. INTRODUCTION 

A problem of interest in acoustics and optics is the 
propagation of a wave through a randomly inhomogeneous 
waveguide. Previous research by Sutton and McCoy has led 
to a model applicable in both the single-scatter· and multi
ple-scatter2 regions. The model is capable of including sto
chastically rough walls3 as well as stochastical fluctuations 
in the index of refraction. In many problems of practical 
interest, e.g., in ocean acoustics, these index of refraction 
fluctuations have horizontal power spectra that follow a sim
ple power law or a combination of such power laws. This 
paper investigates the application of the model to such 
problems. 

II. FORMULATION OF PROPAGATION MODEL 

Before considering the specific problem of interest it is 
worthwhile to look briefly at the formulation of the model. 
We will follow the development and notation used in Ref. 2. 

The waveguide is referred to by Cartesian coordinates 
with the Y axis directed normal to the waveguide plane, and 
the z axis is taken to correspond to the principal propagation 
direction. The acoustic medium is described by a weakly 
random sound speed field superimposed on a deterministic 
background field. The statistics of the fluctuating field are 
assumed to be homogeneous and isotropic for measurements 
taken in any given horizontal plane. The possibility of statis
tical inhomogeneity for measurements taken over the depth 
coordinate is retained, as is the possibility of statistical aniso
tropy for measurements taken over the depth coordinate 
when compared to those taken in a waveguide plane. The 
background sound speed field can vary with Y but not with 
position in the waveguide plane. The acoustic field is taken 
to be harmonic in time with circular frequency w. 

The waveguide with the background medium is de
scribed by the normal mode functions, Yi (Y), defined by the 
eigenvalue problem 

d
2
Yi [-2 2] -2-+ k (y)-/3i Yi =0, 

dy 
(1) 

together with appropriate conditions at the waveguide 
facets). The depth-dependent mean wavenumber is denoted 
by [2 = w 2/(!2, where Cl y) is the background sound speed 
field; the eigenvalue corresponding to the ith modal function 
is denoted by /3i' 

The acoustic pressure field in the random waveguide 
problem, pIx), can be formally represented by 

(2) 

The Pi(r) are termed the modal amplitudes and vary with 
position in the waveguide plane, located by the two-dimen
sional position vector r. The modal amplitudes are governed 
by the set of differential equations, 

V~Pi + /3 ~Pi = - EL Jlij(r)fij' 
j 

where 

(3) 

(4) 

The two-dimensional Laplacian is denoted by Vi, the ran
domly varying wavenumber field by EP( ylu(x). Here Jl is a 
stochastic function of position of unit variance. Hence, E 

provides a measure ofthe "strength" of the variations. We 
assume E<l. 

The theory is formulated in terms of modal coherence 
functions defined according to 

A 

!rii (X.,x2,z)j = ! Pi(X.,z)fi~(X2,z)j, (5) 

where the braces indicate an ensemble averaging. Thus, the 
coherence function is a spatial correlation function taken at 
two points in the same z plane. For an initial plane wave 
directed along the z axis and homogeneous statistics mea
sured in the x, z plane, the modal coherence functions vary 
with x \2 = x. - X 2 being independent of absolute position 
along the x axis. 

The more familiar mutual coherence function for two 
points in the same z plane used extensively by McCoy and 
Beran4

•5 is given by 
A 

!r(x.,y.,X2'Y2,z)J = {p(x.,y.,z)fi*(X2,y2,z)j· (6) 

By substituting Eq. (2) into Eq. (6), we can write 

!r(X\,y.,x2,Y2,Z)J = LL{rij(X.,x2,z)j Yi (y.)Yj(Y2)' (7) 
i j 

where in writing Eq. (7) we were required to introduce cross
modal coherence functions, which are obvious generaliza
tions of the {rii J. Upon setting y. = Y2 in Eq. (7) and inte
grating over the waveguide depth, we obtain, upon making 
use of the orthonormality of the Yo 
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(8) 

Equation (8) states that the modal coherence functions 
provide the modal decomposition of the averaged (taken 
over the waveguide depth) coherence for two points located 
along the same horizontal line positioned orthogonal to z. 

In the range incrementing derivation procedure used in 
the formulation, the waveguide is divided by a series of range 
planes separated by a distance Liz. Since the problems to 
which the theory is to be applied involve only forward propa
gation, we then calculate the modal coherence functions at 
one range plane in terms of those of the plane immediately 
preceding it. The increment Liz is taken to be small enough to 
enable use of a single-scatter theory for this calculation. 
Also, in making this calculation, we assume the statistics of 
the pj measured on any range plane to be independent of the 
statistics of the sound speed fluctuations in the interval "in 
front of' the range plane. This is clearly consistent with the 
forward propagation assumption over most of the interval if 
we take Liz to be large relative to IHM' the maximum correla
tion length along a line in the horizontal plane. Finally, we 
make a series of approximations to simplify the single-scat
ter solution to a point at which computationally useful ex
pressions are obtained. The result is a system of difference 
equations: 

! FAx 12,(j + I )Liz) ! 

= !i~j(xl2,jLiz)! - c[ !Fjj (x J2,jLiz) ! +O'jk (0) 

- ~ 2J3k O'jdx d { Fu (x J 2' jLiz)J ]LiZ, 
{3j k 

(9) 

where O'jk (x d is defined in terms of the modal correlation 
matrix (Tjkjk' which in tum is defined by the spatial correla
tion function (T of the randomly varying sound speed field 
and the modal eigenfunctions: 

O'jdxu) 

1 L"" = -2/1 (Tjkjdx l2>sz) cos [(13k - {3j)sz] dsz 
jPk 0 

(note Sz = z' - zn), (10) 

where 

(Tijk/(r' - rn) 

= f f p(y,)p(y")oix',X")Yj(y')lj(Y')YdyH)y/(yn) 

xdy'dyn 

and 

o1x',x H
) = {J.l(x'lu(x n )!. 

(11) 

(12) 

The set of difference equations can be approximated by 
a set of differential equations, which we write, 

a! Fjj (x J2,z)! 

az = - C(+O'jdO)) {FU (X 12,z)! 

+ ~VkO'jk(xd!rkdx12,z)!. (13) 

The differential equations follow exactly from the difference 
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equations in the limit of Liz-<l. However, our derivation 
procedure requires Liz>IHM' where lHM is the maximum cor
relation length along a line in the horizontal plane, making 
this final step an approximation. It is similar to the approxi
mation taken in formulating a continuum theory to predict 
the response of a discrete system. Equation (13) is the equa
tion governing the propagation of the modal coherence func
tions. The restrictions on the theory are detailed in Ref. 2. 

III. APPLICATION OF PROPAGATION MODEL 

If we view the separation distance x J 2 as a parameter in 
Eq. (13), then the set of equations constitutes a set of constant 
coefficient ordinary differential equations. The general solu
tion of the set of equations is given by a linear combination of 
solutions of the form 

A I 2 
!ru(z;xd! = -Yi(Xnl exp[ - E a(xdz], (14) 

{3j 

which upon substitution in Eqs. (13) gives an eigenvalue 
problem for a. We write the characteristic equation as 

! [a(x d - aj - [1~;O'jJ(O)]]Djk + (I - D;kJO';dXI2)! = 0, 

(15) 

where 

aj(xu) = O'i;(O) - O'jj(xd. (16) 

In general, Eq. (15) hasN roots, Nbeing equal to the number 
of propagating modes. We denote the roots by alu)(x d and 
assume them to be distinct. Nondistinct roots introduce no 
conceptual difficulties. Associated with each characteristic 
value alUl(xd is a characteristic vector r)ul(xd obtained in 
the usual manner. The symmetry of the O'jk (x d provides an 
orthogonality relationship for the characteristic vectors. We 
make their definition unique by a normalization 
prescription. 

Two limiting propagation experiments can be identi
fied, a coherence dominated limit, defined by the condition 
that (aj - aj»o:t, and a modal intensity distribution domi
nated limit, defined by the reverse condition that 
(ai - aj )2<o:t. In the ocean acoustics problem with which 
this paper is concerned the separation distances x 12 of practi
cal interest are large, and it is the coherence limit that is 
relevant. For a coherence dominated limit, the determinant 
of Eq. (15) is approximated by one that is diagonal, leading to 
characteristic values 

alUl(xd = O'uu(O) - O'uu(xd + IO'u/(O), (17) 
I"u 

and characteristic vectors 

(18) 

The first term on the rhs ofEq. (17) gives the rate ofintramo
dal scatter, scatter from the J.l mode; the second gives the 
separation distance over which this intramodal scatter cor
relates; the third gives the rate of intermodal scatter out of 
the J.l mode. The first two terms are obtained for an uncou
pled mode theory. The third term can be in terpreted in terms 
of an apparent dissipation mechanism in that in this limit of 
large separation distances the intermodal scatter does not 
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correlate. 
In ocean acoustics the problem of resolving the direc

tion of the source of an acoustic signal is an important one, 
and it is known that the horizontal resolution limitation of 
an acoustic signal can be related to a characteristic distance 
defined by the transverse decay of the coherence function. 
At a particular z plane Eq. (14) shows that the modal coher
ence functions decay exponentially in the transverse direc
tion according to the form a(xd. Equation (17) gives the 
form of a(xd for the problem of interest in this paper. We 
need to evaluate (7ik (x d. 

Often a good approximation can be made to the spatial 
correlation function, a(x',x"), by the product 
O"H (r',r")O"v(Y',y"), whereO"H (r',r") accounts for the horizon
tal and O"v(y',y") the vertical fluctuations in the index of 
refraction.6

•
7 For these situations it is seen from Eq. (11) that 

(19) 

where 

K ijk1 = f fp(y,)p(y,,)O"v(Y"Y") 

X Yi(y')lj(y')Ydy")Ydy") dy'dy", (20) 

h being the depth of the waveguide. 
It is convenient to discuss the horizontal fluctuations in 

the index of refraction in terms of the two-dimensional pow
er spectrum if> (p,q). We write 

O"ikidx I2 ,Sz) = f: ",f: '" if> (p,q)e - ips'e - iqx 12 dp dq. (21) 

Substituting for O"ikik (x 12'sz) in Eq. (lO)and evaluating the in
tegrals over Sz and p, we obtain 

- 1 Sa'" O"idxd = -- if> (f3k - f3i,q) cosq X 12 dq. 
2f3if3k 0 

(22) 

N ow many problems of practical interest are concerned with 
index of refraction fluctuations that have horizontal power 
spectra that follow a simple power law or a combination of 
such power laws. It is well accepted among oceanographers 
that the most suitable description of the ocean temperature 
microstructure is in terms of a combination of power laws. 8 

This is to be expected as different mechanisms cause the 
temperature fluctuations over different length scales. The 
longer size scale temperature fluctuations are due to the 
presence of randomly phased internal waves while the small
er scale temperature fluctuations are a result of ocean turbu
lence. Consequently, we will introduce the following specific 
form for the two-dimensional power spectrum 

A 
(23) if> (p,q) = (2 2 2)N' 

q +p +c 
whereA, c, and N are constants determined from oceanogra
phic data. Equation (22) becomes 

- 1 Sa'" A O"idx 12) = -- -....,..-------,-----
2f3if3k 0 [q2+(f3k -f3if+C2]N 
X cosq X 12 dq. (24) 

This integral can be evaluated (see Gradshteyn and Ryz
hik9

). We obtain: 

for X I2 #0' 
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(7 x _ A [2[(f3k-f3i )2+ c2r/2]112-N 
ik( d - 2f3.f3 _ / , kv1T X l2 

Xcos(N - ~)1Tr(1 - N) 

XKN_ 1/2(X 12 [(f3k -f3i)2+C2]1/2), (25) 

where r denotes the gamma function and K denotes a modi
fied Bessel function; 

for X l2 = 0, 

(7ik(O) =_A_[(f3 _(3)2 +C2]1/2-N V1T·r(N - !). 
4f3if3 k k , TIN) 

(26) 

Equations (17), (25), and (26) determine the detailed form of 
a(xd and consequently the transverse decay of the coher
ence function. 

Although a combination of power laws is the most suit
able description of the ocean temperature microstructure, 
often, for convenience, a single power law is used. For the 
length scales of interest in this paper (kilometers in the hori
zontal plane), there is general agreement that a minus two 
power law, N = 1, is the most representative. For such a 
single power law we can write the following specific form for 
a(xd: 

. A1T 
a'(xd = --(1 - e- CX

,,) 

4f3;c 

+ L~'[(f3k _f3Y+C2]-1/2. 
k #,4f3if3k 

(27) 

The modal coherence function decays to 1/ e of its zero sepa
ration value at a distance Ir' called the characteristic trans
verse decay distance. Iris determined by the following 
expression: 

~ai(/~)z = 1. (28) 

For the single power law representation we can write 

l~ =~ln{1-4f3;c2cz-'A -11T-
1 

c 

+ L Cf3if3k- I [(f3k _f3Y+C2]-1/2}-I. (29) 
k #i 

For illustrative purposes consider an acoustic wave, fre
quency 50 Hz, propagating in a lossless waveguide of effec
tive depth 25 m. Measured data7

•
K indicates that reasonable 

values for A, E2, and care 10- 2
, 10-7

, and 10-4
• Equation 

(29) shows that after propagating 50 km, the characteristic 
transverse decay distances for the two propagating modes 
are 209 and 1044 km. 
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We consider a nonlinear differential equation which arises in some heat transfer problems and 
study the applicability of Newton's method in approximating the physical solution. Also two 
methods are devised to approximate the physically interesting critical point, one based on the 
iterative method and the other on the Newton method. Using these methods, we obtain a sequence 
of linear-operator valued functions. The approximations are in the form of the fixed points of 
certain eigenvalues of the operators thus obtained. Some comments on numerical approximations 
of these fixed points are made. 

PACS numbers: 44.90. + e, 02.30.Jr 

1. INTRODUCTION 

A considerable amount of attention has been paid to 
studying the differential equation 1-4 

- V2u = Af(u), xED, 

u(x)=O, xEt1D ( 1) 

which one encounters in some heat transfer problems2 and 
the related problem of thermal explosion of gases.4 Here 
flu) = f(x;u(x)) is a nonlinear function of u and 
x E R m,m > l;A is a real positive parameter; D is an open 
bounded subset of R m and aD, the boundary of D, is 
piecewise continuous. From the physical viewpoint, the in
terest is in determining the critical value A * of the parameter 
A defined by the condition that for each A < A * (1) has a 
positive solution and in obtaining the minimal solution utA ) 
for each such A. A solution mayor may not exist for A = A * 
depending on the properties off 

As usual, we consider a more general equation (2) which 
is no more difficult to study than (1). 

Lu=Af(u), XED 

(Bu)(x) = a(x) u(x) + f3 (x) au(x) = 0, xEt1D, (2) 
a'Y] 

a(x) > O,¥=O; f3 (x) > 0, 

where L is the elliptic operator defined by 

(Lu)(x) = - f ~(aij(x) au(x)) + ao(x)u(x) 
;J~ I ax; aXj 

(3) 

with the coefficients aij(x) being the elements of a continu
ously differentiable matrix valued function on D which is 
bounded below by a positive constant; ao(x) > 0 is continu
ous and a I a17 is the conormal deri vative. 2 The functionf(x;t,h ) 
will be assumed to satisfy conditions (i) to (iii): 

(i)f(x;t,h) is continuous for xED, t,h > 0, 
(ii)f(x;O) = Io(x) > 0 on D, 
(iii) The derivativef'(x;t,h) with respect to t,h off(x;t,h) is 

continuous and positive on D for t,h > O. 
Iff'(t,h) =f'(t/t)foreacht,h #t/tthen,clearlyjislinearint,h. 

Iff'(t,h ) is greater (less) thanf'(t/t) fort,h > tIt> 0, thenfiscalled 
convex (concave). Some of the results depend on whetherfis 
convex or concave. 

Let 2"2 (D,dx) be the real Hilbert space of the square 
integrable functions with respect to the Lebesgue measure 
dxonD. Consider L as an operator from !iJ(L) to 2'2 (D,dx), 
where 

!iJ (L ) = {! t,h: a 2t,h (x) is continuous, XED; 
ax;axj 

i,j ..;; m; (Bt,h )(x) = O,X E aD l c 2'2(D,dx). 

In case the closure in 2"2(D,dx) of L properly contains it, L 
will denote the closure. So defined, L is linear, self-adjoint, 
and bounded below by a positive constant. Therefore L - I 

exists as a bounded operator and L -1/2 is well defined. Let 
f'(v) be the operation of multiplication by f'(x;v(x)) and 
A (v) = L -1/2 f'(v)L -1/2; A (v) for v> 0 is non-negative, 
bounded, and self-adjoint. Furthermore L -I is a Hilbert
Schmidt operator which implies the same for A (v) if v is 
bounded. Let the largest eigenvalue of A (v) be r(v) and 
ji(v) = lIr(v). Also let utA ) be the minimal positive solution 
of (2) for A <A *. Then A (u(A )), in addition to having the 
above properties, is a uniformly continuous function of 
A E (O,A *), which implies the continuity of ,utA ) = ji(u(A I). 
These properties follow trivially from the results contained 
in Ref. 2, where ,utA ) was introduced in a slightly different 
but equivalent manner. We find the present formulation 
more convenient for some of the analysis to follow, mainly in 
connection with approximating A *. Convergence of the ap
proximations to utA ) will be found to be stronger than the one 
in 2"2 (D,dx); therefore its Hilbert space structure is irrele
vant for this purpose. The scalar product and the norm in 
2"2(D,dx) will be denoted by (',) and 11'11, respectively. 

Withfsatisfying conditions (i), (ii) and a milder mono
tonicity condition than (iii), the iterative procedure yields 
sequences which approximate utA ) from below for each 
A < A *. But since the convergence of this method is usually 
poor, especially for A close toA *, it is desirable to have better 
methods available. The Bubnov-Galerkin method5 which is 
known to be very useful in solving linear problems,5.6 re
duces the present one to a finite set of nonlinear equations; 
and thus little is gained. Also when the solution is not unique 
it may be difficult to determine the minimal solution by this 
method. For these reasons the Newton method offers an at
tractive alternative for it reduces the problem to a succession 
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of linear problems and when applicable, its convergence is 
considerably faster than the iterative method. However, the 
applicability of this method has been shown with severely 
restrictive conditions onf2.7 The most relevant results, for 
the present purpose, is the following: Let/be strictly con
cave, i.e., the second derivative/"(c,h ) of/(c,h ) be negative for 
c,h > 0, and A < ,u(0); then the Newton method approxi
mates U(A) from above (Theorem 5.3, Ref. 2). It should be 
remarked that the strict concavity is not needed in the proof. 
Even then the result is of a limited value since A * in this case 
is strictly greater than ,u(0). In the following, we improve 
upon this result to include each A < A *. We show, further, 
that this method enables one to approximate utA ) from below 
foreachA < A * even for a convexf The convergence in both 
of the cases is uniform with respect to x E DJaD. Some im
portant nonlinearities in physical problems are convex, e.g., 
/(x;c,h) = e¢>, as in the thermal explosion case.4 

The problem of determining A * for a concave/reduces 
to solving a linear eigenvalue problem (Theorem 4.3, Ref. 
2-see remark following Lemma 6 in the sequel). However, 
the same problem for a convex/has hardly been touched 
upon. Here we develop two methods to approximate A * from 
above in this case; one based on the iterative method and the 
other on Newton's method. The approximating sequence is 
in the form of the fixed points of certain approximations to 
an extension of ,utA ). The extended ,utA ) may be discontinu
ous at A * but the approximations are continuous. Parallel 
results follow for a concave/by trivial modifications in the 
arguments used for a convex/where the extended ,utA ) is 
continuous and the convergence is from below. However, 
since a more satisfactory method is available for this case, as 
mentioned above, the present method may not be preferable. 

Some comments on approximating A * numerically are 
made in the concluding remarks. 

2. PRELIMINARIES 

In this section we collect some results to be used in the 
sequel, some of them repeatedly. 

Lemma 1: Let p be the operation of multiplication by a 
positive continuous function pix) on D and c,h E g; (L ). Also 
let 11", be the largest eigenvalue of L -1/2pL -1/2. 

(i) (Positivity lemma) Let Lc,h - Apc,h > 0 on D. Then 
c,h (x) > 0 on D if and only if A < "'. 

(ii) (Weak positivity lemma) Let Lc,h - Apc,h > 0 on D 
and A < ",. Then c,h (x) > 0 on D. 

For a proof of Lemma 1 see, for example, Ref. 2. An
other proof of the sufficiency part of Lemma 1 (i) and that of 
(ii) may also be based upon the fact that the Green's function 
Gp (x;s) corresponding to (L - Ap) for A < '" is positive. 8 

Consequently the map [L - Ap] -I given by 

W(X)=([L-Ap]-IV)(X) = idS Gp(X;S)V(S) (4) 

preserves positivity, which implies that it preserves also the 
monotonicity property of a sequence. In Lemma 2 and Cor
ollary 1 we show that [L - Ap] -I not only preserve continu
ity, but also improves upon it. 

Lemma 2: Let L,p,,,, be as in Lemma 1 and A < ",. Also 
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let I c,hn J be uniformly bounded and c,hn ~ c,h pointwise. 
n~oc 

ThentPn = [L-Ap]-Ic,hn~n_octP= [L-Ap]-Ic,h uni
formly with respect to x ED, assuming further that I tPn J is 
monotonic. 

Proof Consider 

!~~ tPn(x) = !!_~lds Gp(x,s)c,hn(s). (5) 

Since I c,h n J is uniformly bounded and G p (x;s ) is a positive 
integrable function of 5 E D, the integrand in (5) is bounded 
by an integrable function. Therefore, by the Lebesgue domi
nated convergence theorem, the order oflimit and integral is 
interchangeable. Thus limn~oo tPn (x) = tP(x) exists and clear
ly tP = [L - Ap] -Ic,h. Also, from (5), tP(x) is continuous as is 
tPn (x) for each n. Hence the convergence is uniform with 
respect to x ED. 

The following result, Corollary 1, may be obtained in
dependently in a similar manner as the result of Lemma 2 or 
may be deduced from it. Therefore we state it without a 
proof. 

Corollary 1: Let L,p,,,, be as in Lemma 1 and A < "'. 
Also let c,h;(x) be a pointwise continuous function of;. Then 
tP; = [L - Ap ]-Ic,h; is a continous function of;. If c,h; is 
monotonic in ;, then the continuity is also uniform with 
respect to x ED. 

Lemma 3: Let v < w on D. Then for a convex 
/,p,(v) > p,(w) and for a concave/, p,(v) < p,(w). 

Proof For a convex/,v < w implies thatf'(v) < f'(w). 
Consequently for each 
c,h E }?2(D,dx),(c,h,A (v)c,h ) = (c,h,L -I /2f'(v)L - 1 /2c,h ) 
< (c,h,L -1/2f'(w)L -1/2c,h) = (c,h,A (w)c,h )forL -1/2c,h #O.This 
implies the result. For a concave/, the inequality is clearly 
reversed. 

In the following U = utA ) = u(x;A ) will denote the mini
mal positive solution of Lu - A/(U) = 0, whenever it exists. 
With v being an initial approximation, Newton's approxima
tion w = xlv) is given by 

w = xlv) = A [L - Af'(V)]-I[f(V) - vf'(v)]. (6) 

It is clear that w is defined for A < p,(v). Also for a convex/, 
A < A * implies that ,u(A) > A * and ,utA *) = limA tA .,u(A ) 
> A *; while in case of a concave/,..{ < ,u(A) < A * for 
A < A * which implies that,u(A *) = A * (Corollary 4.1.1 and 
4.1.2 of Ref. 2). We have 

Lemma 4: Let u,v,w be as above. Then 
(i) For a convex/,O < v < U implies that w < u for each 

A <A *. 
(ii) For a concave/, v > u implies that w > u for 

A < A *. 
Proof We have that 

[L - Af'(V)](u - w) = A [flu) - /(v) - (u - v)f'(v)] 

=AO(U;V). 

Convexity of/together with v < u implies that 0 (u;v) > O. 
Also from Lemma 3, p,(v) > p,(u) = ,utA ) > A * > A. The re
sult now follows from Lemma 1 (i). For a concave/the argu
ment is similar except that here p,(v) > p,(u) = ,u(A) > A for 
A < A *. 

For a fixed A, let Uo(A ) be given and 
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Un + I (A. ) = X(U n (A. )),n = 0,1,2,··· The sequence! Un (A. ) 1 will 
be called Newton's sequence generated by uo. 

Lemma 5: Letfbe convex, A. < A. * and! Un 1 be New
ton's sequence generated by uo(A. ) = O. Then 
Un < Un + I < U on D and all n. 

Proof If Un < U then from Lemma 4(i) un + I < u. 
Since Uo = 0 < u, the induction principle yields that! Un 1 is 
bounded by u. Also from Lemma 3, 
A. < A. * < ,u(u(A.)) < ,u(un (A. )). 

Now, U I = A. [L - A.f'(O)] -I frO) and A.f(O) > 0 on D. 
HencefromLemmal(i)u l > O=uo.Letun > Un_I onD. 
We have that 

LUn = A. [f(un _ I ) + (un - Un _ I )f'(un - d] 
= A. 8(un ;un -I)' 

Convexity off together with Un > Un _ I implies that 
8(u n ;u n _ l ) <f(un)·Consequently 

L (un + I - Un) 

= A. [((Un) + (Un + I - Un )f'(un) - 8 (Un ;Un _ I)] 

> A. (Un + I - Un if'(un), 

i.e., [L-A.f'(un)](un+ 1 -un) > OonD.Wehavealready 
seen that A. < ,u(un) and hence from Lemma 1 (i), again, 
un + I > Un on D. By the induction principle it follows that 
Un < Un + I < U for all n. 

It should be remarked that, here and in the following, 
the strict monotonicity holds on D. On aD, BUn = Bu = 0 
which could imply Un = U = 0, e.g., if f3 (x) = O. Also it is 
obvious that Un (A.) < Un + I (A. ) for each A. such that 
A. < ,u(un (A. )). Setting utA. ) = 00 for A. > A. *, we have 

Corollary 2: Let ! un (A. ) 1 and utA. ) be as above. Then 
Un (A.) < Un + I (A.) < u(A.) for each A. such that 
A. < ,u(un (A. )). 

Lemma 6: Letfbe concave, A. < A. * and! Un J be New
ton's sequence generated by some Uo > u. Then 
U < Un + I < Un on D and all n. 

Proof Follows by an obvious transposition of the argu
ments of Lemma 5. 

Remark: While the proof of Lemma 6 is straightfoward 
the condition Uo > U is rather stringent. If 
limf-.oo [f(¢) - ¢f'(¢)] = F(x) exists then it is easy to 
check that Uo = A. [L - A.p]-IF will suffice where pIx) 
= limf-.oof'(¢ ). Sincef'(¢ ) is a positive decreasing function 

of ¢,p(x) > 0 is well defined. It is claimed in Theorem 4.3 of 
Ref. 2 thatf(¢) < F(x) + p(x)¢ with someF(x).lfthis were 
true for all concave f then, since pIx) < f'(¢ ) and 
[f(¢ ) - ¢f'(¢ )] is an increasing function of ¢, existence of the 
limit F(x) would be guaranteed. But the inequality 
f(¢) < F(x) + p(x)¢ or evenf(¢) < F(x) + f'(¢ )¢ does not 
hold for an arbitrary concavefas can be easily seen by con
sidering the examplef(x;¢ ) 
= In (1 + x + ¢ ). Before we proceed to find a starting uo, we 

comment on the result of Theorem 4.3 of Ref. 2. 
The result in question is that A. * is the reciprocal of the 

largesteigenvalueofL -1/2pL -1/2, i.e.,A. * =,u( 00). The fact 
that A. * < p( 00 ) follows from the inequality frO) + p¢ 
< f(¢ ). Theinequalityf(¢) < F(x) + p(x)¢was used to con
clude that A. * >,u( 00). It is obvious that, for each f,¢, 
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f(¢ ) < [I(f) - ff'(f)] + ¢f'(f) 

which implies that A. * >,u(f) (strict inequality is no~ needed 
in the proof of Theorem 3.3 of Ref. 2). Now, letf'(¢ I-pIx) 
uniformly on D as f-oo. We have that 

IIA (f) -A (00)11 < IlL - 1/2Wllf'(f) -,011_- 0 
f-.oo 

and hence A. * > ,u( 00 ) - E. Here E > 0 can be chosen to be 
arbitrarily small by making f large. This is sufficient to con
clude that A. * > ,u( 00 ). 

If F(x) as defined above exists then a convenient choice 
for Uo is already given. The examplef(x;¢ ) = x + ¢ - e - 4> 

shows that this method may be used for some concave non
linearities. For the others, let K be a positive constant such 
thatA. < ,u(K). Since,u(K) increases withK and,u( 00) = A. * for 
any A. < A. * a suitable K may be found. Then 
Uo = A. [L - A.f'(K)]-I[I(K) - Kf'(K)] is defined. Since it is still 
true that 

f(¢ ) < [I(K) - Kf'(K)] + ¢f'(K) for each xeD 

it is easy to conclude that Uo > u. But with this choice of Uo 
the strict inequality of Newton's sequence may be lost and 
thus we have U < Un + I < Un on D. However, this is inconse
quential for the results to follow, for a strict inequality is not 
needed for the case of a concave f We shall assume that a 
Uo > U has been found. If Uo > U is used then the modifica
tions in the results are obvious. Since the present choices for 
Uo appear to be the most suitable ones for computational 
purposes, we shall not consider others. 

Lemma 7: Letfbe convex and! ¢n J be a nondecreasing 
sequence of positive, continuous functions on D such that 

¢n(x) - 00. Then limn~ooii(¢n) =ii(oo)<A. *. 
;';o"'of As in Lemma 3 it is clear that (ii(¢n) 1 is non

increasing positive sequence. Hence 
limn~ooii(¢n) = ii( 00 »0 exists. Now, for each ¢ > 0, 

f(¢) < frO) + ¢f'(¢ ) 

< f(O) + ¢f'( 00 ) 

implying that ii( 00 )<..1. *. 
It should be remarked that iff'( 00) = 00 on a set ofposi

tive measure in D then ii( 00 ) = O. 

3. APPROXIMATIONS TO u{A.) ANDA.* 

With the results of the last section available, conver
gence of Newton's sequence to utA. ) in both of the cases is 
obtained in a straightforward manner. 

Theorem 1: (i) Letfbe convex, A. < A. * and! Un (A. )} be 
Newton's sequence generated by uo(A. ) = O. Then Un tu uni
formly with respect to x. 

(ii) Letfbe concave, A. < A. * and {un (A. ) 1 be Newton's 
sequence generated by uo(A. ) of Lemma 6. Then Un !u uni
formly with respect to x. 

Proof We give a proof here for (i). (ii) follows similarly 
by invoking Lemma 6 instead of Lemma 5 and noticing that 
in this case U is unique. 

From Lemma 5, ! Un I is an increasing sequence bound
ed by U and hence must converge pointwise from below to 
some ii < u. Further, we have that 
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and 8(u n ;un _ I) ~ A/(U) pointwise. Hence from Lemma 2, 
11-40 = 

by settingp = 0, we have that u = lim Un = AL - ~(u), i.e., 

Lu = A/(U); and the convergence isn ~;iform. Since U is the 
minimal solution and U < U we must have U = u. 

In the following we obtain methods to approximate A·. 
We concentrate on the case of a convexf It is trivial to 
mOdify the results and arguments for the case of a concave!, 
upon which we comment briefly. 

The iterative method to approximate U(A ) generates a 
sequence [vn I as follows: Let VolA ) = 0, Vn + I = AL - ~(vn)' 
n = 0,1,2,···. The sequence [v n (A) I is clearly defined for all 
A ;;. ° but it converges only for A < A *. For a convex!, it 
may converge also for A = A·. When convergent, 
Vn (A )iurA ) uniformly with respect to XED. 2 Before we ob
tain approximations to A·, we have 

Lemma 8: Let/be convex and I1n (A) = ji(vn (A )). Then 
(i)For each n ;;. 1, I1n (A ) is positive, continuous, and de

creasing function of A E (0,00 ); and 
I1n (0) = l1o(A ) = const > 0. 

(ii) For each A E (0,00), I1n (A) > I1n + tlA) > I1(A ) 
where I1(A ) = l1(u(A )) for A < A • and 11 (A ) = ji( (0) for 
A > A·). 

Remark: For a concave!, I1n (A) < I1(A ) increases with 
A andl1n (A) < const. These extensions ofl1(A ) have been ob
tained previously. 2 Here they will arise as limits of I1n (A ) in a 
natural manner. 

Proof From Lemma 1 (i), v M ) = AL - I flO) is positive. 
It is also a continuous and increasing function of A E (0,00). 
Let this be true for Vn (A ). Then from Corollary 1, 
Vn + I (A ) = AL - I /(v" (A)) is positive and continuous in A. 
Further, 

Vn+ I (A ') - Vn + I (A) 

= (A I - A )L -If(v" (A ')) + AL -I [{(vn (A ')) - f(vn (A))] 

> ° for A I > A [Lemma 1 (i)]. 

By the induction principle, Vn(A ), for each n, is a positive, 
continuous, and increasing function of A E (0,00 ). Let 
An (A ) = A (vn (A)) = L -1/2 /'(Vn (A ))L -1/2 and Yn (A) be its 
largest eigenvalue. It follows that 

(a) A II (A ) is positive, implying that Y n (A ) is positive. 
(b) An (A) is a continuous function of A E (0,00) in the 

uniform operator topology, i.e., 
limA -.A' IIA n (A ) - An (A ') II = 0. This results in the continu
ity ofYn(A). 

(c) An (A) increases with A, i.e., 
(<,b,An (A ')<,b) > (<,b,A" (A )<,b ) for A I > A and each 
<,b E ,y2(D,dx). Hence Yn(A) is an increasing function of A. 

(i) The first part of Lemma 8(i) follows from the fact that 
I1n (A) = llYn (A ). For the second part we observe that 
v" (0) = ° for each n and hence An (0) = A (0) is independent 
of n, positive and bounded. Consequently 
11" (0) = 11(0) = const > 0. 

(ii) We have that [Vn(A )J is monotonically increasing 
with n for each fixed A, bounded above by U(A ) where we set 
U(A) = 00 for A > A • (Theorem 3.2, Ref. 2). The result now 
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follows from Lemma 3 and the fact that for A > A·, 
I1(A ) = I1(U(A )) = ji( (0) (Lemma 7). 

Theorem 2: Let/be convex; then for each n,l1n (A) has a 
unique fixed point An and An! A •. 

Remark: For a concave!, A" iA •. 
Proof Since 11" (0) = const > 0, and 11" (A ) is a contin

uous and decreasing function of A [Lemma 8 (i)], I1n (A ) has a 
unique fixed point An for each n. Thus [An I is well defined. 
[This result for concave/follows from the fact thatl1n (A) 
increases with A and is bounded by a constant.] 

For A < A ., from Lemma 8(ii) and Corollary 4.1.1 of 
Ref.2,l1n(A) > ,u(A);;,A·and,un(A) > Ofod > A·.Also 
I1n (A ) is continuous in A; therefore An ;;. A •. Further,,un (A ) 
is decreasing with n and hence [An J is a decreasing sequence. 
Consequently An tA t ;;. A •. If At> A • then An ;;. A • + E 

for all n and some E > 0. Hence I1n (An) < I1n (A • + E) for 
,un (A) is a decreasing function of A E(O, (0) [Lemma 8(i)]. 

Now, v n (A ) of Lemma 8 increases without bound on D 
for A > A • and sincel1n (A * + E) = ii(vn (A • + E)), it follows 

from Lemma 7 that I1n (A • + E) ~ fi,( (0). This implies that 
n- +cJ; 

liml1n (A,,) = limAn <fi,( (0) but it is a contradiction for 
n "00 n-oo 

An > A • ;;'fi,( (0). Consequently An LA •. 
In the following we give another method to approxi

mateA • based on the Newton method. As in the case of U(A ), 
this method should be expected to approximate A • better 
than the method of Theorem 2, but at the expense of in
creased computational labor to obtain each approximation. 
Thus, aside from being mathematically interesting, the 
above method may be better suited to solve some problems. 
Also some of the arguments used here will be found useful in 
the following. 

Lemma 9: Let/be convex and Vn (A) = fi,(u" (A )), where 
[u" (A) I is Newton's sequence generated by Uo(A ) = 0. Then 
for each n ;;. 1 we have 

(i) Vn (A) has a unique fixed point in such that 
A • < in < in _ I . 

(ii) Un (A ) is positive, continuous, and increasing func
tion of AE(O'xn _ I );u" (0) = 0. 

(iii) v" (A) is positive, continuous, and decreasing for 
AE(O'xn _ I );vn (0) = viOl = const > 0. 

Remark: For a concavefwith Uo(A) as defined in 
Lemma 6, the inequalities are reversed. 

Proof The proof is by induction. It is clear that 
VolA ) = fi,(0) = io > A·. Since 

U I(A ) = A [L - A/'(O)] -- I flO), 

U 1(0) = 0, and the positivity of U I(A ) on (O,io) follows from 
Lemma 1 (i). For the continuity and monotonicity we ob
serve that for A < A I < i o, 

UI(A ') - utlA) = (A I - All [L - A :I''(O)]-lf(O) 

+ A [L - A T(O)] -I/,(O)[L - A/'(O)] -- 'flO) I to 

as A I LA which is seen easily by using Lemma l(i) and the 
boundedness of [L - A/,(O)] - If(O) for each A < i o. These 
properties ofu I(A ) imply the properties stated in (iii) for VI(A ) 
exactly as in Lemma 8(i). Further, from Corollary 
2,0 = Uo(A) < UI(A) < u(A) for A E (o.io) and hence 
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,u(A) < vM) < vo(A) there from Lemma 3. It is clear that 
VI(O) = A';). These properties of v,(A ) imply that it has a 
unique fixed point i , such that A * < i , < i o. 

Assume (i)-(iii) to hold for n. For (n + 1) we have that 

[L -Af'(un(A ))]un + I (A) 

= A [f(u n (A)) - Un (A )f'(un (A))], (7) 

i.e., Un + I (0) = O. By the induction assumptions (ii) and (iii) 
Un (A ), v n (A ) are defined on (O'xn _ I ) and since in < in _ I 

from (i), (O'xn _ I )::J (O'xn)' Thus Un + I (A ) is defined for 
AE(O'xn)' LetA < A' < in' 

L [u,,+dA')-unt-,(A)] 

= A '8 (Un + I (A ');un(A ')) - ,.1,8 (Un + I (A );un(A)) 

= (A' - A )8(un + I (A ');un(A 'i) 

+ A [8(un + I (A ');un(A ')) - 8(un+ I (A );un(A))] 

>,.1, [8(un+ dA ');un(A ')) - 8(un+ dA );un(A))] 
= ,.1,7](,.1, ';,.1,). 

We have used the fact that 

8(un t-.(A ');un(A ')) =f(un(A 'i) 

+ (un + I (A ') - Un (A '))f'(u" (A 'i) > 0 

since Un t- I (A ') > U" (A ') for A ' <fi(un (A ')) = Vn (A ') from 
Corollary 2. Since i" is the fixed point of v" (A ) as in (iii), 
A' < v n (A ') for each A ' < in. 

Further 

7](,.1, ',A ) = [((un (A ')) - f(u n (A )) - (Un (A ') - Un (A )If'(un (A))] 

+ [(Un + I (A ') - Un (A '))if'(un (A ')) - f'(u n (A )))] 

+ (Un t- I (A ') - Un + I (A )If'(un (A )) 

> (u" t- I (A ') - Un + I (A )If'(un (A )). 

Here we have used the convexity off, the induction assump
tions and Corollary 2. Thus 

[L-Af'(un(A))] [un+I(A')-un+I(A)] > 0 

and hence from Lemma l(i), un + I (A ') - Un + I (A) > 0 for 
A < v n (A '), i.e., for each A < A' < in. Positivity of 
Un + I (A ') follows from this by setting A = O. For the continu
ity we observe, following the above steps, that 

Un+ I (A ') - Un+ I (A) = [L -Af'(un(A ))]-I~(A ';,.1,), 

where for a fixed (n + 1), lim,t, .,t ~(A ';,.1, ) = O. It is then 
straightforward to obtain, as in Lemma 2, that 

lim,t,.,t [un + I (A ') - Un + I (A)] 

= [L - Af'(un (A))] -Ilim,t '~A ~(A ';,.1, ) = o. 
We have used the induction assumption that Un (A) is con
tinuous. Thus (ii) is established for Un + I (A ). This implies 
that Vn + I (A) is a positive, continuous, and decreasing func
tion of A E (O'xn ) from the same argument as in Lemma 8 (i). 

Now, by Corollary 2, 
U(A) > u" + I (A) > Un (A )for A E (O'xn) and hence 
,u(A) < v n + dA) < v n (A ) from Lemma 3. This implies, as for 
n = 1, that Vn + I (A ) has a unique fixed point in + I such that 
A * < i" + I < X". 

Incidently, in proving Lemma 9, we have also obtained. 
Corollary 3: Let the symbols be as in Lemma 9. Then for 

each n and A E (O'xn _ I ), 
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(i) u(A) > un(A) > Un_ 1 (A), where u(A) = 00 for 
A> ,.1,*, 

(ii) ,u(A) < Vn (A) < Vn _ I (A ), where ,utA ) =.u( 00) for 
A > ,.1,*. 

A counterpart of Corollary 2 is not required in order to 
obtain a result for concavefparallel to that of Lemma 9, for 
in that case (O,A *P (O'xn P (O'xn _ d. Therefore 
u(A) < Un (A) < Un _ I (A )for A E (O'xn) from Lemma 6. 

Theorem 3: Let [in J be as in Lemma 9; then Xn ~A *. 
Remark: For a concavef, An fA *. 
Proof From Lemma 9(i), [Xn J is a decreasing sequence 

bounded below by A * and hence Xn ~X ~ ;;;. A *. 
If it> A * then in ;;;. A * + 2E for all n and some 

E > O. Consequently v n (A ) is defined on (O,A * + 2E), from 
Lemma 9 (iii), and vn(in) < vn(A * + E) there. Now 
[un (A * + E) J is an increasing sequence, from Corollary 3 (i). 
Ifit is uniformly bounded then it must converge uniformly to 
some positive solution utA * + E) of(2) as in Theorem 1. This 

implies that A * + E < A *. Hence Un (A * + E) --.. 00 at least 
n '00 

for one xoED. Since un (A * + E) is continuous on D and in
creasing, it can be made arbitrarily large, by increasing n, on 
a neighborhood Do ofxo. PositivityofGf'lu" ,)(x;s )onD XD 

implies that Un (A * + E) --.. for each xED. Now from 
n- "00 

Lemma 7 it follows that v n (A * + E) ~ [i( 00 ), which implies 
n- -'""00 

that v n (Xn ) --.. [i( 00 ) <A *. This is a contradiction since 

4. CONCLUDING REMARKS 

The approximations An'xn to A * of Sec. 3 are the fixed 
points of decreasing functions,u n (A ), v n (A ) of A on some set 
containing properly the intervals (O,An]' (O'xn]' respectively. 
Consider the case of An. If A #An then either 
,un (A) > An > A or,un (A) < An < A. Therefore 
Ano = min [A ,,un (A)] <An < max [A ,,un (A)] = Ani for any 
A. Pick some E < 1 and let 

am = (1 - E)AnI2m) + EA nl2m + I) ,Anl2m + 2) 

= max [A nI2m ) ,min [am ,,un (am) J ], Anl2m + 3) 

= min [Anl2m + II ,max[ am,,un (am)j ], for m = 0,1,2, .. ·. It is 
easy to see that Anl2m + I) ~An f AnI2m ). The same method wi~h 
obvious change of symbols is applicable in approximating An 
except for the following. The function v n (A ) is defined on 
(O'xn_ I ) only. Therefore the initial value A _< Xn _ I to ob
tain i no , Xnl , must be close enough to in to ensure that 
ao < in __ I in order to guarantee the existence of the ap
proximating sequences. However, this poses no serious 
problem as for n = 0, Xo = vo(O) = volA ) and hence for n = 1 
any A <Xo will serve the purpose. Further, if Xn has been 
approximated well from below, such a bound will be a suit
able A for Xn + I . Thus suitable starting values are straight
forward to find. 

For a concavef, to approximate A * by the present meth
od is less satisfactory than the available ones. However, if 
this method is to be used then it is easy to check that the 
iterative method enables one to approximate An'xn from be
low. To be precise, let Ano < A * and 
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An(m + \) = Iln (A ,,(md,m_ = 0,1,2,···. Then An(m) iA" iA *. This 
result holds also with A "(m) replacing A n(m) for each m. In case 
of a convex!, the iterative method will produce lower and 
upper bounds which may not converge.9 It is pertinent 
here that iff'(t/J },/" (t/J ), andf'''(t/J ) exist and are positive for 
for t/J > 0 then the iterative method to determine the fixed 
pointA n of(A +(l-AIIl,,(A))/45,,(A)] ~An where 
/)" (A) = '! (A Ill" (A ))/dA will produce converging upper 
bou~ds Anm' The lower bounds then clearly are given by 
Iln(Anm)' TEis result holds also by replacingll" (A } by Vn(A) 
and A" by A". Here again, as above, the initial value should 
be close to i" which is available from an approximation to 
in _ \ . The proof of the above result, although straightfor
ward, is rather lengthy. Also it is of a limited value and com
putationally less convenient than the min-max method. 
Therefore a proof is omitted. 
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It is postulated that the energy spectrum function is the Laplace transform of a nonnegative 
distribution (J. The principal physical parameters in the longitudinal correlation function are then 
expressed in terms of (J integrals and interrelated by Holder inequalities, to yield experimentally 
confirmed results like Lp;> 1.825A.. 

PACS numbers: 47.25.Cg, 47.10. + g 

Determined in theoretical detail by Navier-Stokes 
transfer and dissipation of energy, 1-3 the longitudinal corre
lation function/(r,! ) manifests certain general analytic prop
erties for all types of isotropic homogeneous turbulence. It is 
given generically for small r S -i (t )==(15vu2 I €)'/2bythealter
nating power series 

/ = 1 - ~ 5(B + 1) r" _ 0 ( .!..- ) 0 r S-i 
U 2 + 56 -i 4 A. 6' 0;;;; 

in which B is the dimensionless "broadness" parameter.4 

For large r it has the asymptotic form5-s 

(1) 

/=Ir-3-Jr-4+0(L~/r), r~3Lp (2) 

in which I (t )=limHoo (,J/), J (t )=limr~oo r"(3/ + raj I ar), and 
Lp(1 )=fO' / dr are positive quantities. Moreover, an especial
ly simple and universal r dependence is associated with grid
generated strong turbulence during the initial period (grid 
Reynolds numbers UM Iv from 12800 to 81000 and 
u-i I v ~ 40) where experiments9 show that/is independent of 
t for r~-i and given by the empirical relationS 

/= [1 + (0.770)(rIM))-3, r~-i (-O.IM) (3) 

from which the quantities in (3) are obtained as 

I = 2.19M 3, J = 8.54M4 with Lp = 0.649M. (4) 

The purpose of this paper is to point out that stringent 
inequality relations obtain for the physical parameters-i, B, 
I, J, and Lp in (1) and (2) if the energy spectrum function is 
expressible as the Laplace transform of a nonnegative 
distribution: 

E (K,/) = iU2~ Loo (J (s,/)e - KS ds, (J;>O. (5) 

Such a representation is guaranteed by the Post-Widder'o", 
real inversion formula 

(J(S,/)=tu-2Iim{(-ltK"+1 ~[K-2E(K'/)]} (6) 
n_oo n! aK" K = nl, 

if( - Itan[K- 2E(K,t ))/aK"isnonnegativeforallKwithn suf
ficiently large; moreover, the approximate real inversion for
mulas '2 based on (6) yield patently nonnegative (J for the 
energy spectra of practical interest. The normalization con
dition that follows from (5), 

f" S-3~(S,t) ds = lu-2L'" E(K,t) dK= 1, (7) 

shows that (J must vanish strongly for small s. This will in-

deedbethecaseiftheanalyticcontinuation/(z,t)forcomplex 
z = r + is is regular in the first quadrant (r> 0, s > 0), as seen 
by converting the Fourier transform 13 into a Laplace 
transform: 

u
2 (J2 a ) E(K,t) = - ~ --::-:2 - K- F(K,t), 

1r a,. aK (8) 

F (K,t )== L
OO 
/(r,t )(cos Kr) dr = Re 100 

/(r,t )eiKr dr 

= Re l°O/(is,t)e - K'; ds = - Loo [Im/(is,t )]e - K$ ds. 

(9) 

In (9), the integration path has been rotated through the first 
quadrant from the physical positive real axis to the positive 
imaginary axis, a change effected by the replacement r-is. It 
is tacitly understood that/(is,1 )=limr-o + /(is + r,1 ) in thefi
na1 member of(9), with the limit taken after integration in the 
event that/(z,l) has a singularity on the positive imaginary 
axis [see, e.g., (25) below]. Notice that in the case of (1) and 
(3), 

for Oo;;;;sS-i, 

for s~-i, 
(10) 

in a convenient system oflength units such thatM = (0.770); 
more generally, from (1) and (2), 

I fl· ) { 0 for Oo;;;;sS-i, 
m lS,t = Is-3 _ 0 (L ~/~) for s ~ 3Lp , 

(11) 

with Im/(is,1 ) negative over ansinterval above-i before turn
ing postive for larger s. Substituting (9) into (8) and perform
ing an integration by parts after the K differentiations, one 
obtains (5) with 

(J (s,t) = 3~ [i'" Im/(is',t)s' ds' - sllm/(is,tj]. (12) 

Since 

LOO Im/(is',t)s' ds' = - 1m Loo/(r,t)rdr = 0, (13) 

it follows from (11) and (12) that (J (s,t) = OforOo;;;;sS-i. 
The useful representation for/itself emerges by putting 

(5) into the energy spectrum Fourier transform 13 and carry
ing out the integration over K: 
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f(r,t) = 2u- 2 (r- 3 - r- 2 :, )1"" E(K,t)K- 3(sinKr) dK 

= ~r-3 i oo 
[(tan- 1 ~) - rs(r + S2)-I]¢ (s,t) ds 

= i oo 
[ 1 - ~ (; r + ~ (~r -.. }-3¢ ds 

=~r-3iOO[; _2sr- 1+ ... ]¢dS. (14) 

From (14) one obtains ¢-integral formulas for the coeffi
cients in (1) and (2), namely 

12 (00 
A -2 = -s-Jo S-5¢ ds, (IS) 

S (00 ( (00 ) - 2 
B+l=2"Jo s-7¢ds

Uo 
s-5¢ds , (16) 

1= ....!!- ¢ ds, 3 i oo 

4 0 
(17) 

J = 3 i oo 
s¢ ds, (18) 

as well as 

L 317' i oo 
-2¢ d =- s s 

p 8 0 
(19) 

by direct integration over r ofthe third member of (14). No
tice that the Schwarz inequality and normalization condi
tion (7) imply B>~ according to (16), with equality only for 
the academic Birkhoff form (Ref. 6, p. 34), for which 
¢ (s,t) = a3!5(s - a) with a = a(t) > O. Indeed, the experimen
tally observed broadness values4 are all greater than ~. The 
Holder inequality 

(00 ( (00 )3/4( (00 )1/4 Jo ¢ ds<Uo s¢ ds UO S-3¢ ds 

in combination with (7), (17), and (18) yields 

J>(O.9S7)[4/3. 

(20) 

(21) 

Similarly, obvious HOlder inequalities applied to (7), (17), 
(18), and (19) produce 

(1.441)L ; <I«1.073)J2/3L !/3. (22) 

Finally, the HOlder inequality 

i oo 
S-3¢ ds«i

OO 
S-5¢ dS) 1/3(100 S-2¢ ds y/3 (23) 

in combination with (7), (IS), and (19) yields the remarkable 
relation between the basic scale parameters 

(24) 

Other inequalities involving the parameters (IS)-( 19) are also 
obtainable in this manner. 

The values in (4) for grid-generated strong turbulence 
are clearly consistent with the general inequalities (21), (22), 
and (24), for A is less than 0.2M in these initial period experi
ments. A very stringent test of the inequalities is provided by 
the experimental measurements 14 on grid-generated weak 
turbulence(UM Iv< 103

, UA Iv$ 30). Since this weakturbu
lence features4 B = 1.80, the longitudinal correlation func
tion is not substantially dissimilar from Birkhoffs B = 1.S0 
academic case, for which (21), (22), and (24) all hold as exact 
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TABLE I. Comparison of experimentalJ values for the grid-generated weak 
turbulence (Ref. 14, Fig. 9 and Ref. 15) with values given by Eq. (25). 

riA 0 1 2 3 4 5 6 7 
J I 
J[Eq. (25)] 1 

0.68 0.33 0.18 0.12 0.07 0.05 0.03 
0.667 0.333 0.182 0.111 0.069 0.048 0.034 

equalities. From the weak turbulence empirical relation l4.15 

(see Table I) 

{
(I + rlU 2)-1 for r<SA 

f= 19(A Ir)3 - S2(A Ir)4 for r>5A (25) 

it follows that 

[= 19A 3, J = SU 4, Lp = (2.06)A.. (26) 

The weak turbulence parameter values in (26) are indeed also 
consistent with the general inequalities (21), (22), and (24). 

A final check on the correctness of the inequalities is 
afforded by experimental data16 on waterfall-generated tur
bulence at very high intrinsic Reynolds numbers UA Iv;::; 103• 

From the measured value16 Lp = 27.SA and the empirical 
relation (see Table II) 

f~9.00X104(Alr)3-4.74XI06(Alr)4 for r>80A 
(27) 

it follows that 

1= 9.00X 104A 3, J = 4.74x 106A 4, (28) 

and it is readily verified that (21) and (22) are again satisfied 
by the latter values. 

Hence, the inequalities are confirmed by experiment. In 
terms of the longitudinal correlation function the main re
sults (21) and (24) take the form 

lim rf - 4/3(3f + r a
f

)]>0.957, (29) 
Hoo t ar 

LOOf(Aa,t) da> 1.82S. (30) 

It is interesting to note that the empirical forms (3), (25), 
and (27) have the common property af I at>o for all rand t>O 
because A is monotone increasing with increasing t.4 This 
implies that the right side of the Karman-Howarth 
equation 17. 13 

af = 2V( a
2
f + ~ af ) _ u- 2 du

2 
f + u-2K (31) 

at ar r ar dt 
is likewise nonnegative for all rand t>O. Defined implicitly 
by the formula 

(uj(x,t )uk(x,t )uk (x + r,t )==!rjK (r,t), (32) 

K = K (r,t) on the right side of (31) is concomitant with the 

TABLE II. Comparison of experimental Jvalues for the waterfall-generat
ed strong turbulence (Ref. 16, Fig. 2) with values given by Eq. (27). 

r* 
riA = r*/1.74 

J 
J[Eq. (27)] 

140 
80.5 
0.060 
0.0597 

150 
86.2 
0.055 
0.0547 

160 
92.0 

0.050 
0.0494 

170 
97.7 
0.045 
0.0445 

Gerald Rosen 

180 
103.4 

0.040 
0.0399 
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inertial transfer of energy. 1-3 If one introduces a representa
tion for K similar to (14), 

K (r,t )=iu2r-3 f" [tan -I; - rs(,z + S2)-1 ]1/I(s,t) ds, 

(33) 

and substitutes (14) and (33) into (31), one obtains an adjoint 
dynamical equation for nonnegative t/J (s,t ), 

at/J a2t/J -2 du2 
-= -2v--u -t/J+1/I, (34) 
at as2 dt 

where the viscous "antidiffusion" term emerges after per
forming two integrations by parts with respect to s; this vis
cous term on the right side of(34) is strictly one dimensional, 
in contrast to the radial diffusion terms in (31). To guarantee 
t/J (s,t );>0 for all sand t;..O in the context of a Phragmen
Lindelof maximum principle, 18.19 one must put a suitable 
inequality condition on 1/1 in (34). 
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We study the dynamic polarizability of a linear chain of atoms interconnected by springs and 
subjected to a double quadratic (D-Q) or multiquadratic (M-Q) substrate potential in the presence 
of a weak nonlinear coupling term between adjacent particles. The results obtained by Trullinger 
on the D-Q model with linear coupling are reviewed and the same formalism is extended to 
calculate the modified kink waveform in the presence of nonlinear coupling and the dynamic 
polarizability of this modified kink. The simplicity of the model allows us to carry out analytically 
all the calculations. We show that the presence of kinks in such an anharmonic chain enhances the 
effect of coupling nonlinearities. 

PACS numbers: 63.10. + a, 03.40.kf 

I. INTRODUCTION 

The model of a linear chain of atoms interconnected by 
springs and subjected to a periodic substrate potential is cur
rently widely studied both because of its intrinsic mathemat
ical interest and because of the large number of physical situ
ations for which this model represents the simplest 
formulation which includes the essence of the process. Two 
kinds of substrate potential are generally considered: a dou
ble well potential whose prototype is the tP 4 potential and a 
periodic potential like the sinusoidal potential of the Sine
Gordon (S-G) chain. In the continuum limit these two mod
els give rise to nonlinear wave equations which admit large
amplitude solitary waves or soliton solutions that retain 
their shape during propagation. The tP 4 model has recently 
received a great deal of attention I-S as a model of domain 
walls in displacive phase transitions, while the areas of appli
cations of the S-G model include dislocation lines in imper
fect crystals,6 ion motions in some superionic conductors, 7-9 
and charge density waves in metals. 10--12 Statistical mechan
ics investigations l

•
2.4.13 have shown that solitons behave as 

elementary excitations at finite temperature and phenomen
ologies which treat them as an ideal gas of particles have 
been developed. 1,2.13 In addition the influence of various 
types of perturbing forces on solitons has been investigat
ed. 14 A topic of particular importance in the context of do
main wall in ferroelectrics is the manner in which kinks re
spond to an oscillating electric field, that is to say, the 
calculation of the generalized susceptibility I S of the chain in 
the presence of solitons. This topic is also related to the di
electric or FIR response of imperfect crystals (for instance 
crystals with dislocations) or crystalline solids (like super
ionic conductors) in which the correlation length oflarge
amplitude atomic motions is expected to be sufficient to al
low the formation of collective modes randomly moving 
across the crystal.7-9 In this context the double-well model 
describes localized motions (like molecular rotations in some 
molecular crystals)16.17 and the periodic potential describes 
diffusive motions (like ionic diffusion in fast-ions conduc
tors).7-9 Moreover in this case, since large atomic displace
ments which are no longer negligible with respect to the unit 

cell dimensions are involved, it is of great physical interest to 
introduce in the model nonlinear coupling terms between 
adjacent particles to take into account the anharmonicity of 
pair potentials in solids. It is the aim of this paper to investi
gate the dynamic polarizability of a linear chain bearing soli
tons when a small cubic nonlinearity is introduced in the 
spring connecting adjacent particles in the double well or 
periodic potential models. 

The response of a tP 4 kink to an oscillating field has been 
studied recently by Theodorakopoulos et al. S and Lee and 
Trullinger have investigated the generalized susceptibility 
of kink solutions of the nonlinear Klein Gordon equation 
and applied their formalism to the S-G and tP 4 kinks. Allroth 
and Mikeska 18 calculated the dynamical structure factor of 
the S-G chain. But, even for the special case of homogeneous 
applied fields the dynamic polarizability of the tP 4 or S-G 
kinks are extremely cumbersome to evaluate IS and require 
the performance of infinite summations. Consequently the 
extension of these calculations to S-G and tP 4 systems in the 
presence of nonlinear coupling terms appears to be very diffi
cult. So we investigate alternate models which preserve the 
essential features of the tP 4 or S-G model but which lead to 
much simpler calculations. IS,I9 A double-quadratic (D-Q) 
potential IS is used for the double-well model instead of the. 
tP 4. This potential consists of two displaced parabolas [Fig. 
l(a)] and gives rise to solitary wave solutions of the unper
turbed equation of motion. In a similar manner the sinusoi
dal substrate potential is replaced by an array of parabolas 19 
[Fig. l(b)] henceforth referred to as the multiquadratic po
tential (M-Q). These two models are more tractable analyti
cally than the tP 4 or S-G models since they give rise to wave 
equations which are piecewise linear in the case of linear 
coupling, allowing us to perform analytically the computa
tion in the presence of nonlinear coupling in the framework 
of a perturbation theory. The dynamic polarizability of the 
D-Q chain with linear coupling in the presence of a static 
kink was first studied by TrullingerlS and our investigations 
use the same formalism, especially the expansion technique 
proposed by Fogel et al. 14.20 which makes use of the com
pleteness property of small oscillations about the kink 
waveform. 
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v (b) 

FIG. 1. Substrate potential of the double quadratic (D-Q) (a) and multiqua
dratic (M-Q) (b) chains. 

The plan of this paper is as follows. In Sec. II we de
scribe the D-Q and M-Q models. The results obtained by 
TruIIinger15 on the D-Q chain with linear coupling in the 
presence of a static kink are summarized and extended to the 
M -Q model. The results are compared with those of the rP 4 or 
S-G models. In Sec. III the nonlinear coupling term is intro
duced and the new soliton solutions are obtained. The gener
alized susceptibility of the D-Q or M-Q chain with nonlinear 
coupling is then computed in Sec. IV. We find that kinks 
enhance the effects of the nonlinear coupling terms; in their 
presence the nonlinear coupling contribution to the general
ized susceptibility appears in the first-order term of the per
turbation expansion rather than in the second-order term. In 
Sec. V we give a brief summary. 

II. THE D·Q AND M·Q MODELS WITH HARMONIC 
COUPLING 

In this section we describe the models studied and sum
marize the method used by Trullinger15 to compute the gen
eralized susceptibility of a static kink in the D-Q model with 
harmonically-coupled particles since it constitutes our start
ing point for further calculations. We then compare the re
sults with results previously published on the rP 4 or S-G 
models and we show that the dependence of the main fea
tures of the susceptibility on the specific form of the potential 
is rather small. 

The systems under consideration [Figs. I(a) and I(b)) 
consist of one-dimensional chains of harmonically-coupled 
oscillators governed by the following Hamiltonian: 

n 

where Un is the displacement coordinate of the nth oscillator. 
The first term represents the kinetic energy carried by the 
displacement field ( a dot denotes a time derivative) and the 
second term is the strain energy arising from the harmonic 
coupling (coupling constant Ko) between displacements at 
neighboring lattice sites. 

The potential energy term has different expressions for 
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the D-Q or M -Q models: 

V~Q(u) = !mw6(lul - a)l, 

for O<u<2a, { ~mW6(U - a)2, 
V~Q(u) = V~Q(u _ 2na), for u < 0 or u > 2a 

(in the last expression the value of n is chosen so that 
O<u - 2na<1a). The constant Wo represents the limiting fre
quency of long wavelength phonons. The spacing between 
adjacent wells is designed by a and / denotes the length of the 
unit cell in the chain. For the D-Q chain I> 2a while for the 
M-Q model 1 = 2a (Fig. 1). Introducing the dimensionless 
displacement coordinate rP n = Un I a, the Hamiltonian (2.1) is 
written 

'" • 2 C6 2 2 H = A/~!rP n +! IT (rPn + 1 - rPn) + Wo V(rPn)· (2.2) 

The constant A = ma211 sets the energy scale and 
C ~ = Ko/2lm is the limiting velocity of the kink. 

and 

The dimensionless potential function is 

VDQ(rP) = !(lrP I - 1)2 for the D-Q model, 

O<rP<2, 

O<rP - 2n<2, 
for the M-Q model. 

It is important to notice that for - 2 < rP < 2, 

VDQ(rP) = VMQ(rP) = !(irP I - 1)2. (2.3) 

We restrict ourselves to the continuum approximation, i.e., 
we assume that the coupling between neighboring sites is 
strong enough to ensure that variations of rP from site to site 
are quite small. The relevant length scale is d = Col Wo and 
we assume that d>l. In this limit, kinks become well-defined 
excitations2

1.
2

2 with long lifetimes and the Hamiltonian (2.2) 
is replaced by 

H =A J dx 1 H~(x,tW + !C6 [rPAx,tW + W6 V(rP)), (2.4) 

where rP x (x,t ) = (al ax)rP (x,t ) is the continuum limit of 
(rPn + 1 - rPn )/1. 

The Hamiltonian equation following from Eq. (2.4) is 

.. 2 2 av 
rP - C orPxx + Wo - = O. (2.5) 

arP 
We are concerned only with linear "phonon" solutions and 
with kink or antikink solutions. The linear solutions are os
cillations around the equilibrium positions rPe = ± 1 whose 
magnitude must be less than 1 (IrP - rPe 1< 1) but is not re
quired to be infinitesimally small since the individual poten
tial wells are perfectly harmonic for IrP - rPe 1< 1. For the 
kink solution we impose the conditions rP ( + 00) = 1 and 
rP ( - 00) = - 1 and for antikink solutions the sign of rP is 
reversed. In the case of the M-Q potential additional multi
kink solutions may exist with limiting values 
rP ( ± 00) = ± n but they require much more energy to be 
created and they are neglected here. With this restriction, 
the values of rP are confined to the - 2, + 2 range so that 
V(rP) has the same expression V(rP) =!(JrP I - 1)2 for the two 
models. The motions in real space are different, but in the 
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dimensionless variables the results are identical for the two 
models. Of course this would no longer be true if multi kink 
solutions were involved or if statistical mechanics studies 
were performed. 13 Configurations involving several kinks 
are essentially different for the two models, since only an 
anti kink can follow a kink in the D-Q model while kinks or 
antikinks do not necessary alternate in the M-Q model. But, 
as mentioned in the following, the dynamical polarizabilities 
of kinks or antikinks are identical so that, for Our purpose, 
the two models give identical results when they are ex
pressed in dimensionless variables and this is an interesting 
feature of these models. 

Consequently Eq. (2.5) yields 

1) - C~¢.<X + (U~(I¢ 1- l)sgn(¢) = 0 (2.6) 

for the D-Q and M-Q models. This equation has been solved 
by Trullinger l5 and we first summarize his results. The lin
ear "phonon" solutions have the form 

¢k ± 1 = ¢o cos(kx - (Uk t ) (I¢ol < I) 
with the dispersion relation 

(U~ = (U~ + C~k 2. 

The travelling kink solutions are 

(u) [x - vt ] 
¢ s = ± sgn (1 _ V2/C~)1/2 

X[l-exp(- d(1~~;~LI/2)]. 

(2.7) 

(2.8) 

(2.9) 

where + ( - ) is appropriate to the kink (antikink) solution 
and v is the velocity of the kink. The small oscillations in the 
presence of a kink at rest at the origin (x = 0) are computed 
since they form a complete orthonormal set of functions 
which may be used to expand deviations of the kink wave
form in the presence of external perturbations. ¢ (x,t ) is 
written 

¢ (x,t) = ¢s (0) + tJI (x,t ), 

where ¢ ~I is the static kink waveform deduced from Eq. 
(2.9). The small deviation tJI(x,t) is governed by 

.p (x,t ) - C ~ tJlxJC (x,t ) + (U~ tJI (x,t )! 1 - 2dt5(x) J = 0, 

where 15 (x) is the Dirac delta function. 
Assuming solutions of the form 

tJI(x,t) =!(x)e-;ev, 

and introducing the dimensionless quantities 

z = x/d, r = (Uot. K = kd. i'iiK = (Uk/(UO' 

the following expressions are obtained for the functions! (z): 

!b(Z) = exp( - Izl). (2.1Oa) 

!K (z) = I sinK_z (K_ <0), 

~1T 
I 

fK (z) = -==------
. .J 1T (I + K2 +)1/2 

X [K+ cos K+z - sin K+ Izl] 

(2.1Ob) 

(K+>O). 
(2.1Oc) 

Note that in terms of the dimensionless variables the limiting 
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velocity of kinks is Co = 1. The "bound state" solution!b (z) 
corresponds to the translation mode of the kink. The "con
tinuum" states!K ± are classified by their parity under re
flection through x = 0 and the corresponding eigenvalues 
i'iiK are given by the dispersion relation (2.8). 

Once this set of functions is obtained they are used to 
compute the linear response of a kink at rest at the origin to 
an external applied field E (z, T) which couples linearly to the 
displacement field. Equation (2.6) now assumes the dimen
sionless form 

iP¢ ;P¢ a¢ 
-2 - -2 + ([¢ 1- l)sgn(¢) + r- = E(z,r). 
ar az aT (2.11) 

r is a dimensionless damping constant and the damping 
term r a¢ / aT is introduced to ensure that the response of the 
system remains small if E (Z,T) is small in magnitude so that 
Eq. (2.11) may be solved in the framework oflinear response 
theory (we assume that E (Z,T) does not contain a term which 
is constant in time). Assuming solutions of the form 

¢ (z,r) = ¢ ~o)(z) + tJ.¢ (z,r), 

linearization of Eq. (2.11) in tJ.¢ gives 

a
2
tJ.¢ _ a

2
tJ.¢ + (1 _ 2t5(z))tJ.¢ + r atJ.¢ = E(z,r). 

a? az2 aT 
(2.12) 

Note that ¢ ~o)(z) may be either a kink or an antikink; Eq. 
(2.12) is not modified and this shows that the responses in the 
presence of a kink or an antikink are identical. From the 
point of view of phonons an antikink is indistinguishable 
from a kink.23 The linear equation (2.12) is solved by a time 
Fourier transformation and expansion in terms of the com
plete set! fb (Z),JK • (Z),JK (z) J . tJ.¢ is expressed in the form 

tJ.¢ (Z,T) = _1_ f+ '" df) e;.fh·tJ.~ (z,l1) 
21T - OQ 

= _1 f+ OQ df} ewritJ.~m(f} )fm(z), (2.13) 
21T - OQ m 

where the generalized summation symbol f m denotes the 
following 

L!m =J;, + [00 dK_!K + 100 
dK+!K.· 

ThecoefficientstJ.~m (f) ) of the expansion oftJ.~ (z,l1) aregiv
en by 

tJ.~m(l1) = Em (11 )i[w;" - f} 2 + iFl1 ], (2.14) 

where Em 111 ) denotes the coefficients of the expansion of the 
"'-

time Fourier transform E (z,l1) of E (z,r) in terms ofthe same 
basis. The response function a(z,z';11 ) defined by 

tJ.~ (z,l1) = f: 00 dz' a(z,z';I1)E (z' ,f}) 

is expressed in terms of ! J; J 

( "11) - J J;(z)J;(z') az,z, - . 
j i'iiJ - 11 2 + iFI1 

(2.15) 

(2.16) 

As we consider only that part of the response corresponding 
to the deformation of the kink waveform, the term m = b is 
dropped from thej sum in Eq. (2.16). Making use of Eq. 
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(2.1Ob) and (2.1Oc) and performing the K integrations this 
becomes 

a{z,z';il) = __ 1_' eiQlz+z'l 

4Q 

+ _1_' eiQlz~z'l + _1_' Q + i eiQ(lzl + Iz'l) 

4Q 4Q Q-i 

+ _1_' eiQllzl ~ Iz'll 

4Q 

+ 1 e~(lzl+lz'l) (2.17) 
1 + Q2 ' 

where Q denotes the branch of (il 2 - I - iril )1/2 having a 
positive imaginary part. The response function a{z,z';il ) con
tains a term which measures the response of the displace
ment field far from the kink and another component which is 
the intrinsic response of the kink. 

The generalized susceptibility is the Fourier transform 
of the response function l5 

iO)(p,q;il ) = t+ 0000 dz 

x f~+ 0000 dz' e ~ ipz e ~ iqZ'a(z,z';il ). 

Substitution of Eq. (2.17) into (2.18) yields the result 

) 21T 
X(O (p,q;il ) = 2 Q 2 8(p + q) 

q -
2Q(Q+i) 

(2.l8) 

(2.19) 

The first term is the phonons term and, recalling the defini
tion of Q, one recognizes the usual Lorentzian shape. The 
last two terms arise from the presence ofthe kink and thus 
constitute the intrinsic susceptibility of the static kink as 
obtained by Trullinger. 15 

Trullingerl5 pointed out that the static kink contribu
tion to the susceptibility is similar to that of a harmonic 
oscillator. However we call attention to the signs of the real 
and imaginary parts of the kinks' contribution to the suscep
tibility which are opposite to those of harmonic oscillators 
(or phonons). Thus kinks contribute to reduce the total re
sponse of the chain with respect to the total response of the 
kink-free system. This is associated with the reduction of 
allowed phonon states in the presence of kinks.22 Moreover 
for the low values of the dimensionless damping (r::;; 0.2) 
two distinct contributions appear in the kinks' contribution 
to the susceptibility; in addition to the strong peak of the 
imaginary part mentioned by Trullinger l5 and arising from 
phonon backscattering, a smaller contribution correspond
ing to a diffuse absorption (positive contribution to the 
imaginary part) appears near the phonon peak (W' = t). This 
diffuse absorption increases when r decreases and it is inter
esting to notice that, for low damping, the imaginary part of 
X~O)(P,q;il ) looks very similar to the qualitative absorption 
spectrum obtained by Theodorakopoulos in the limit of van
ishing damping for the tP 4 model. 5 Since we have shown that 
our results in their dimensionless form also apply to the M-Q 
model, they can also be compared with the results previously 
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published about the S-G chain. For this system Allroth and 
Mikeskal8 deduced a reduction ofthe small amplitUde exci
tations (magnons in their case) density of states in the pres
ence of solitons. Moreover they showed that the dynamical
structure factor in the limit of vanishing damping acquires a 
Lorentzian line shape characterized by a width which is 
roughly proportional to the kink density. This last result is in 
agreement with our computations, which show that the half
width of the susceptibility imaginary part increases in the 
presence of kinks. However this effect is less pronounced for 
the D-Q or M-Q models than for the S-G model. In spite of 
minor differences we observe that the main features of the 
response to an external applied field are similar for the D-Q 
(M-Q) and tP 4 IS-G) models. Although the D-Q and M-Q 
potentials are nonreflectionless for the phonons while the tP 4 

or S-G are reflectionless we conclude that the effect of the 
specific form of the substrate potential on the generalized 
susceptibility is rather weak. 

III. KINKS IN THE PRESENCE OF NONLINEAR 
COUPLING 

In this section we introduce a cubic nonlinearity in the 
strain energy of the system associated with coupling between 
displacements at neighboring lattice sites and we derive a 
new form of the displacement field equation of motion. Then 
we solve this equation in the framework of a first-order per
turbation theory to obtain a new kink waveform in the pres
ence of nonlinear coupling. (In the following this kink will be 
referred to as the "modified kink.") 

Introducing a cubic term m the strain energy, the Ha
miltonian (2.t) is now written 

H = II !mu~ + !Ko(U n + 1 - unf 
n 

(3.1) 

where the third term is the energy arising from the anhar
monic coupling between adjacent particles (Kl is a positive 
coupling constant). € is a dimensionless constant which is 
used to specify the order of the perturbation calculation 
(€< 1). In terms of the dimensionless variables introduced in 
Sec. II, the Hamiltonian (3.1) is expressed in the form 

H=A1I14>~ +!C~1~2(tPn+l -tPn)2 
n 

+i£kl~3(tPn+l -tPn)3+ w2oV(tPn)' (3,2) 

where k = K l aJ3/m and the other terms have the same 
meaning as in Eq. (2.2). In the continuum limit the Hamil
tonian (3.2) becomes 

H = Af dx ( 14> 2 + !C~tP ~ + f,tktP! + w~ V(tP )! (3.3) 

so that the Hamilton equation of motion of the displacement 
field is now 

.. 2 2 av tP - c otPxx - €ktPxtPxx + wo - = 0 (3.4) 
atP 

instead of Eq, (2.S). 
Since we still impose the conditions tP ( + (Xl) = 1 ( - 1) 

and tP ( - (Xl) = - 1( + 1) for kinks (antikinks) solutions, 
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av la~retainsthesameexpression(l~ 1- l)sgn(~ ) for both 
D-Q and M-Q models so that Eq. (3.4) yields 

~. - C~~xx - Ek~Axx + (l)~(I~ I - l)sgn(~) = O. (3.5) 

Contrary to Eq. (2.6) the new equation of motion has no 
longer a covariant form; nevertheless it is still interesting to 
define the new variable X = (x - vt )/(1 - v2/C~)1/2. 

In terms of this variable, Eq. (3.5) is written 
Ek I 

- ~xx - C~(l _ v2/C~)3/2 ~x~xx + d2 (I~ I - I)sgn(~) 

=0 (3.6) 

(d 2 = C ~/(l)~.) The perturbation term in Eq. (3.6) is propor
tional to h = k IC~(1 - v2/C~)3/2. Due to the expression of 
h the first-order perturbation calculation that we use to solve 
this equation is not appropriate for kinks moving with high 
velocities since the magnitude of the perturbation term is no 
longer weak when v approaches Co. This is easily understood 
from physical arguments since high velocity kinks are also 
narrow kinks. Thus the relative displacement of two adja
cent particles situated near the kink center is very important. 
In this limit the cubic terms in the coupling energy bring an 
important contribution to the strain energy even if E < 1. 
Moreover, in the limit of high velocity kinks (v-Co and 
d-l), even the continuum approximation is no longer valid. 

Since we impose the limiting conditions 
~ (X = - 00) = - 1, ~ (X = 0) = 0, and 
~ (X = + 00) = + 1, Eq. (3.6) is solved by separate studies of 
the cases X > O(~ > 0) and X < O(~ < 0). In the first case we 
define the new variable if> (X) = ~ (X) - 1. Equation (3.6) 
gives 

1 
- if>xx - Ehif>xif>xx + - if> = O. 

d 2 

MUltiplying by if>x and integrating over X yields 

_ lif> 2 _ Eh if> 3 + _1_ if> 2 = C 
2: X 3 X 2d2 ' (3.7) 

where C is an integration constant. In the limit X - + 00 we 
have if>-o and if>x-o so that we obtain C = O. We look for a 
solution of Eq. (3.7) of the form 

if> = 4> 0 + A if>, (3.8) 

where if> 0 = - e - x Id is solution of the D-Q, M-Q model 
with harmonic coupling and A if> is the kink waveform modi
fication induced by the nonlinear term in the strain energy. 
We assume that A if> < if> ° (A if> is of the order of magnitude of 
E). 

Substitution ofEq. (3.8) into Eq. (3.7) and linearization 
in A4> (or e) gives 

Eh 1 "3 (cJ>~f - d2 cJ>°AcJ> + 4>~A4>x = O. 

Recalling the expression for 4> 0, one obtains the following 
equation for the deviation of the kink waveform induced by 
the nonlinear coupling: 

J,cJ>x+ ...!..J,cJ>= _j.!!!...e- 2X1d (3.9) 
d d 2 ' 

Equation (3.9) is solved with the limiting conditions 
J,cJ> (X = 0) = 0 and J,cJ> (X- + 00) = 0 arising from the 
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general conditions that we impose on the kink solution. The 
kink waveform is found to be 

4> (X>O) = -exp(-Xld) 

Eh - 3d [exp( -X Id) - exp( - 2X Id)). 

[The same method is used to determine cJ> in the case X < 0.] 
The modified kink or anti kink solution ofEq. (3.6) is finally 
obtained in the form 

~ ;(VI(X) = sgn(X){ ± [1 - exp( - IX lid)) 

Ek 

3dC~(1 - v2/C~)3/2 

X [exp( - IX lid) - exp( - 21X lid)] I (3.10) 

(in the following we denote by a prime all functions which 
are relative to the nonlinear coupling case). The sign + re
fers to the kink while the sign - refers to the antikink. In 
Fig. 2 we compare the waveform of the modified kink or 
antikink in the rest frame to the waveform of the kink or 
antikink with harmonic coupling. It is interesting to notice 
that the kink and antikink are no longer symmetrical in the 
presence of the nonlinear coupling term. This result arises 
from the cubic form of this term, which breaks the symmetry 
with respect to the change of x into - x. Since we solved Eq. 
(3.6) in a first order approximation, the expression (3.10) is 
valid only when the modification induced by the nonlinear 
coupling term is weak. As one would expect from physical 
arguments, this modification is localized around the center 
of the kink, where distances between adjacent particles are 
very different from equilibrium distances so that the contri
bution of the nonlinear coupling term is maximum. Recall
ing the value of X = (x - vt )/(1 - v2/C~)1/2 in Eq. (3.10) we 
note that the kink waveform is not Lorentz covariant. This is 
related to the noncovariant form ofEq. (3.6). Nevertheless 
one could obtain the waveform of a modified kink or anti
kink from the static solution 

~ '~(x) = sgn(x){ ± [1 - exp( - Ixlld)) 

- Ek 13dC~ [exp( - Ixl/d) - exp( - 21xlld ))1 
(3.Il) 

<D 
+11"---_= 

-1~----
-5 

FIG. 2. Comparison between the static kink (antikink) waveform in the 
harmonically coupled system (heavy line) and the modified kink (antikink) 
waveforms for two example values of the nonlinear coupling term: 
Ek 13d = 0.2 (thin line) and Ek 13d = 0.5 (dotted line). 
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by first performing a Lorentz transformation upon the co· 
ordinates and then changing k into k 1(1 - v2/C~)3/2. This 
last transformation is associated with the narrowing of the 
moving kink which increases the contribution of the nonlin
ear coupling terms. 

IV. GENERALIZED SUSCEPTIBILITY OF THE D-Q AND 
M-Q CHAINS WITH NONLINEAR COUPLING 

In this section we use an extended form of the general 
formalism, 14.1 S reviewed in Sec. II in the case of harmonic 
coupling, to compute the dynamic polarizability of the D.Q 
and M-Q kinks in the presence of nonlinear coupling. First 
we give the equation which governs the linear response of the 
modified kink described in Sec. III to an external applied 
field. Before solving this equation we define a new set of 
functions { /'m J derived from the orthonormal set {1m J in
troduced in Sec. II, which has been modified to account for 
the new kink waveform in the presence of nonlinear cou
pling. Then we obtain a general expression of the response 
function of the kink in terms of the basis { /'m J • The last step 
is the analytical evaluation of this expression to obtain an 
explicit form ofthe response function which is finally Four
ier transformed to derive the generalized susceptibility of the 
chain in the presence of nonlinear coupling. 

We consider the effect of an external field 1f (x,t ) applied 
to the chain with nonlinear coupling described by Eq.~3.4). 
We also assume a linear damping ra¢ I at as in Sec. II. Thus 
the displacement field equation of motion is 

~. - C~¢xx - Ek¢x¢xx + liJ~ ~ [V(¢)] + r~ = 1f(x,t) 
a¢ 

(4.1) 

and we tum our attention to the study of the response 
J.¢ '(x,t ) to the disturbance 1f (x,t), superimposed on a static 
solitary wave ¢ '~(x) whose expression is given by Eq. (3.11). 
Consequently we seek a solution of the form 

¢ '(x,t) = ¢ '~(x) + J.¢ '(x,t). (4.2) 

As in Sec. II we assume thatJ.¢' is small if1f(x,t) is small in 
magnitude. Substitution ofEq. (4.2) into Eq. (4.1) gives 

a2J.¢' d 2¢ '~ a2J.¢' 
--af2 - ---;R2 - --aT 

( 
d¢'~ aJ.¢')( d2¢'~ a2J.¢') 

-Ek -- + -- --- +--
dx ax dx2 ax2 

+ r a~:' + ~ [V (¢ '~)] 
+ ~x,t) = 1f(x,t), (4.3) 

where 

r(x,t) = : [V(¢'~ +J.¢')] - ~ [V(¢'~)]. (4.4) 
a~ a¢ 

The determination of r(x,t ) is similar to the corresponding 
determination which is necessary to compute the small oscil
lations in the presence of a static kink with harmonic cou
pling and we find 

r(x,t) = [I - 2d '£5(x)]J.¢ '(x,t), (4.5) 

where £5(x) is the Dirac delta function and d ' is given by 
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(4.6) 
(Note that 1/ d ' is the slope of the modified kink waveform at 
the point x = 0 instead of 1 I d for ordinary kinks.) 

As a preliminary step in solving Eq. (4.3) we define a 
complete set of functions {I:" I which are solutions of 

- C V:..jx) - 2d ' liJ~£5(xlf:" (x) 

= (liJ~ - liJ~)/' m (x). (4.7) 

Equation (4.7) is formally identical to the equation governing 
the small free oscillations in the presence of a kink in Sec. II 
and its solutions can be expressed by Eq. (2.10) in terms of the 
new dimensionless variable z' = xl d ' accounting for the 
change of d into d ' in the equation. Since it is convenient to 
go on using the dimensionless variable z = xl d to solve Eq. 
(4.3), the orthonormal set {I:" I is written in terms of the 
dimensionless variables introduced in Sec. II. 

I 
I~(z) = - exp( - aizi), (4.8a) 

a 

IlL (z) = ~ sinK _az (K _ < 0), (4.8b) 
a(1T) 

I;'Jz) = a(1T)1/2(1 ~ K2+ )112 

X(K+ cosK+az - sinK+aizi) 

(K+ >0), (4.8c) 

where a = d' I d and the coefficient 1/ a is introduced to nor
malize the functions I:" with respect to variable z. Remem
bering that ¢ '~ is a solution of the unperturbed equation of 
motion, the dimensionless form of Eq. (4.3) is 

a2J.¢' a2J.¢' d¢'~ a2J.¢' 
---- ---Eg----

a? az2 dz az2 

d 2¢'~ aJ.¢' aJ.¢ , 
-Eg----+r--

dz2 az az 
+ ~ - 2a£5(z))J.¢' = E(z,r), (4.9) 

where g = k I liJ~ d 3 and r, E (z, r) are the dimensionless 
forms of r, 1f(x,t) introduced in Sec. II. In the linearization 
process used to deduce Eq. (4.9) from Eq. (4.3) the term 
Eg(aJ.¢ 'laz)(a2J.¢ 'laz2

) has been neglected. 
Then Eq. (4.9) is time Fourier transformed to give 

2 A a2 
A 

- n J.¢ '(z,n) - -2 [J.¢ '(z,n)] 
az 

dA. ,O(z) a2 
- Eg _~_s - -_. [J.¢ '(z,n )] 

dz az2 

d 2A. /O(z) a 
- Eg ~ s - [J.¢ '(z,n)] 

dz2 az 
+ iFnJ.¢ '(z,n) + [I - 2a£5(z)]J.¢ '(z,n) 

= E(z,n). (4.10) 

In this equation wereplaceJ.¢ '(z,n )by its expansion in terms 
of the orthonormal set {f:" (z)) 

J.¢'(z,n) = LJ.¢ :..(n )f:"(z) 

(4.11) 
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Making use of the dimensionless form of Eq. (4.7) which is 
satisfied by the functions/'"" substitution of Eq. (4.11) into 
Eq. (4.10) gives the following result: 

L(@~ - fJ 2 + irfJ)A¢ '", I'",(z) 

i A, (dt/J'~ d
2
/'", d2t/J'~ dl '",) 

-Eg t,t/J ----- + ----
m m dz dz2 dz2 dz 

(4.12) 

Equation (4.12) determines the coefficients t,t/J '", (fJ ) in the 
serieexpansion oftheresponset,t/J '(z,fJ). Since the set {I:" I 
is an orthonormal basis, multiplying by I~ (z) and integrat
ing over z gives 

t,¢ ~ (fJ )(m~ - fJ 2 + irfJ ) 

- Eg L A (m,n)AJ '",(fJ) = E"(fJ) (4.13) 

if we define A (m,n) by 

f (dt/J'O d 2f' d 2t/J'o df') 
A(m,n)= dz __ s_ -+ + -d 2

s 
-d

m I~(z). 
dz dz z z 

(4.14) 

We now derive a general expression of the response function 
in the presence of the static kink t/J '~ in terms of these coeffi
cients A (m,n) which will be evaluated later. The major 
change with respect to the case of harmonic coupling re
viewed in Sec. II is that Eq. (4.13) define in fact an infinite 
system of coupled equations which must be solved to deduce 
the coefficients t,¢ ~ (fJ ). Fortunately the term which cou
ples the equations for different values of the index n is a small 
corrective term (note the factor E) and we can, in a first ap
proach, determine the coefficients tJJ ~ (fJ ) by substituting, 
in the small corrective term, t,¢ :.. (fJ ) by their value comput
ed with E = O. It then follows from Eq. (4.13) that 

A E,,(fJ) 
t,.I.'(fJ}- -----

'I' " - m~ _ fJ 2 + irfJ 

'" ( A (m,n)Em(fJ) 

+ Eg Jm (m~ _ fJ 2 + irfJ)(ii>'! _ fJ 2 + irfJ) . 
(4.15) 

The first term in Eq. (4.15) arises from the harmonic contri
bution to the coupling between adjacent particles, while the 
second one arises from the nonlinear coupling term. Substi
tutionofEq. (4. 15)intoEq. (4.11)gives theresponset,¢ '(z,fJ) 

t,l"( fJ) i E"(fJ) I'() 
'I' z, = -2 {} 2 To'fJ" z 

"{J}" - + I 
f f A (m,n)Em(fJ) 

+ EgJ/~(Z)Jm (m~ - fJ 2 + iFfJ )(m~ - fJ 2 + irfJ)' 
(4.16) 

'" Since the coefficients Em (fJ) are defined by 

Em(fJ) = f dz' E(z',fJ )/'", (z'), 

we obtain 
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tJ¢ '(z,fJ ) = jdZ' E (z',fJ ) r I~ (z)/~ (z') 
J" (m~ -fJ 2+iFfJ) 

+ EgfdZ' E(Z',fJ)i/~(Z) 

i A (m,n)/'",(z') 
X . 

m (m~ - fJ 2 + irfJ )(m~ - fJ 2 + irfJ ) 
(4.17) 

A comparison between Eq. (4.17) and Eq. (2.15) which de
fines the response function of the system gives the following 
expression for the response function a'(z,z';fJ) in the pres
ence of nonlinear coupling 

'( , fJ) 1 1~(z)/~(z') a z,z' = 
, "m~ - fJ 2 + irfJ 

{r A (m,n)I:"(z') 

+ EgJ/~(Z)Jm (m~ - fJ2 + irfJ)(m~ _ fJz + irfJ)' 

(4.18) 

As we consider only that part of the response corresponding 
to the deformation of the kink waveform (i.e., we do not 
study the central peak), we drop the term n = b from the n 
sum in Eq. (4.17). The generalized summation in which the 
term n = b is excluded is denoted by f~ . The first term in Eq. 
(4.18) which is formally identical to the response function 
obtained in Sec. II is the contribution to the response func
tion arising from the harmonic-coupling term in the strain 
energy. Its value is given by Eq. (2.17) and we now concen
trate on the second term in Eq. (4.17), henceforth denoted by 
t,a(z,z';fJ), which describes the modification of the response 
function induced by the nonlinear coupling. 

The calculation of the explicit form of tJa(z,z';fJ) from 
Eq. (4.18) is performed in two steps. The first step is the 
calculation of coefficients A (m,n) and the second one consists 
in the integrations over m and n. We now examine succes
sively these two steps. 

The coefficients A (m,n) are defined by Eq. (4.14) and, 
since we have dropped n = b from the n sum in Eq. (4.18) we 
have only to calculate A (m,n) with n =lb. Recalling the ex
pression of t/J '~ given by the dimensionless form ofEq. (3.11) 
we have 

and 

dt/J ,0 

__ 5 = exp( - Izl) + Ek /3d [exp( - Izl) 
dz 

- 2 exp( - 21zl)] 

d2t/J '0 

__ s = _ sgn(z)! exp( - Izl) + Ek /3d 
dz2 

X [exp( - Izl) - 4 exp( - 2Izl)]j. 

(4.19a) 

(4.19b) 

Note that dt/J 'Vdz is an even function ofz while d z¢J '~/dZ2 
is an odd function of z. Thus to compute A (m,n) from Eq. 
(4.14) we have to calculate integrals of the form 

f + 00 d 2 f' (z) 
I) = dz exp( - alzll : I~(z) 

- 00 dz 

and 

f +OO dl'~ 
l z = dz sgn(z)exp( - b Izl) _m_/~ (z), 

- 00 dz 
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where a and b are constants (a,b = 1 or 2), for the different 
cases m = b, K _, K +. From simple considerations about the 
parity of the functions/:" and of their derivatives it is easy to 
show that some integrals of the 1, or 12 type vanish so that we 
deduce 

A (b,n) = 0 for all values of n (n =l=b), (4.20a) 

A (K_.K'+ ) =A (K+,K'_ ) = 0 for all K_ <0 andK+ >0. 
(4.20b) 

Consequently the only non vanishing A (m,n) terms are of the , 

A (K +,K '+ 1= --====---====-

formA (K_,K'_ ) (K_.K'_ <0) or A (K+.K'+ ) 
(K+,K'+ >0). Upon making use ofEqs. (4.14), (4.19), and 
(4.8) and performing the z integrations we obtain 

A(K K' 1=---K_K'_ { 1 

-, - tT 1 + (K_ +K'_ )2a2 

(4.21a) 

and 

atT ~ 1 + K 2+ ~ 1 + K ': , 
X { a 2K2+ (K+ +K,+)2 +aK2+ K'~ -aK+K'+ +K+(K+ +K'+) 

1 + (K+ +K'+ fa2 

_ a2K2+ (K+ _K,+)2 +aK 2+K': +aK+K'+ +K+(K+ -K'+ I}. 
1+ (K+ - K'+ )2a2 (4.21b) 

Once all the coefficients A (m,n) (n =1= b I are evaluated the next 
step is to perform the generalized summations S ~ and S:" in 
Eq. (4.18). This calculation is still separated into two steps. 
We first compute 

i' A (m,nl/:"(z') 
F (z')-

n - m ~~ _ 11 2 + iFI1 

and then integrate over n 

l' F.(z'I/~(zl 
Lla(z,z';n) = €g 2 

n ~! -n +irn 

(4.22) 

(4.23) 

Consider first the calculation of F K' (z') (n = K'+ > 0). Ac
cording to Eq. (4.20), only the term; with m = K + (K + > 0) 
contribute so that we obtain 

1+00 A(K K' ) 
F , (z') = dK +, + I' (z'), 

K. + 2K2 Q2 K+ o a +-
(4.24) 

where we have used the dispersion relation ~i = 1 + a 2K2 
and we have defined Q2 = n 2 - 1 - irn.Aftersubstitution 
ofEq. (4.21b) into Eq. (4.24) and after some simplifications 
arising from parity considerations F K' (z') may be written 

+ 

(1 - a)K'+ 
FK , (z') = ---===== 

" a2t?/2~1 + K'+ 2 

dK +JK+ f + 00 K I' (z') 

-00 + (a2K2+ -Q2)[I+(K+-K'+fa2](I+K 2+)' 
(4.25) 

The product K + /K + (z) is an even function of K + so that the 
integral over K + does not vanish. However, remembering 
thata = d'!dwith lid' = lid - Ek !3d 2,thisindicatesthat 
a-I is of the order of magnitude of €k !3d. Thus F K' (z) is 

+ 
of the order of magnitude of E and due to the factor €g in Eq. 
(4.23) the corresponding contribution to Lla(z,z';ll) is of the 
order of magnitude of E2. Since we perform all our calcula
tions up to the first order in € we must drop this contribution 
from Lla. Thus the only contribution to Lla which is first 
order in E arises from the case n = K _ (K _ < 0), and from 
Eqs. (4.20b), (4.22), and (4.23) we obtain 
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Lla(z,z';n) = Eg ["" dK_ [""dK'_ 

A (K_,K'_ )/KJz')/~, (z) 
X - . (4.26) 

(a2K2 _ _ Q2)(a2K '_ 2 _ Q2) 

To perform the integrations over K _ and K'_ by means of 
the residue theorem it is convenient to obtain a more sym
metric form of Lla in which K _ and K'_ vary between - 00 

and + 00. This is achieved by parity considerations and 
after substitution ofEq. (4.21a) into Eq. (4.26), Lla(z,z';ll) 
may be written 

Lla(z,z';ll) = - ~ 2 f+ 00 dK_ f+ 00 dK'_ 
47Ta -00 -00 

K _K'_ sin K '_ az sinK _ az' 
X ----------------------(K2_ a 2 _ Q2)(K'_ a 2 _ Q2) 

X { 1 + I }. 
1 + (K _ + K'_ )2a2 1 + (K'_ - K _ )2a2 

(4.27) 

Thus we have derived an expression of Lla(z,z';I1) which is 
more explicit than the general expression (4.18). The last step 
in the computation of the response function is to perform the 
integrations over K _ and K'_ in Eq. (4.27). After a tedious 
calculation we obtain 

Lla(z,z';I1) = sgn(z)sgn(z') €g6 
4a 

X { Q + i. [Ie -Izl + e -IZ'I) XeiQllzl + Iz'l) 
2Q+z 

_ e - 11211z - z'l + Iz + z'l)eiQ Ilzl - IZ'II] 

+ Q-i e-1I21Iz+z'I-lz-z'lleiQllzl-Iz'11 
2Q-i 

_ (1 + 1 )eiQIIZI + 1%'1) (4.28) 
1 + 4Q2 ' 

where Q has the same meaning as in Eq. (2.17). (Q denotes the 
branch of (ll 2 - 1 - irll ) - 1/2 having a positive imaginary 
part.) It is important to notice that setting z' = z and letting 
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Izl tend to infinity in Eq. (4.28) yields the result 

limlzl~"" .da(z,z;!1 ) = o. (4.29) 

Equation (4.29) means that the variation of the response in
duced by the nonlinear coupling term is localized around the 
center (z = 0) of the kink. Thus the introduction of the non
linear coupling term only modifies the intrinsic response of 
the kink and not that part of the total response which is the 
response of the system in the absence of a kink. In other 
words, in the absence of a kink the nonlinear coupling term 
does not modify the response of the system (at least in the 
framework of the linear response theory, i.e., if we limit the 
calculations to the first order in €.) This last result can be 
derived directly from the general equation of motion (4.1). If 
we look for the response of the system in the absence of a 
kink we assume a solution of the form 

¢ "(x,t) = ¢ f{ +.d¢ "(x,t) (4.30) 

instead of (4.2), where ¢ ;; = ± I represents the equilibrium 
positions of the particles in the absence of a kink. If we sub
stitute Eq. (4.30) into (4.1), after linearization in.d¢ "the term 
in €k arising from the nonlinear coupling vanishes since 
d¢ f{ I dx = 0, d 2¢ ;;1 dx2 = 0 and we neglect 
(a.d¢ " /ax)(a2.d¢ "/ax2) in the linearization process. 

Consequently Eq. (4.28) shows that the presence of a 
kink enhances the effects of the nonlinear coupling term; the 
change in the response function is one order of magnitude 
higher (with respect to the magnitude € of the perturbation) 
in the presence of kinks. This is easily understood physically 
since the presence of kinks induces large displacements from 
equilibrium positions. This was the reason why it seemed to 
us particularly interesting to introduce nonlinear coupling in 
a system bearing kinks due to the existence of a nonlinear 
substrate potential. 

The generalized susceptibility of the system (Eq. 2.18) is 
the Fourier transform of the response function. Since we 
have obtained 

a'(z,z';!1) = a(z,z';!1) + .da(z,z';!1), 
where a is the response function in the case of harmonic 

o 

-0.1 

-Q20L------0~5------~----~15------~----~n~ 

FIG. 3. Nonlinear coupling contribution to the susceptibility ..:1X (O)(P,p;[J Jin 
the presence of a static kink. The real and imaginary part of ..:1 X are plotted 
as solid and dashed curves, respectively. 
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coupling, the generalized susceptibility with nonlinear cou
pling in the presence of a static kink is 

X '(O)(p,q;!1) = iO)(p,q;!1) + .diO)(p,q;!1). (4.31) 

The generalized susceptibility of the harmonically coupled 
system, X (O)(p,q;!1 ) is given by Eq. (2.19) and .d X (O)(P,q;!1 ), 
which is the Fourier transform of .da(z,z';!1), represents the 
nonlinear coupling contribution to the susceptibility. Since 
.da(z,z';!1) is symmetrical with respect to the permutation of 
z and z' the Fourier transform is also symmetrical in p and q. 
Moreover, since .da is an odd function of z and z', 
.dX (O)(p,q;!1 ) vanishes for p = 0 or q = O. Performing the 
Fourier transform we obtain 

.diO)(p,q;!1) = €kpq 

{ 
Q+i [ I 

- 2Q+i (q2 _ (t)[(1 - iQ )2];+ p2] 

+ (p2 _ Q 2)[ (1 _ iQ 2) + q2] 

Q+i I + -- X ---:----::--:----::-;:-
2Q + i (1 + p2 + q2)2 _ 4p2q2 

X [ 3 + p2 - q2 - 2iQ + 3 + q2 _ p2 - 2iQ ] 
(I - iQf + q2 (1 _ iQ)2 + p2 

_ Q-i X 1 
2Q - i (1 + p2 + q2)2 _ 4p2q2 

X [ 1 + p2 - q2 - 2iQ + 1 + q2 - p2 - 2iQ ] 
q2 _ Q2 p2 _ Q2 

+(1+ 1+~Q2)X (P2_Q2~q2_Q2)}.(4.32) 
In Fig. 3 we have plotted the real and imaginary parts of 
L1 X (O)(p,p;!1 ) for p = 0.4 and for a magnitude ofthe nonlinear 
term given by€k = 0.05. The magnitudeofL1x increases asp 
or q increases but it must be remembered that the continuum 
approximation requires the small wavevectors limit. 

V.SUMMARY 

The main purpose of this paper was to show that it is 
interesting to introduce coupling nonlinearities in systems 
bearing kinks. We have shown that, for the D-Q or M-Q 
models, they can be treated analytically at least in the frame
work of a first order perturbation theory. We have calculat
ed the modified kink waveform in the presence of cubic non
linear coupling terms in the Hamiltonian and the 
contribution to the response function and susceptibility of 
these nonlinear terms has been determined. The outstanding 
result is that the existence of a nonlinear substrate potential 
enhances the effects of coupling nonlinearities; in the pres
ence of kinks nonlinear coupling terms contribute to the 
first-order term in the perturbation expansion of the suscep
tibility instead of the second-order one. However, since cal
culations were performed in the continuum limit, large rela
tive displacements of adjacent particles are excluded and this 
prevents the coupling nonlinearities from playing the major 
role that they are expected to play in real systems bearing 
kinks. Nevertheless our results suggest that it would be very 
interesting to apply the same calculations to a discrete model 
bearing narrow kinks. 
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A derivation is supplied for a functional relation between the Fuchs energy £ and the Madelung 
energy S for a Gaussian Wigner solid (GWS) in which the usual uniform background of a Wigner 
solid (WS) is replaced by a periodic array of Gaussians with variable "ripple" parameter p 
allowing the WS and the empty lattice in the limits of small p and large p, respectively. It is the 
zeros of .::1£, and not of .::1S, that are relevant for structural transitions between two lattices. Much 
can be determined about the transitions with minimal computations by utilizing a modest amount 
of information about order relations on certain theta functions. With increasingp, the sequence of 
lowest-energy structures restricted to the cubics is bcc, fcc, and sc. A later report will treat the 
Yukawa WS (YWS) in which the Gaussians are replaced with Yukawa distributions. The 
functional relation is again derivable, and it is not given by Medeiros and Mokross's recent 
assumption that 2£YWS = SYws. 

PACS numbers: 64.70.Kb, 61.50.Lt, 71.4S.Nt, 71.10. + n 

J. INTRODUCTION differ even in number in general. 

A Wigner! solid (WS) is a model composed of point 
charges Q (of either sign) on a Bravais lattice with a uniform 
neutralizing background. This is the first of a two-part re
port on generalized WS's in which the background is modi
fied with variable "ripple" in the charge. This first paper 
treats the Gaussian WS (GWS) in which the background is 
formed by centering about each lattice site the charge distri
bution - Q Iplrr)3/2 exp( - prj. The second will treat the 
Yukawa WS (YWS) in which - Q (A 2/4rr)r- 1 exp( - Ar) is 
centered similarly. Both of these possess the WS and the 
empty lattice as limiting cases. The purpose of these papers is 
to supply derivations of the Fuchs energy £, the Madelung 
energy S, and functional relations between these two ener
gies. Recently, I reported2 the final results for the GWS and 
the YWS, applied them to the cubic lattices, and pointed out 
that Medeiros and Mokross3 have incorrectly assumed that 
2£ YWS = S YWs. Quite stringent tests satisfied by the final re
sults add confidence in the validity of the derivations. 

The WS model has been found useful in many theories 
(solid state, plasma, low temperature, and pulsars) as dis
cussed by several authors. 5

-
9 Generalizations of the WS that 

change either the uniform background or the lattice of point 
charges Q offer a wider range from which to select more 
realistic models. Reference 3 used the YWS to represent 
phase transitions in systems formed by polystyrene particles 
in aqueous suspensions as observed by Williams et al.,!O and 

The Fuchs energy £, which will be defined in Eq. (26), is 
the interaction energy of all charge normalized to the vol
ume n occupied by each point charge Q, and it is the relevant 
quantity for determining which of two lattices is preferred 
energetically. It is generally more difficult to calculate than 
the Madelung energy S, defined by Eqs. (3) and (10), which is 
given by S = K - A, A = Q (cP), where (cP) is the average 
potential of all charge and K is the energy of interaction 
between one point charge Q and all other charge. If one mo
mentarily ignores the difference between K and S, and if one 
recalls results for simple non -Coulombic models like the Len
nard-Jones solids, one might expect 2£ = S as is the case for 
the WS. However, doubt woulJ be cast on this expectation 
by considering the classical Coulomb lattice (CCL) model4 

composed of one lattice of pomt charges Q and another iden
tical displaced lattice of point charges - Q for which 
£CCL = S CCL. For two lattices with the same n it is the zeros 
of ..::l£, and not of ..::lS, as a function of the ripple parameter p 
(or A) that determine where transitions occur. As Ref. 2 and 
Fig. 1 show, the set of zeros of.::1 £ and the set of zeros for ..::lS 

-. 15<10 

10 

(bee-fcc) 

\ 
\ 
~ 
~ 

FIG. 1. Comparison of the (bee-fcc) differences for the Madelung (5 = FX) 
and twice the Fuchs (21' = Fy) energies reduced by F = Q 2 /il"" as a func
tion of the "ripple" parameter I = p(il 211/1r) for the Gaussian (GWS) 
Wigner solids. Zeros of.:1 yGWS locate transitions. 
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Birman II has used Gaussians in various ways to try to im
prove upon the CCI as a model for ionic crystals. Most gener
alizations of the WS present considerable complications in 
the reduction of complicated defining expressions for E to 
simple forms and in the search for functional relations be
tween E and S. The present derivations for the GWS and 
those to be presented later for the YWS serve as prototypes, 
presenting slightly different mathematical difficulties and 
leading to different functional relations. 

To express extra difficulties encountered for the GWS 
and YWS over those for the WS, consider lattice summa
tions and cellular integrations as "summations." Then for 
the WS one starts with a defining expression for EWs, part of 
which involves a sequence of twelve summations, and re
duces it to an expression with three summations. For the 
GWS and YWS I start with defining expressions involving a 
sequence of eighteen summations and reduce them to a se
quence of three summations. 

The calculations involve limiting processes which must 
be performed with consistent account of the arbitrariness of 
the average potential and with care to avoid errors generated 
through unjustified interchange of the order of summation 
and integration in Ewald procedures. My derivations of 
E

GWS and E YWS parallels that for E WS given by Hall and Rice l2 

beginning with their Eq. (6). To investigate E one needs to 
develop expressions for K (r) and S (r) generalized beyond 
those of Ref. 12 through the more general potential f/> (r), 
where K = K (0) and S = S (0). These can be defined without 
recourse to Ewald techniques, namely by 

f/>(r) = (f/» +S(r)/Q+Qlr, (1) 

K(r)=S(r)+A, A=Q(f/», (2) 

S=limS(r)=limQ[f/>(r)- (f/» -Qlr). (3) 
r--..Q r- .. O 

Once the f/> (r) is defim;d for a model, the K (r) and S (r) are 
defined. The f/> (r), K (r), K, and A are multivalued, but S (r), S 
and E are unique. Until recently errors were made in applica
tions of Ewald techniques which were equivalent to incor
rectly equating K and S in the theory of S and equating K (r) 
and S (r) in the theory of E; Hall 13 uncovered the first error 
and Ihm and Cohen 14 uncovered the second for the WS case. 
The canceling effect of these two errors for the WS has been 
discussed. 12,14 The related matter of why Evjen lS encoun
tered "Evjen oscillations" in his use of direct summation 
methods for the CCL model ofCsCI but not for NaCI has 
also been discussed briefly in Ref. 12. 

I shall develop in Sec. II various ways of expressing K (r) 

and S (r), needed in Sec. III, and discuss the evaluation of.::iS 
for a broad class of pairs oflattices. In Sev. III I reduce the 
defining expression for E to a simple form convenient for 
evaluation and from which a functional relation between € 

and S is derivable. Section IV treats the functional relation. 

II. EXPRESSION FOR K(r) AND S(r) FOR THE GWS 

Denote with ! 1'l a Bravais lattice with volume fl per 
lattice point. Denote with! 'Y l its reciprocal lattice normal
ized by exp(i'Y'1') = 1. The charge distribution for the GWS is 
then given by 

p(r) = Q?{s(r - 1') - ( ~ yl2 exp[ _ p(r - T)2]} (4) 

= QI~ [ I - exp( - ~) ]eXP(i'Y.r ), (5) 

which is well defined in the sense of tempered distributions l6 

for all O';;'p < 00. As p approaches zero and infinity, the WS 
model and the empty lattices are secured, respectively. 

To secure the potential f/> (r) one might consider starting 
with V2f/> (r) = - 41T'p(r), using Fourier series, and writing 

f/> (r) = (f/» + 41T'Q I' [ I - exp( - r 14P)] exp(i'Y.r), (6) 
fl r r 

but this has two shortcomings. First, it gives no indication of 
how the average potential may be defined in terms of p(r) and 
the sequence of "summation cells" used 12 to define the po
tential for an infinite array of charge. Second, the sum in Eq. 
(6) converges conditionally, giving ambiguity other than that 
contained in (f/> ). To avoid these ambiguities, we need to 
display the limiting process by which f/> (r) and K (r) are de
fined, which are arbitrary only via the arbitrariness of the 
average potential. 

It is only necessary that (f/> ) be treated equivalently 
everywhere. For definiteness, choose a summation cell l2 for 
defining f/> (r) to be the proximity cell of the l' lattice and 
imagine a finite array of these cells centered on lattice sites. 
Let each cell contain the charge that a similar cell contains in 
the infinite charge array. The charge in each cell will have 
reflection symmetry (no dipole moment), ~nd a finite array of 
them will possess a well defined potential if a point charge is 
taken to contribute a potential going as r- I. The limit of an 
infinite nested sequence of these finite arrays, defines the 
total potential f/> (r) such that (f/» is given by Eq. (5) of Ref. 
12, which we do not need explicitly here. With this limiting 
processes understood on the l' summation, Eq. (2) gives 

K(~) = lim f' {_1 __ (!( L)3!2 exp[ - p(z - 1''f) }d3z _ (!( L)3!2 exp[ - p(z - T'f) d 3z, 
Q N~oo T Ir - 1'1 J T' 1T' Iz - rl Jo T' 1T' Iz - rl 

(7) 

= lim f' {_1 __ ~ r f exp[ - (r/4p) + i'Y'z ) d 3Z} _ ~ (f exp( - r/4p) exp(i'Y'z) d 3z, 
N~oo T Ir - 1'1 fl JT r Iz - rl fl Jo r Iz - rl 

(8) 

= lim f' ('" ~ {exp[ - V(T - rf) - ~ (fexp [ - (r) + i'Y'z - (z - r)2V]d 3Z}dv 
N~oo T Jo (1T'v) fl JT r 4p 

_ ~ (00 ~ (!exp [ _ (r) + i'Y'z _ (z _ rj2v] d3zdv, 
fl Jo (1T'V) Jo r 4p 

(9) 
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where the Poisson summation formula (PSFr 7 is used to secure Eq. (8) and the lemma ofEq. (A3) of Ref. 13 is used to get Eq. 
(9). As analyzed in Ref. 13, passing the r summation inside the integral in Eq. (9) brings in the average potential such that 
K(r) =S(r) +A and 

This variety of expressions for S (r) is needed for various inte
gralsofK (r)orS (r) and for various limitsonS (r)andS = S (0). 
Through the Eqs. (I )-(3), they also provide a variety of ex
pressions for <P (r). 

By setting rand p equal to zero in Eqs. (10) and (12) to 
secure expressions for SWS and then using the integrand of 
Eq. (10) over the domain 0 <d<.v < 00 and the integrand of 
Eq. (12) overO<.v<.d, one can expressS ws as the sum of two 
rapidly converging sums. This is caned the Ewald theta 
function method (TFM), 18 because both integrands are types 
of theta functions (TF's). In the sequel TF's will be used in 
additional ways, mostly utilizing an earlier report l9 of order 
relations on TF's. 

For p smaller than about 31T/W 2/3 it is convenient to 
write 

41TQ 2 f."" 00, S (r) = S WS(r) - -- L exp( - ur + iy·r) du 
n 1/4p y 

(13) 

=SWs(r)_ 41TQ2 f' exp[ -(r/4p)+iy.r) 
n y r (14) 

found from Eq. (12) by properly grouping terms to separate 
SWS and then setting v = 1/4u. These two show clearly that 
S (r) approachesS WS(r) asp approaches zero. Another impor
tant check on my expressions for S (r) is given by the empty 
lattice limit of p approaching infinity. From Eq. (11) it is seen 
that 

S(r)--Q -- -- exp -r -- dv, 2i"" 1 ( p )3/2 [ (pv)] 
o (1TV)1/2 p+v p+v 

(15) 

2 ( P )112 -2Q - . 
1T 

2100 

1 ( p )3/2 S- -Q -- -- dv= 
o (1TV)I/2 P + V 

(16) 

This last result checks with what one can calculate directly 
as the leading contribution to K, hence S, from the interac
tion between Q and the local background as the local back
ground near a point charge Q "bunches" up to become a 
point charge - Q. Since this leading term is structure inde
pendent, it cancels in the difference between the S 's for two 
lattices with the same n. 

Properties of AS for two lattices 

In studying Af" for two lattices to see which lattice pro
vides the lower energy structure, it is convenient to express 
~€ in terms of AS; both are expressible in terms of AS ws and 
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(10) 

(11 ) 

(12) 

a function H depending on TF's. A study of the zeros of AS 
and A€ then reduces to a study of H for which a knowledge of 
order relations I 9 on TF's permits one to determine a great 
deal about H and the zeros without numerical work. Then 
further details follow from a modest amount of computa
tion. Although the numerical results reported2 for the bcc
fcc, fcc-sc, and bcc-sc systems might appear to be a bit spe
cialized, they actually provide prototypical results for a 
broad class of pairs of lattices. From the role of order rela
tions on TF's it can be seen that the results for, say, the fcc-sc 
system are qualitatively similar to those for the fcc-hcp sys
tem; the hcp (hexagonal close packed) is not a Bravais lattice, 
but all the equations of this paper are easily modified to ap
ply to such lattices. All of this becomes most transparent in 
terms of reduced energies and unit (volume) lattices. 

Define mutually-reciprocal, unit lattices (a,b ) by 
T = fl 1/3a,y = 21Tb/fl 113, and exp(21Tia·b) = 1. When one 
wants to compare the energies above for two lattices either 
when the two are reciprocally related (bcc-fcc) or not (fcc-sc 
or fcc-hcp), the unit lattices reduce the need for notation and 
permit utilization of any reciprocity. 

First consider two competing lattices that are mutually 
reciprocal and such that the a lattice has a shorter first
neighbor distance than the b. As prototypes, identify the bcc 
with the a lattice and the fcc with the b. Also define S = FX, 
F= Q2/fl 11

3,and AX =X(a) -X(b).Thenwithr= O,Eqs. 
(13) and (14) give AX = AX wS + H (t), with t = pfl 2/311T, 
H(oo) = - ~Xws, and 

H(t)=f.""[I'exP(-1TSa 2)-I' exp(-1Tsb 2
) ]dS (17) 

lh a b 

The integrand of Eq. (17) is equal to the difference between 
two TF's, namely, Na (s) - Nb (s) in the notation of Ref. 19, so 
it may be expressed as AN (s). Any (a,b ) system obeying the 
order relations reported I 9 for the bcc-fcc system will possess 
an H (t ) with the properties I now outline for the bcc-fcc 
system. 

In terms of N the order relations are 

N:.c(s) > Nbcc(s), Nrcc(s) O<s< 00, 

Nrcc(s) > Nbcc (s) O<s< 1, 

Nbcc(S) > Nrcc(s) 1 <s< 00. 

(19) 

(20) 

(21) 

The curves of the three cubic N's become asymptotically 
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equal as s approaches zero or infinity, and Nrcc (1) = N ba; (1 ). 
ThusAN(s)isnegativeforO<s < 1 and positive for 1 <s< 00. 

Since the lower limit ofintegration in Eq. ( 17) is 1/ t, H (0) = 0 
and H (t ) increases to a maximum at t = 1. Beyond t = 1 the 
H (t ) decreases but remains positive, because the magnitude 
of the integral of AN (s) from O,s, 1 is less than the integral 
from 1 'S, 00, as follows from the TF reciprocal relation 
Nba;(s) = S- 3/2Nr"" (l/s). Thus as t approaches infinity, H(t) 
approaches - AXwS from above. Since H ( 00 ) = - AX ws 
and H ( 00 ) > 0, it follows without numerical evaluation from 
the order relations that AX ws is negative for any a-b system 
obeying the same order relations as obeyed by the bee-fcc 
system. 

As t increases from zero AX starts out equal to the nega
tive quantity AXws, increases to a maximum at t = 1 where 
it is positive, and then decreases to zero at infinity. This is 
verified with the numerical calculations discussed in Ref. 2 
and shown here in Fig. 1. With additional information about 
how AN (s) varies in the domain l,s < 00, one can secure 
qualitative information about the relative sizes of AX ( 1 ) and 
AXws. Toward this end, use the reciprocity relation on the 
N (s) and the defining expressions to rewrite AX ws and AX (1) 
in the respective forms 

(22) 

fao 1 
XII) = . --AN(s) ds. 

I v's 
(23) 

III. THE FUCHS ENERGY 

Both integrands are non-negative over the whole domain of 
integration, and they are equal at s = 4. For the bee-fcc sys
tem AN (s) has a maximum very close to t = 1 and is very 
nearly zero from abouts = 2 to infinity. Thus AN (s) is appre
ciable where the integrand ofEq. (23) is larger than the inte
grand ofEq. (22), yielding for the bee-fcc system 
AX(I» IAXwsl. 

Equation (18) is convenient for evaluation of A X for t 
less than about 3/2. For larger t it is convenient to write 
H (t ) = - AX ws + AX (t ), which suggests writing 

AX (t) = _ (I'AN (s) ds = (I' AN (~s) ds 
Jo Jo r' 

= f.oo AN(x) dx, (24) 
, v'x 

which is readily evaluated. 
To study AX for two lattices that are not mutually re

ciprocal one can return to Eqs. (13) and (14) to secure the 
appropriate modifications of Eqs. (17) and (18) as has been 
discussed for the fcc-sc and bee-sc systems in Ref. 2. The 
positiveness of H (t ) for these two systems depends heavily on 
Eq. (19), and there are no zeros for AX. For the fcc-hcp sys
tem the role ofEq. (19) is replaced byl9 

(25) 

However, AN is much smaller for the fcc-hcp system than 
for the fcc-sc. Thus it is seen that certain qualitative informa
tion about TF's yields considerable information about the 
Madelung energy of the GWS. 

The Fuchs energy E is independent of the particular summation cell (Sec. II) one uses except that, insofar as K (r) enters, 
the same summation cells must be used everywhere. Let us use the same cells as those used for Eq. (7). Then the definition of 
the Fuchs energy is 

2~ = lim ...!..{f f _1_ + f f (E..)3 r r 2: 00 2:'" exp[ - p(z - W)2]exp[ - p(z' - W,)2] d 3zd 3Z' 
Q N~oo N T "',,<T AT' T'" 1T' Jolo w w' IAT + Azi 

-2f f (E..)3/2 r 2:00 exp[ -p(Z_W)2] d 3z}, (26) 
T ." 1T' Jo w IAT + zl 

= lim ...!..{f f _1_ + f f ~ r r 2:002: 00 exp[ - (i + ",2)/4p + i(1"z + 1"'z')] d 3zd 3z' 
N~oo N T "",,<T A-r T'" n Jolo l' 1" IAT + Azi 

-2~ ~ ...!..r~oo exp[-(i/4p)+i1'·z] d3z}, 
"'-T"'-."nJo"'-'Y IAz+zl (27) 

where wand w' are rlattices. Settingp equal zero in Eq. (27) secures Eq. (6) of Ref. 12 for the WS. Next group together the 
terms given by T' = Tin Eq. (27) to give 

2~ = --4 r r 2: 00 2: 00 exp[ - (i + ",2)/4p + i(1'·z')] d3z d3z' _ 3..i2: oo exp[ - (i/4p) + i1"z] d3z 
Q n Jolo l' 1" Az n 0 l' Z 

+ lim ...!.. 2: 2: (remaining terms). (28) 
N_oo N T "',,<T 

The next step of changing the summation limit on the r' summation to infinity has not been previously justified even for 
the special case of the WS. As pointed out in Ref. 12, this step is required to get to Ihm and Cohen'sl4 starting point for their 
definition of €, and it was used in Ref. 12 to pass from its Eq. (8) to (9). The problem here is exactly the same as for the WS case, 
because the only difficulty arises from the contribution in Eq. (28) given by 1" = l' which is identical to that for the WS. Proof 
that this step is valid is given in the Appendix. 

With this step justified, one can, with a change to summation over Ar, write the last term in Eq. (28) as 
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f; {~+ ~ r r ff exp[ - (y + y'2)14p + i('Y'z + 'Y'z')] d 3z d 3z' _ ~ r L"" exp[ - (y/4p) + i'Y'z ) d3z}. 
T n JJo y y' 11'+.Jzl nJo y 11'+zl (29) 

Putting this into Eq. (28) and regrouping the terms gives 

E= ~K - ~~ r! exp [ - (Y) + i'Y'Z ] d 3z - ~~ r r""K(Z)exp [ - (r) + i'Y'Z ] d 3z. (30) 
2 2 nJo y 4p 2nJo y 4p 

This may be simplified and shown independent of the average potential by substitutingK = S + A andK (r) = S (r) + A, which 
leads to cancellation of the contributions from the two terms containing A . Thus Eq. (30) holds with K replaced by Sand K (r) 
replaced by S (r), giving 

E = ~S - ~!exp( - r) ~ r S(z)exp(i'Y'z) d 3z _ ~Q2!exp( - r) ~ r exp(i'Y'z) d 3z. 
2 2 y 4p nJo 2 y 4p n Jo z (31) 

The second term of this can be simplified by using Eq. (14) to 
give 

~ r S (z)exp(i'Y'z) d 3Z n Jo 
_ I (SWS() (. ) d3 41TQ2 exp( - y/4p) ../.0 - n Jo zexplY'z z-n- y . r-r-. 

= J.. (S wS(z) d 3Z, 'Y = 0, (32) 
f1 Jo 

After substituting this into Eq. (31), note that the integral of 
S WS(z) over the centered summation cell is equal to the nega
tive of the integral of Z-I over the cell, which yields 

E = J..S + 21TQ 2!, exp[ - 2(r/4p)] 
2 fl y r 

100

, (-r)li --r exp -- - SWS(z)exp(iy.z)d 3z 
2y 4p flo 

1 Qzf-' (- r) 1 50 exp(iy·z) d 3 -- L.t exp -- - z. 
2 r 4p no Z 

(33) 

For final simplification, use Eq. (12) withp set equal to zero 
and v = 1/4u to give 

41TQ 2 SOO 00 

SWS(z) = -- Lexp[ - ru + i'Y.z]du - Q21z, (34) 
n 0 y 

which with Eq. (33) yields 

2E = S + 4;2~' [exp( - r12p) ~ exp( - r /4p)] , (35) 

and by Eq. (14) 

2E=Sws_ 81TQ2!, exp[ -r/4p] 

n r r 
41TQ 2 00, exp [ - y2/2p] (36) +-2: r . fl y 

This completes the reduction of the definition of E, involving 
a sequence of eighteen summations, to terms which involve 
only three summations which are readily evaluated. 

IV. FUNCTIONAL RELATION BETWEEN E AND S 

A comparison ofEq. (14) forSwith Eq. (36) forEshows 
that a simple functional relation exists between the two. Let 
us first use it to show how to secure further expressions for E 

and to verify that E has the proper asymptotic form in the 
empty lattice limit. 

For each of the five expressions of Eqs. (10)-(14) with r 
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set equal to zero one can write a corresponding equation for E 

by first relating E and S through Eqs. (36) and (14) and then 
using a knowledge of how the second term in Eq. (14) con
tributes to the various terms in Eqs. (10)-(14) to determine 
what must be added toEqs. (IOH14) to secure a correspond
ing relation for 2E. If this procedure is carried out for Eq. (11) 
with r = 0, and if the first contribution for largep is consid
ered as in Eqs. (IS) and (16), one finds that Eq. (36) implies 

2E- - 2[2Q 2(P11T)I/Z] + 2Q2(p/21T)112, (37) 

(38) 

This result is exactly what one can calculate directly from 
Eq. (26) as the leading contribution to E for large p. Or, with
out reference to Eq. (26), note that as the local background 
near a point charge Q bunches up to become a point charge 
- Q, the leading term in E is given by two terms; the interac-

tion of the charge Q with the local Gaussian distribution and 
the interaction of the Gaussian with itself. These two are 
readily calculated and found to give Eq' (38). Though ele
mentary in nature, this check on the accuracy ofEq. (36) is a 
stringent one. 

For electrostatic structural transitions one wants to 
study the difference.dE for two competing lattices. It is con
venient to compare the reduced X and Y, where again 
S = FXand2E = FYwithF= Q2/fl 1/3, witht = pin 2/3/17'), 
and with.J referring to a value on an a lattice minus the value 
of a b lattice, where for our first case the (a,b ) forms a mutual
ly-reciprocal unit lattice. Then 

.dY =.dX + H(t) - H(t 12) 

= .dX ws + 2H(t) - H(t 12), (39) 

with H (t ) given by Eqs. (17) and (18). Figure 1, taken from 
Ref. 2, shows how .d Y varies with t for the bcc-fcc system. 
Minor modifications are required for cases where the two 
lattices are not mutually reciprocal. The fcc-sc and bcc-sc 
systems are disussed in Ref. 2, and the fcc-hcp system where 
one lattice (hcp) is not Bravais has similar equations, but one 
should recall the discussion ofEq. (25). The sequence oflow
est-energy structures with increasing t for the GWS is bcc, 
fcc, and sc, provided only the cubics are considered. 2 

Much can be determined about these transitions with 
no, or minimal, computations provided one has a modest 
amount of information about order relations on TF's for the 
lattices involved. I have discussed the role of the TF's in 
connection withSthrough theH (t). The same considerations 
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applyto€or Y,saythroughEq.(39),andH(t )andH(t 12). It is 
the Gaussian function that leads to such an important role of 
the TF's in the GWS; in the YWS the role ofTF's is less 
transparent. Nevertheless, there are a lot of similarities be
tween the functional relation for the yGWS and X GWS and 
that for the yYWS and X YWS as shown in Ref. 2. 

APPENDIX 

Proving that one can pass from Eq. (28) to Eq. (29) re
duces to the corresponding problem for the special case of 
the WS, because the only difficulty arises from the contribu
tion to Eq. (27) given by y' = y. This task in turn reduces to 
that of proving J = 0, where 

. IN""{I 1 
J= lIm -II -+-

N~oo N T -r'>N..::1T fJ 2 

xl" {d
3
zd

3
z' 2l d

3
z} (AI) 

010 1..::11' + zl - fJ 0 1..::11' + zl . 
To prove that J = 0 note that 

I 1 {I w·u I [3( A)2 2] } ---=- -- + - W'u-w 
In + wi u u 2u2 

+ 0 (:4). (A2) 

which will be used with u =..::11' and w =..::1z or w = z. Note 
further that for centered cells 

~2 Jl(..::1Z)2 d 3Z d 3z' = ~ lrd 3z, (A3) 

~ l" {(..::1z·..::11'f d 3zd 3z' = ~l(Z . ..::1Tf d 3zd 3z'. (A4) 
fJ Jo fJ 0 
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Substitution ofEqs. (A2)-(A4) into Eq. (AI) gives 

J = lim ~ I I 0 [ _1_], 
N~oo N r r'>N (..::1r)4 

(AS) 

which is equal to zero. 
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The Pelerls-Grlfflths argument for disordered Ising systems 
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We study Ising systems with random competing ferromagnetic and antiferromagnetic nearest 
neighbor interaction on a simple cubic lattice of arbitrary dimension. We use a version of the 
Peierls-Griffiths argument to prove the existence of a ferromagnetic phase and derive lower 
bounds for the critical concentration of antiferromagnetic bonds. 

PACS numbers: 7S.10.Hk 

I. INTRODUCTION 

In a previous paper, I Avron, Schulman, and the author 
found a number of rigorous results for the Ising spin glass 
model. For reasons that will become apparent in a moment, 
the proofs were formulated for the two-dimensional case 
only, though the main interest is in the three-dimensional 
model. It was shown that a version of the Peierls-Griffiths 
argumentl,3 can be used to prove the existence of a ferromag
netic phase at sufficiently low temperature and for a small 
but nonzero concentration of antiferromagnetic bonds. By 
appeal to geometric intuition and introducing certain pic
tures, like g. strings and r· strings, we made the physics 
behind our proof more transparent. The basic philosophy 
then was that spin glasses are systems with "random 
geometry." 

The purpose of the present paper is to go beyond d = 2 
and to study in a systematic way some geometric properties 
of the Ising spin glass. The focus now is on the coboundary 
operator <5 which is no doubt conceptually simple but some
what less familiar to physicists. Not only does this notion 
allow us to formulate the Peierls-Griffiths argument in a 
much more general setting, but it also shows that the Ising 
spin glass may be viewed as a discrete version of Maxwell's 
theory with the exterior derivative replaced by <5 and where 
the gauge group is Z2' We prove the existence of a ferromag
netic phase for the quenched system with nearest neighbor 
interaction. Using known techniques from random walk4 we 
also improve the lower bound obtained in Ref. 1 for the criti
cal concentration of antiferromagnetic bonds. The question 
whether there exists a genuine spin glass phase with nonzero 
Edwards-Anderson order parameter in sufficiently high di
mensions remains undecided. On the other hand, it is 
known6 that the spherical model with long range interac
tions has a ferromagnetic as well as a spin glass phase. 

2. PEIERLS CONTOUR IN ISING LATTICES 

We consider the Ising model with underlying lattice Zd. 
For each finite A CZd

. we have the space CO(A ) = zq of con
figurations in A. One may either adopt the spin language and 
write Z2 = [ + 1, - 1 J or use the lattice gas formulation 
and write Z2 = [0,1 J. The latter version seems preferable 
since, mathematically speaking, [0,1 J is the prime number 

.) On Leave from the Institute of Theoretical Physics, RWTH Aachen, 
Germany. This work was supported in part by the Stiftung Volkswagen
werk. 

field of characteristic 2 which gives C O(A ) the structure of a 
Z2-linear space with respect to pointwise addition of func
tions a:A_[ 0, 1 J. The set of negative spins, lal = a- 1(1), is 
called the support of the function aeC O(A ). This then estab
lishes a 1: 1 correspondence between vectors in CO (A ) and 
subsets of A. To the addition of vectors there corresponds 
the symmetric difference of their supports: 

la + b I = lal~lb I· (2.1) 

Note also that a + a = 0 which reflects the identity 
1 + 1 = 0 in Z2' Moreover, it is easy to see that the introduc
tion of the norm 

lIall = cardlal (2.2) 

turns CO(A ) into a normed vector space. 
When dealing with nearest-neighbor interaction, we 

need to consider the set of bonds B (A ). At this point there is a 
certain amount of freedom: we mayor may not include 
bonds that connect A to its complement in Zd. This has to do 
with the choice of boundary conditions. In the present paper 
we use positive boundary conditions (the "natural" ones for 
a lattice gas). Therefore, B (A ) is taken to. be the set of all 
bonds having at least one bounding site in A. Any spin out
side of A has value + 1. 

Suppose the interaction is ferromagnetic. Then we 
would say that a bond is satisfied (dissatisfied) in a configura
tion aeC ° (A ) if the product of the spin variables at the two 
bounding sites is positive (negative). In geometric terms, the 
dissatisfied bonds connect the set la 1 to its complement. It is 
common practice to visualize the situation by associating, to 
each dissatisfied bond k, the (d - 1 )-dimensional orthogonal 
cell k • of the dual lattice. The collection of k ·'s then forms a 
close hypersurface which can always be decomposed into 
minimal polyhedra with no common (d - 1 )-dimensional 
faces. Any minimal polydedron on the dual lattice is called a 
Peierls contour. 

It will prove necessary to rephrase this construction in 
an algebraic language.7 Let us thus introduce the vector 
spaceC 1 (A )offunctionson thebondsb:B (A )-[0,1 J. There 
exists a linear map 

8:CO(A )-C l(A ) (2.3) 

called the coboundary operator with the following interpre
tation. For any configuration a C O(A ), the coboundary 8a 
assigns values 0 and 1 to satisfied and dissatisfied bonds, 
respectively. Thus, if 18a I is the set of dissatisfied bonds, then 
the Hamiltonian of the ferromagnetic Ising model is 
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H(a) = 2Jllc5all (J>O) (2.4) 

normalized such that H (0) = O. 
CoboundariesI5a form a linear subspaceB I(A )ofC I(A ) 

and the map (2.3) is injective (c5a = 0 implies a = 0) since we 
adopted positive boundary conditions. In other words, the 
coboundary 00 determines the spin configuration uniquely. 

Two coboundaries 00 and c5a's are said to be disjoint if 
their supports are disjoint. In this case, 

IIc5a + c5a'll = 110011 + Ilc5a'lI· (2.5) 

A coboundary c5ceB I(A ) is said to be a Peierls contour if it 
cannot be represented as a sum of disjoint coboundaries and 
if &=1=0. Consequently, any coboundary may be written as a 
sum of disjoint Peierls contours, 

c5a = &1 + &2 + ... + &". (2.6) 

The geometric picture behind this construction suggests that 
the representation is in fact unique. A formal proof, howev
er, requires a little algebraic topology and is omitted here 
since the uniqueness is immaterial for the Peierls-Griffiths 
argument. 

In essence, the spin configuration is fixed by its Peierls 
contours, each contour & contributing 2J 11&11 to the energy 
(2.4). Notice also that lei is the set of sites inside the polyhe
dron associated with &. Therefore, lIell and 11&11 are mea
sures of the volume and the surface of the polyhedron. 

3. LARGE CONTOURS ARE UNLIKELY 

We want to show that, for a certain class of Hamilto
nians H (a), a large contour & is rather unlikely in the Gibbs 
state at low temperatures. The first step is to define the char
acteristic function 

x&(a) = {~ 1&IClc5a l, 

1&1¢lc5al· 
The problem then is to estimate the probability 

(x&)A = Z A IIx&(a)e-PH(a), 
a 

wherep = lIkTand 

a 

We assume that H (a)has been normalized such that 
H(O) =0. 

(3.1) 

(3.2) 

(3.3) 

Theorem 1: Let the Hamiltonian H (a) be such that 
Ic5alnlc5a'l = 0 implies 

H(a +a'»H(a) +H(a'). (3.4) 

Then 

(3.5) 

The hypothesis of this theorem expresses that the energy 
cannot become smaller when spin configurations are super
posed provided their coboundaries are disjoint. It is charac
teristic of nearest-neighbor models that equality holds in 
(3.4). The theorem demonstrates that & has small probabil
ity if PH (e) is large. 

Proof: We put b = a + e so that a = b + c. If & is a 
contour and if aeCO(A ) contributes to the sum (3.2), then 
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1&lnlc5b I = 0 and H (a»H (b) + H (e) by assumption. 
Therefore 

(3.6) 

where we changed the summation variable from b to a. The 
prime indicates that the summation is restricted by the con
dition Ic5alnl&1 = 0. This implies Ic5al tJ 1&1 and hence 

(3.7) 

which proves the theorem. 

4. DISORDER AND FRUSTRATION 

The simplest model of a spin glass has coupling con
stants ± J with random sign at each bond. Equivalently, we 
pick beC I(A ) at random and write for the energy 

Hb(a) = 2J(lIc5a + b II-lib III (J>O). (4.1) 

The interpretation is immediate: Ib I is the set of antiferro
magnetic bonds and Ic5a + b I is the set of bonds dissatisfied 
with respect to the event b. The term - lib II in (4.1) is there 
merely to normalize the energy. We also assume that the 
coupling constants at different bonds are statistically inde
pendent and identically distributed. This amounts to giving 
the random variable b the probability distribution 

p(b)=const [x/(I-x)]llb ll (O<x<I), (4.2) 

where x is the concentration of antiferromagnetic bonds. 
The partition function 

(4.3) 
a 

is invariant under gauge transformations,8 b-b + Da. If b is 
a coboundary, the disorder can be eliminated from the sys
tem by a gauge transformation, and thus, 

(4.4) 

Such events are said to have irrelevant disorder. To find a 
measure for relevant disorder9 we introduce yet another 
space. This is the vector space C 2(A ) of functions 
c:P (A )_\ 0, IJ where P (A ) is the set of plaquettes having at 
least one bounding face in B (A ). There exists a linear map 
D:C I(A )-C 2(A ) extending the coboundary operator such 
that D 2 = O. For any beC I, c5b assigns the value 1 precisely to 
the frustrated plaquettes. Recall that a plaquette is said to be 
frustrated if an odd number of its bounding faces is antiferro
magnetic. We call 

f=c5b (4.5) 
thefrustration of the event b. The possible frustrations con
stitute a subspace B 2 of C 2. It is a proper subspace if d;> 3. To 
find the condition that restricts the frustration pattern, we 
must take full advantage of the cochain complex 7 

~ 6 ~ 

o-CI(A )_C 2(A )_C 3(A )-"', (4.6) 

where D 2 = O. Let Z " and B n + I be the kernel and the image 
of the map 8: c"_cn + I. Then B nCz n and the quotient 
H n = Z n/ B n is called the nth mod 2 cohomology space of 
A. The nth connectivity number cn = dim H n is an impor-
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tantinvariantofA. If c" = O,O<n <d, we would say thatA 
has trivial topology. Let us examine two special cases. 

(1) c I = 0, hence B I = Z I. Since the partition function 
(4.3) merely depends on the orbit of bin C I under the gauge 
group B I, it may be considered a function on 
C liB I = C liZ I r;;;;.B 2. Inotherwords, the partition function 
depends on the frustration/ only and the equation/ = ° is a 
criterion for irrelevant disorder. 

(2) C2 = 0, hence B 2 = Z 2. The frustration satisfies the 
equation/ = ° which by assumption characterizes all possi
ble frustration patterns. This equation says that flux tubes 
connecting frustrated p1aquettes are always closed. 

It is obvious that band/resemble the potential and the 
field strength in Maxwell's theory. Typically, in lattices with 
trivial topology,f is observable and b is not. 

5. FERROMAGNETISM IN DISORDERED SYSTEMS 

The number of negative spins in a configuration 
aECO(A ) is N _ (a) = Iiali. We write 

a=D&(a)c, (5.1) 

where the sum is over all Peierls contours &. The triangle 
inequality gives 

(5.2) 

Let (-) A (b ) denote the thermal average with respect to the 
Hamiltonian (4.1) and E (.) denote the expectation with re
spect to the distribution (4.2). Then 

(5.3) 

A routine calculation shows that 

Hb(a + a') = Hb(a) + Hb(a') (5.4) 

provided 8a and 8a' are disjoint. By Theorem 1, 

<X..,JA(b)<;(1 +exp/3Hb(C))-I. (5.5) 

Moreover, Hb(C) = 2J(n - 2k) where n = 11&11 and 
k = 1I&lnlb II. The event that k out of n bonds are antiferro-

magnetic has probability (~)Xk (1 - x)" - \ and thus, 

(
n)Xk(l-xt - k 

E(<X..,JA)<;~ k 1 +e2/U ("-2k)' 
(5.6) 

Similar estimates for random spin systems were derived by 
Griffiths and Lebowitz. to Using the formula 

i ff ((n) O<;k<;n, 
1T-

I ° dt(2cost)"cos(n-2k)t= k . (5.7) 

° otherwlse, 
and the abbreviations r = 2[x( 1 - xJr /2, P = xl( 1 - x), 
q = 4/3J. we obtain 

E( <X..,JA )<;1T-
11" dt/(t) (r cos t )11&11. (5.8) 

where 

/(t)= I pm(l+e-mq)-lcos2mt (5.9) 
m = - 00 
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(2m = n - 2k is even) assuming 0< p < 1 <peq. Clearly 
11&11 = 2nl + 2n2 + ... + 2nd (nj;;;.1)if2nj bonds of 1&1 run 
paralled to the ith axis. The idea is now to estimate the num
ber ~ '1Icii where the the sum is over all Peierls contour & 
with prescribed nl ... ·.nd • Ruelle ll proved 

From (5.3. (5.8). and (5.10). 

IA 1-IE(N_)A)<;Id(x.T). 

where 

and 

3g(t) = I n l/(d - 1)(3r cos t f". 
n=l 

(5.10) 

(5.11 ) 

(5.12) 

(5.13) 

The series converges if x( 1 - x) < -k hence 3r < 1. Spontane
ous magnetization occurs if the density of negative spins is 
less than~. In fact, (5.11) estimates this density independent 
of the size of the system. We have thus proved: 

Theorem 2: For x> ° and T> 0, both sufficiently small. 
the disordered Ising model is ferromagnetic if d;;;.2. A lower 
bound for the critical curve in the (x,T) plane is given by the 
equation Id(x.T) = !. 

At zero temperature. the function/(t) assumes a par
ticular simple form: 

/(t)=(!-x)(1-rcos2 tj-l. (5.14) 

Likewise, the function g(t) looks simple if d = 2: 

3g(t) = [(3r cos tj-I - 3r cos t]-2. (5.15) 

Numerical integration of (5.12) shows that the equation 
12(x,0) = ~ is solved by x = 0.01938 .. ·. As we increase the 
dimension, the critical values for x become slightly larger 
but never exceed 0.029 as given by the singularity at 3r = 1. 
The constant 3 originates from our assertion that log 3 be the 
entropy per unit surface of the Peierls contour which is an 
overestimate. 12 

6. AN IMPROVED ESTIMATE 

The numerical estimate for the average number of nega
tive spins can be improved in one simple case: the two-di
mensional spin glass at zero temperature. The previous argu
ment uses an upper bound for the number ofPeierIs contours 
which is too generous for two reasons. (1) We counted open 
as well as closed contours and (2). we counted contours that 
intersect themselves. In two dimensions. the appropriate 
theory would be self-avoiding random walk. Still. useful re
sults are scarce and highly nontrivial. 

We carry the above analysis further by counting all 
closed paths that visit the dual sites in A C 'I}, thereby ob
taining an upper bond, independent of A, for the generating 
function (r> 0). 

(6.1) 

where the sum is over Peierls contours &. In fact. such an 
estimate is all we need to derive results for T = 0, because 
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IA I-IE(N _) /I )<11'- 111T 

dtf(t )h/l (r cos t) 

<!h/l (r) (6.2) 

as follows from (5.3), (5.8), and (5.14). 
A closed path visiting dual sites has an even number of 

11'/2 turns called vertices. Let 2k be this number. We single 
out a vertex and walk around: n steps along the x axis, n' 
steps along the y axis, and so on. Thus, closed paths are 
mapped onto O#non;El, l<i<k (k:>2) where 
~n. = ~n~ = 0 which is the closure condition. Let C ~ be 
the' numb~r of ways one can choose integers nl, ... ,nk such 
that ni #0, ~ni = 0, and ~Ini I = 2n. The generating 
function 

Fdr) = f C~rn (O<r< 1) 
n~k 

may be represented as 

Fdr) = (211')-IJ~1TdS (Pr(s) - 1)\ 

where Pr(s) is the Poisson kernel, 

(6.3) 

(6.4) 

(6.5) 

The number ofloops in A with 2k vertices and total length 
2n + 2n' is certainly smaller than IA 1(2k )-IC~ C~,. The 
factor IA I arises from the fact that translated loops have to 
be distinguished. We also divided by 2k since the walk on the 
dual lattice may be started at any of the 2k vertices. The area 
enclosed by the loop may be bounded as Ilell <n n'. This gives 
h/l(r)<Q(r) where 

Q(r) = k~2C~knc~rny(2k )-1 

f (.!...-!!....Fk(r))2(2k)-I. (6.6) 
k~2 2 dr 

The sum is convergent provided 3r < 1. From (6.4), 

2Q(r) = 11'-Z11Tdsi1TdS' A (s,s') CIs) CIs'), (6.7) 

3005 J. Math. Phys., Vol. 22, No. 12, December 1981 

where A = (1- B)-z - 1 and 

B (s,s') = (Pr(s) - 1) (Pr(s') - 1), (6.8) 
CIs) = Re reiS(eiS - r)-2. (6.9) 

We may replace A by A + 1 in (6.7) without changing the 
integral. Moreover, the integral with respect to s' can be per
formed analytically leaving 

r _ 2(_r_)2 J . .J1T 
ds [2r - (1 + r)cos s] (r - cos s) . 

Q()- l-r 11'Jo [(1+3r-2rcoss)2-4rp/2 
(6.10) 

which is nonsingular if 3r < 1. Note that Q (r) may be written 
as a sum of three elliptic integrals. Using either this represen
tation or numerical integration one shows that the critical 
value Q (r) = 1 is assumed for r = 0.3 319 ... corresponding to 
x = 0.02834··· since r = 4x( 1 - x). The result is consider
able improvement over the previous lower bound for the 
critical concentration Xc of antiferromagnetic bonds in the 
two-dimensional spin glass at zero temperature. 
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The Ernst metric is analyzed in terms of the null tetrad formalism of Newman and Penrose. Some 
applications of the formalism are also given. 
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An exact electrovac solution of the Einstein-Maxwell 
field equations has been found by Ernst, I which could pro
vide a model for the exterior metric due to a Schwarzschild 
black hole embedded in a magnetic field. The Ernst solution, 
which is static, axially-symmetric, but not asymptotically 
fiat, could hopefully yield a valid approximation to the real
istic situation, at least in the near zone of a black hole. The 
geometry of the event horizon for this metric has recently 
been studied by Wild and Kerns. 2 In this note we carry out 
an analysis of the Ernst metric, in terms of the null tetrad 
formalism of Newman and Penrose. 3 We choose a system of 
null tetrads and calculate the spin coefficients and the tetrad 
projections of the various tensors of interest, e.g., the Weyl, 
the Ricci, and the electromagnetic field tensor. As an appli
cation of these results, we study the principal null vectors of 
the Weyl tensor. We find that the Ernst metric is algebraical
ly general, of type I in the Petrov classification. 

As another application, we derive an expression for the 
Gaussian curvature ofthe event horizon and thereby repro
duce the result of Ref. 2. As a final application, we derive the 
form of the electromagnetic test fields. We find that nontri
vial test fields do not exist. 

We shall consider a tetrad of null vectors 
(I" ,n

" 
,m" ,m:) satisfying the usual conditions 

l"n" = - m"m-fl = 1, lflmfl = nflm" = 0, (1) 

gflY = i"ny + nflly - m"m~ - m:my. (2) 

In a Schwarzschild-like coordinate system with X o = t, 
Xl = r, x 2 = 0, and x 3 = ¢ the Ernst solution has the line 
element 

ds2 = g"vdxfldxv = A 2[(1 - 2m/r)dt 2 - (1 - 2m/r)-ldr 

_ rdO 2] _ A -2r sin20 d¢ 2, (3) 

where 

A = 1 + !B2r sin20 (3a) 

and B is the parameter of the (external) magnetic field, whose 
Cartan components are 

Hr = A -2B cosO, He = - A -2B (1 - 2m/r) I 12 sinO. 
(3b) 

Then the following choice of the null tetrad 

I" = (1, - (1 - 2m/r)-t,0,0), 

n" = (A 2/2)(1 - 2m/r,1,0,0), 

m = _r_(o a _ A - i sinO ) 
" V2" , A 

(4) 

is easily shown to yield the Ernst metric via Eq. (2). With the 
tetrad now chosen [as in Eq. (4)], it is now a matter of 

straightforward calculation to compute the twelve spin coef
ficients. We find the following expressions: 

K = 0, V = 0, E = 0, 

0'= _ _ 2_(A -1), ...t = _ A-I (1- 2m), 
rA 3 rA r 

1 cot 0 
p = - rA 2' a = - 2(y2)rA ' (5) 

cotO 
(3 = 2(y2)rA 2(4 - 3A), r=a +{3, 1T= - r, 

Il = - ;r (1 - 2~). r = ; + A r~ 1 (1 _ 2~ ). 
where the notation for the spin coefficients is the same as in 
Ref. 3. From the above expressions we can now calculate the 
tetrad projections of the Weyl and the Ricci tensors by use of 
the Newman-Penrose equations. For instance, the equation 

DO' - tJK = u( p + p- + 3E - E-) 

- K(r - 1T- + a- + 3(3) + 1/10 (6) 

gives the Weyl tensor component 1/10' Thus using eleven of 
the eighteen Newman-Penrose equations we find 

1/1
0 

= 6(A - I)(A - 2) 1/1 _ A cotO 1/1 rA 6 1- v2 0' 

1/1] = - (A 2!2{ 1 - 2~ )1/11, 1/14 = (A 4/4{ 1 - 2~ r 1/10' 

(7) 

1/12 = ~~: [(2 coeO - I)(A - 1) + 7 (3A - 2)]. 

The tetrad projections of the Ricci tensor are given by 

4>jj = 24>j 4> t, i,j = 0,1,2, (8) 

where the tetrad projections of the electromagnetic field ten
sor are as follows: 

'" i sinO 1/2 
'Po = 2l/2A 3 B,4>1 = (A /2 ) cot04>o, 

4>2 = - (A 2/2)(1 - 2m/r)4>o. (9) 

We have used the standard notation3 in writing Eqs. (6)-(9), 
above. 

The Weyl and the electromagnetic tensor can be given a 
more symmetrical appearance by applying the null tetrad 
rotation 

(10) 

with 

A = (2 1/2/A)(1 - 2m/r)-1/2. (lOa) 
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As a result, the Weyl tensor acquires the shape 

I/I~ = I/I~ = 3(A - I)(A - 2) (1 _ 2m), 
r2A 4 r 

(11) 
1/1; = - I/Ii = cotO(l - 2mlr)-1/2I/1b, 1/1; = 1/12' 

and the E.M. (electromagnetic) tensor becomes 

iB ( 2m )1/2 4> b = - 4>; = -- sinO 1 - - , 
2A 2 r 

(12) 

where we have denoted by a superior prime quantities evalu
ated with respect to the tetrad system of Eqs. (10) and (lOa). 
Similarly, the transformed spin coefficients are given by 

K'=O, v' =0, o'=qIA, p'=pIA, 

Il' = All, J.l' = AJ.l, r' = r, 11" = - r', (13) 

y=(AI2)y, E'=y', a'= -[(A-2)/A]a, /3'= -a'. 

We make a few remarks on the tetrad systems given by Eqs. 
(4) and (10). The vectors II' and I ~ each form a congruence of 
null geodesics. The geodesics corresponding to the II' vectors 
are affinely parametrized (E = 0) and the congruence of the 
vectors is equal to a gradient field (a + /3 = r). The tetrad 
system ofEq. (4) reduces, in the limiting case of no magnetic 
field, to the Kinnersley's tetrad for the Schwarzschild met
ric. The null geodesic congruence formed by the I ~ vectors is 
not affinely parametrized and one also notes that the expan
sion p' and the shear 0' ofthe I ~ vectors vanish at the event 
horizon. 

The expressions for the tetrad projections of the Weyl 
and the Maxwell tensors can be derived in a much more 
efficient manner (than via the use of the Newman-Penrose 
equations) by utilizing an elegant technique developed by 
Hauser and Ernst.4 These authors have given compact ex
pressions (or these projections for any electrovac spacetime 
which results (rom a given seed solution of the Einstein
Maxwell equations when the seed solution is subjected to a 
transformation of the Kinnersley group. A derivation along 
these lines has been obtained by Ernst and is being quoted 
here with his permission.~ The Weyl tensor is given by Eq. 
(5.9) of Ref. 4 and reads, in the notation ofthat paper, as 

(CAB)'=A -2(1-2bE/A -I) 

X (CAB + 12bE A -II (J)A(J)B - i((J)C(J)clGAB ] I, 
(14) 

where CAB is the Weyl tensor of the Schwarzschild solution 
which is the seed solution for the present case. The first step 
in calculating the remaining terms that appear in the above, 
is to select a Killing vector for the seed solution. This is taken 
to be KI'01' = o~ and from the concomitant one-form 
K = r2 sin20 d; one next constructs the two-form 

(J) = !dK = r sin20 dr A d; 

+ r2 sinO cosO dO Ad;. (15) 

The next step is to choose a convenient basis (B A I for the 
two-forms. 

B+ = kAt, Bo = kAm + tAt*, B_ = mAt*,(16) 
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where 

k = (1/21/2)((1- 2mlr)- 1/2dr- (1- 2mlr) 1/2dt), 

m = (1/21/2)((1 - 2mlr)- 1/2dr + (1 - 2mlr)1/2dtW7) 

t = (rI21/2)(dO + i sinOd;). 

The null tetrad (k,m,t,t *1 in the Hauser-Ernst notation cor
responds to the null tetrad I l,n,m,m* 1 in the Newman-Pen
rose notation. Also, the different sign convention for the line 
element adopted by Hauser-Ernst, as compared to New
man-Penrose, should be noted.6 The desired quantities that 
appear in Eq. (14) are then given by 

(J)A = BAr(J), GAB = BArB B, 

(IS) 
/= KrK = - r2 sin20, 

where r denotes the inner product as defined in Ref. 4. In 
addition 

bE = _!B 2, A = 1 + !B2r2 sin20 (19) 

as follows directly from the relevant Kinnersley transforma
tion. Putting together Eqs. (15)-(19) and remembering6 the 
connection between the two notations 

(C -I-I)' = - 1/10' (C -10), = - 1/11' (Coo)' = - 1/12' 

(20) 
(C II)' = - 1/14' (C 10), = - 1/13' 

we obtain from Eq. (14) the expressions for the Weyl tensor 
as given by Eq. (11). Similarly, Eq. (3.3) of Ref. 4 gives the 
electromagnetic field 

(FA)'=BA-2(J)A (21) 

which is our Eq. (12). We note that all the tetrad projections 
have nice behavior as r- 00. 

We wish now to consider applications of the foregoing 
results. As a first application, we want to find the principal 
null vectors ofthe Weyl tensor. As explained by Janis and 
Newman,7 this can be done by solving the quartic equation 

1/14b 4 + 41/13b 3 + 61/12b 2 + 41/11b + 1/10 = O. (22) 

Now the coefficients of the above equation enjoy the proper
ty 

(23) 

as we can see from Eq. (7). Using (23), the quartic equation 
(22) may be replaced by a quadratic equation 

1/14y2 + 41/13Y + 61/12 - 21/14(1/I111/I3~ = 0 (24) 

in terms of the variable 

(24a) 

Thus the quartic equation (22) can be solved in two steps; 
each step involves solving a quadratic equation. The roots bl 

(i = 1,2,3,4) ofEq. (22) are thus found to be 

b l •2 = !YI ± Hyf + (S/A 2)(1 - 2mlr)-1 ]1/2, 

b3,4 = !yf ± Hyf2 + (8/.1 2)(1 - 2mlr)-1 ]112, 

where 

(25) 

YI = ~ (1 - 2~ ) -1[(21/2) cotO + i(;~ 1) y12] 
(25a) 
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andyT is the complex conjugate ofYI' Thus the Weyl tensor 
has four principal null vectors corresponding to the four dis
tinct simple roots of Eq. (22). The metric, therefore, is alge
braically general, of type 1 according to the Petrov classifica
tion. We also note that in the limit m = 0 of the Melvin 
metric, g we have YI = yT and Eq. (22) now has a pair of dou
ble roots. Thus the Melvin metric is of type D, as has been 
recently noted by Wild. 9 

As a second application, let us consider the Gaussian 
curvature of the event horizon. The expression for the Gaus
sian curvature in terms of the Newman-Penrose quantities 
was found by Hartle, \0 for vacuum metrics. Adapting his 
derivation to the electrovac case, we easily obtain the 
formula 

(26) 

for the Gaussian curvature, as defined by Hartle. \0 Inserting 
the expressions for the spin coefficients from (5), tP2 from (7) 
and <PI I from (8) and (9) and specializing to the horizon at 
,= '0 = 2m and simplifying, we obtain from (26) 

2 
f!ll = -- [ - A ~ (1 + 4 cot20 ) 

~A6 

+ 2Ao(1 + 8 cot20) - 12 coeO], (27) 

where Ao is A evaluated at , = '0' In terms of the dimension
less parameter iJ = mB = (Ao - 1) I /2/sinO, Eq. (27) is easily 
rewritten as 

(28) 

which is exactly the expression derived in Ref. 2, using a dif
ferent method (notice that Hartle's f!ll is twice the Gaussian 
curvature as defined by Wild and Kerns). 

As a final application, we will derive the form of the 
electromagnetic test fields on the Ernst metric. For this pur
pose it is convenient to choose a tetrad system in which two 
of the null vectors are chosen to be along the principal null 
vectors of the electromagnetic tensor, so that 

(Po = 0, (P2 = 0, (29) 

where by an overtilde we mean that the relevent quantity is 
evaluated with respect to the new tetrad system. The desired 
tetrad rotations (two successive rotations) that lead to Eq. 
(29) are easily found and applying the standard formulas for 
tetrad rotations, II we thus obtain 

(PI = - (iB 1M 2) cosO V R, (30) 

_ 3m tan20 
p = ,-2RA 2 (1 - V R )' 

fi = ~ (R - 1)(1 - V R ) 
8,-2R 2 ' 

(30a) 

tanO 
1T= -7= 

2(v2)rAR 3/2 

[
m A-I 2 2] X -;:(R - 3)-4-

A
-R cot 0 , 

(30b) 
where 
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R = 1 + (1 - 2mlr) tan20. (31) 

The Newmann-Penrose operators are calculated similarly. 

D 2 [v R 2e a a tanO a ] 
= A 2(R 1/2 _ 1) R - 1 tan at - ar + -r- ae ' 

- R 1/2 - 1 
.J = (R - 1) cotze 

4R 

x[ vR tan20~ + ~ _ tane ~], (32) 
R - 1 at ar r ao 

8 = cote [(R 1) a tane a ] 
(v2)A (V R ) - ar + r ae 

iA a + -. 
(v2)r sine aifJ 

Let us now introduce perturbation fields (P:' and write the 
net electromagnetic field as (Pi + (P n, where (Pi is the un
perturbed field. In the test field approximation, the back
ground metric and hence the energy-momentum tensor is 
held fixed, and the condition for the vanishing of the first
order variation of the latter is 

-- -.p ---p 
<Pi<P j + <P t<P i = O. (33) 

Using (29) and the fact that (PI #0, we obtain from the above 

(34) 

(35) 

The sourceless Maxwell's equations for the surviving test 
field now read 

(D - lp)(P f = (X + 2fi)(P f = 0, 

(36) 
(8 - 2;)(P f = (8· + 2;;'\(P f = O. 

From (30a), (30b), (32), and (36) it follows immediately that 

a -p a- p -<PI = -<P =0 (37) 
at aifJ 

and the resulting static, axisymmetric test field is then easily 
obtained from the remaining Maxwell's equations. We find 
thus 

(Pf = (ciA 2) cosOVR. (38) 

The infinitesimal parameter c must be real in order that (35) 
is satisfied. Since (38) can be obtained from (30) via a duality 
rotation, it is quite clear that the above perturbation corre
sponds to putting an (infinitesimal) external electric field 
around the source. In any event, nontrivial perturbations are 
ruled out in the test-field approximation. The situation here 
is exactly the same as in the case of the charged Kerr 
metric. 12 
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Addendum: Objects for the symmetric group 
[J. Math. Phys. 22, 1144 (1981)] 

M. F. Soto 
Department of Natura I Sciences, Baruch College of the City University (Box 331), 17 Lexington Avenue, New 
York. New York ]()010 

R. Mirman 
155 East 34 Street, New York. New York 10016 

(Received 25 September 1981; accepted for publication I October 1981) 

PACS numbers: 02.20.Df 

mun. 23, 81 (1981). The programs which generate the results presented in 
this paper have now been published 1.2 and are obtainable as 
described in these references. 

2 M. F. Soto, Jr. and R. Mirman, Comput. Phys. Com
mun. 23, 95 (1981). 

I M. F. Soto, Jr. and R. Minnan, Comput. Phys. Com-

ERRATA 

Erratum: Algebraically special Yang-Mills solutions without sources 
[J. Math. Phys. 22, 2040 (1981)] 

R. O. Fulp, Paul Sommers, and L K. Norris 
Department of Mathematics, North Carolina State University. Box 5548 Raleigh. NC 27650 

(Received 13 January 1981; accepted for publication 6 March 1981) 

PACS numbers: Il.lO.Np, 99.10. + g 

All the corrections occur in the Theorem and the Re
mark following it in Appendix C. 

cocyc1e and add the statement: Every O-cocycle b gives rise 
to a l-coboundary c defined by cuv = bub v I. 

(I) In line (3) of the statement of the Theorem replace 
H 2(M -11{~ ),R *) = 0 by H I(M -11{..E ),R *) = O. 
(2) In line (5) of the Remark replace 2-cocyc1e by l-cocycle. 
(3) In line (10) of the Remark replace 2-coboundary by 0-

(4) In line(ll) of the Remark replaceH2(M -1Ii~),R *) = 0 
by H I(M -11{~),R *) = Oandreplace2-cocyc1eby l-cocyc1e. 
(5) In line (12) of the Remark replace 2-coboundary by 0-
cocyc1e. 

Erratum: A kernel of Gel'fand-Levitan type for the three-dimensional 
SchrOdinger equation [J. Math. Phys. Vol. 21, 83 (1980)] 

H. E. Moses 
University of Lowell Center for Atmospheric Research. College of Pure and Applied Science. Lowen 
Massachusetts 01854 

(Recieved 22 July 1981; accepted for pUblication II September 1981) 

PACS numbers: 03.65.Nk, 99.10. + g 

In Eqs. (38H40) the quantity dO should be replaced by 
sin e dO. That is, a factor sin e is missing. The equations 
which depend on Eqs. (38H40) are correct. 
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